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Abstract Vector-borne diseases are one of the major public health problems in the
world with the fastest spreading rate. Control measures have been focused on vector
control, with poor results in most cases. Vaccines should help to reduce the diseases
incidence, but vaccination strategies should also be defined. In this work, we propose
a vector-transmitted STR disease model with age-structured population subject to a
vaccination program. We find an expression for the age-dependent basic reproductive
number Ry, and we show that the disease-free equilibrium is locally stable for Ry < 1,
and a unique endemic equilibrium exists for Ry > 1. We apply the theoretical results
to public data to evaluate vaccination strategies, immunization levels, and optimal age
of vaccination for dengue disease.
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1 Introduction

Vector-borne diseases are infections transmitted by the bite of infected arthropod
species, such as mosquitoes, ticks, triatomine bugs, sandflies, and blackflies. Accord-
ing to World Health Organization, vector-borne diseases are responsible for 17 % of
the estimated global burden of all infectious diseases (Townson et al. 2005). Only
malaria, the most deadly vector-borne disease, caused an estimated of 300 millions
of cases with 627,000 deaths in 2012, mostly African children under the age of five
(World Health Organization 2009b). Dengue fever, together with associated dengue
hemorrhagic fever (DHF), is the world’s fastest growing vector-borne disease. It is
estimated that dengue virus causes around 50—100 million cases every year (World
Health Organization 2009a), with more than 500,000 reported cases with the severe
form of the disease, dengue hemorrhagic fever (DHF), although other sources mention
up to 390 million of cases (Bhatt et al. 2013). As dengue disease, yellow fever is a viral
disease transmitted by Aedes mosquitoes, and found in tropical regions of Africa and
the Americas. This disease can produce severe outbreaks, which can be prevented and
controlled by mass vaccination campaigns. Other examples of vector-borne diseases
with important impact are Chagas disease, West Nile virus disease, Chikungunya,
among others.

Currently, the main aim of most programs is to reduce the densities of vector popula-
tions as much as possible and to maintain them at low levels. Control methods include
the elimination or management of vector habitats, use of larvicides, use of biological
agents, and the application of insecticides. However, all known control methods have
limitations. For instance, indiscriminate use of insecticides rapidly produce resistance,
besides to pollute the environment.

Biological control is based on the introduction of predators, parasites, or competitors
in order to reduce the population of the target species. But although a biological
control avoids chemical contamination of the environment, there may be operational
limitations such as the cost and task of producing the control organisms on a large
scale, and there is a potential risk that the control gets out of hand (World Health
Organization 2009b). Thus, research on vaccines, environmentally safe insecticides,
and alternative approaches to vector control are needed.

Commercial vaccines are available only for few vector-borne diseases, among them
yellow fever, Japanese encephalitis, tickborne encephalitis, and plague, and they are
not yet widely used. In general, the design of effective vaccines for major vector-borne
diseases presents great challenges. For instance, in the case of malaria, some of the
negative factors include the genetic complexity of the parasite. Another problem for
malaria and Chagas disease is that the vaccines require a great amount of biological
material (Zofou et al. 2014). The main problem for the development of a vaccine
against dengue has been the existence of four different serotypes,! and the risk of
dengue hemorrhagic fever (DHF) (Halstead et al. 2005). Due to these dengue-specific
complexities, vaccine development focuses on the generation of a tetravalent vaccine
aimed to provide long-term protection against all virus serotypes.

1 Lately, there are claims about the discovery of a fifth serotype (Sciencelnsider).
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In spite of the difficulties mentioned above to elaborate effective vaccines for vector-
borne diseases, significant progress has been made in recent years and, for instance,
at the present several candidates are being developed for dengue disease (Guy et al.
2010).

Mathematical models have been an important tool to assess the efficacy of vacci-
nation strategies, particularly for direct transmitted diseases, see Anderson and May
(1994), Castillo-Chavez and Feng (1998), Dietz and Schenzle (1985), Gao and Het-
hcote (2006), Hadeler and Miieller (1993a), Hadeler and Miieller (1993b), Hethcote
(1988) among others. Since no effective vaccine exists yet for some of the most com-
mon vector-transmitted diseases, few models have explicitly considered the potential
impact of vaccination for such diseases. In Billings et al. (2008), an ODE model is
given to evaluate the effects of single-strain vaccine campaigns on the dynamics of
an epidemic multistrain model. More recently, in Coudeville and Garnett (2012) was
proposed an age-structured, host-vector, and serotype-specific compartment model.
Numerical simulations were done to design scenarios for the potential impact of a
dengue disease vaccine on a population.

In this work, we formulate a mathematical model for vector-borne diseases with
recovery, age-dependent infectivity, and vaccination. Our aim is to explore the
impact of vaccines on the control of those diseases. We find an expression for
the basic reproduction number, Ry, and we show that the disease can invade the
population and a unique endemic steady state exists if Ry > 1. As an applica-
tion, we study the dengue incidence in Mexico. We apply the procedures discussed
in Hadeler and Miieller (1993a), Hadeler and Miieller (1993b), Thieme (2003) to
find possible optimal vaccine strategies for this disease. In particular, we found
that vaccination between age two and three could be an optimal vaccination age in
Mexico.

The paper is organized as follows. Formulation of the model is given in Sect.?2.
The basic reproduction number Rp and the net reproductive number Ry(V) for a
vaccination profile V (a) are given in Sect. 3. Vaccination strategies applied to data of
dengue disease in Mexico are presented in Sect.4. Discussion of the results are given
in Sect.5. The mathematical details to prove the local stability of the infection-free
steady state are presented in Appendix.

2 Formulation of the Model

We assume a human population where the susceptible newborns are recruited at a
constant rate B, and individuals die according to the rate 1 (a). Further, the population
is divided into susceptible, infected, and removed classes, where s(a, t), i (a, t), and
z(a, t) denote the densities of age a at time ¢ in the respective class, and n(a, t) =
s(a,t) +i(a,t) + z(a, t) is the total population of age a at time 7. The total human
population at time ¢ is equal to

Np(t) = /oon(a, t)da.
0
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The vector population is assumed constant, and it is denoted by N,. We assume
that vector population never recover from infection; therefore, we only consider the
susceptible and infective for this population, where s, (¢) and i,/(¢) are the proportion
of individuals of each class, respectively.

Following Esteva and Vargas (1998), the rate of infection to an individual of age a,
ap(a, t), depends on the number of vector bites that an individual receives and on the
probability, Bj (a), that an infectious bite in an individual of age a gives rise to a new
case. The average number of bites received by a human is given by bm(¢t), where b

is the vector biting rate, and m () = ﬁ Putting the above assumptions together,

we obtain oy (a, t) = bm(t)Bn(a). Onhthe other hand, we assume that the infective
rate per individual of age a to vectors is given by o, (a) = bBy(a), where B, (a) is the
probability transmission from individuals of age a to vector.

For the human population, y (a) is the age-specific recovery rate, and w(a) the
age-specific mortality rate. The effective age-dependent immunization rate is given
by o (a) = vn(a) where n(a) is the age-dependent vaccination rate, and 0 < v < 1 is
the vaccine efficacy (we assume that this parameter is age independent). Finally, for
the vector population, 1, denotes the vector mortality rate.

According to the assumptions above, the dynamics of the disease transmission is
governed by the following system of partial differential equations:

ds(a,t) 0s(a,t) .
+ = —ap(a, Diy(Ds(a, t) — (o(a) + pla))s(a,t)

da ot
di(a,t) di(a,t) . .
” + ran ap(a, Diy()s(a, 1) — (u(a) + y(a)ia, )
fela.) | 9@ 1) yita, 1) — pla)z(a, ) + o (@)s(a, 1) )
da ot
di, 1 RPN S -
pr s (/0 ay(a)i(d, t)da )( —iy(1)) — Myly(?)

with initial and boundary conditions given by

s(a,0) = so(a), i(a,0)=io(@), z(a,0)=zo(a), i,(0)=1iy
s(0,t) =B, i0,t)=0, z(0,t)=0.

2.1 Age-Independent Model

Let A,(f) = m fooo ay(a’)i(a’, t)da’ the infection rate from humans to vectors.
Assume pu(a), ap(a,t), ay(a), y(a), and o(a) independent of a. Adding the first
three equations of system (1) and integrating with respect to a, we obtain that Ny (¢)
satisfies

dN; (1)
dr

=B — uNy(1), (2)
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B _
and therefore N (1) - — = N;, when t — oo. In the limit, we obtain the following

ODE system with constant coefficients for the number of individuals in each class at
time ¢.

ds() .
o B —apS@)iy(t) — (0 + n)S()
di () .
TRl apS@)iy(t) — (y + ) (1) 3)
dz @)
T yI(t)+oS(t) — pnzZ(t)

d.v I . .
ldf’) = ava_;)(l — iy(1)) = iy (1)

where
S(t) = /Oos(a’, tHda', 1(t) = /ooi(a’, tHda', Z@t) = /ooz(a’, t)da'.
0 0 0

To calculate the basic reproductive number associated with model (3), we assume
no vaccination and all of the population to be susceptible; therefore, the disease-free
equilibrium is given by (Nh, 0, 0, 0). According to Diekmann and Heesterbeek (2000),
Driessche and Watmough (2002) the basic reproductive number is given by the spectral
ratio of the matrix

o 9l
oy ’6"
(y+u) N

which is given by

ap0ly
Ry= | ———. 4
0 V o (y + ) @

If a fraction o of the population is vaccinated per unit of time, the fraction of suscep-

; therefore, the number of

tibles in the absence of the disease becomes S, = n
o+ p
secondary cases derived from a primary case is reduced to

apy Sy

R = -_—
(@) o (Y + )Ny

(&)

where Ry(o) denotes the Net reproductive number, which gives the number of sec-
ondary cases that an infected individual produces in a population that is vaccinated at
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a per capita rate o (Thieme 2003). Substituting S, and N, in Ro(c), we obtain

R0(0)=\/05h05v3/(0'+,u) — Ry "
to(y + 1) (B/ 1) o+

Then, the disease can be eradicated if Ry(c) < 1 or

o > (R —1). (6)

3 Steady State Age Model

In the previous section, vaccination policy was completely at random. However, the

vaccination tests are done only in certain age groups depending upon the country (Guy

et al. 2010). For this reason, it will be more realistic to consider an age-dependent vac-

cination scheme. We will consider the case when the steady state age distributions are

reached as time approaches infinity, and therefore, the infection rate A, (¢) approaches

a constant 1. As in the case with no age structure, we first assume no vaccination.
We notice that n(a, t) satisfies the following PDE problem:

on(a,t) 9n(a,t)
da + at

= —u(a)Ny(a,1), @)

with n(0, t) = B, and n(a, 0) = ng(a) = so(a) + ig(a) + zo(a).
Using the method of characteristics, we get:

n(a,t) = no(aye™ Ja-t M@ g >
T | Bem Jo mande! t>a.

Ast — oo,
n(a,t) — Be o wada’ n*(a),

and N}, approaches the constant value

* M(a)
B/O e "'Yda = Nj,

a
N,
where M (a) = / w(a")da'. In this case, m = N—i is constant.
0

Assuming that the steady state distribution is reached, and (1) is independent of ¢,
then we obtain the following system of linear differential equations for the independent
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variable a
ds*(a) . N
w —ap(a)iys™(a) — pla)s™(a)
a
1 = ap(a)iys(a) — (y(a) + p(a))i*(a) (8)
d '*
Zd(a) = y(@)i*(a) — u(a)z*(a)

where s*(0) = B, i*(a) = 0, z*(0) = 0, and i}’ denote the constant proportion of
infected vectors given by

L/Ooot (ai*(a")da'
N Y A
e — L =_Tv )

v 1 o ES
—*/ ay(a)i*(a)da" + Mot
Ny Jo

Integrating (8), we obtain the following expressions for the steady state age distribu-
tions of the proportion of individuals in each class,

S*(a) — n*(a)e—ij)»h(a)
i*(a) = n*(a)i* / aah(a/)e*“i“h<“’>+G<“>*G<“’>]da’ (10)
0
Za) =1—s"(a) —i*(a)
where "
M) = / h (s)ds. (11)
0

and ;
G(a) =/ y(s)ds. (12)
0
Substituting i*(a) and i} in the expression (9), we obtain
*

® wy(a A “ '
S / (e TRRHEHTOC@lg g (13
0 Nh AS =+ 1w Jo

From the above expression, either A} = 0 or A} satisfies the characteristic equation

Ap(a)]

v( ) . **ﬂ‘“ o 1G@~G@) 3,/
1= n*(a) ah(a ) da'da. (14)
0
Since
[ Ay (a)]
e +u
A = v
g(Ay) T
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is a decreasing function of A}, with g(0) = 1, we conclude that (14) has a unique
positive solution A} provided

o0 / a /

Ro = / Mi*(a/)ola/n*(a)e—G<“>/ (@) 6Wgglaa = 1. (15)
0 N, ;: 0 My

is satisfied.

The expression of the left-hand side of (15) is interpreted as the average number of
secondary cases one infectious individual produces in a population if it is introduced in
a disease-free population. Hence, Ry is the basic reproduction number. When Ry > 1,
A% is positive, and ¥, s*(a), i*(a), z*(a) given by Egs. (9) and (10) correspond to an
endemic steady state age distribution, meanwhile, if Ry < 1, A} = 0, and Egs. (9),
(10) correspond to the disease-free steady state age distributions with no infected and
recovered individuals. In Appendix, we prove the stability of the disease-free steady
state age distribution for some kind of perturbations.

3.1 Vaccination

In the following, we are interested in the effect of vaccination on the threshold condition
(15). Given the age dependent per capita vaccinationrate o (a), the steady demographic
proportion of susceptibles in the absence of the disease is given by

s5(a) = n*(@)V(a) (16)

where .
V(a) = e Jo o@de (17)

is the fraction of individuals still not being vaccinated at age a. Using the same argu-
ments as for the basic reproduction number, we obtain that the net reproductive number
R (V) associated with the vaccination profile V (a) is given by

o0 a /
Ro(V) = / “;’V(f) n*(a)e*GW)/ @)\ NS @ dglda (18)
0 h 0 v

It is clear that Ry(V) < Ry. Changing the order of integration, and a’ by a, Ro(V)
becomes

Ro(V) =/ ®(a)V(a)da, 19)
0
where - ,
D(@) = 1D 0w / D) @y O (20)
Mo a N,

Now, we want a vaccination strategy to get mass immunity. If cost of vaccination
is not considered, it is enough to find V such that Ryg(V) < 1. In the following, we
will assume that human mortality (), recovery rate (), and transmission rate from
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Table 1 Demographic and epidemiological parameters

Parameter Meaning Value Sources

N, ;:‘ Human population 112, 336, 538 Instituto Nacional de
Estadistica (2014)

B Recruitment birth rate 0.019 x N;f Instituto Nacional de
Estadistica (2014)

n Human mortality 0.00004 days_l

) Vector mortality 0.06 days_l Pinho et al. (2010)

b Mosquito biting rate 0.5 day_1 Gubler (1986)

By Human-vector transmission  0.75 Newton and Reiter (1992)

Bn = 0.0244q¢9-0625¢  Vector—human transmission Estimated from Fig. 1

1/y Average infection period 8days Gubler (1986)

humans to vectors () are age independent with values given in Table 1. In this case,
® (a) adopts the form

B
adl o (a)e . 1)

@)= ————
po(in + yIN;

4 Application to Dengue Disease

In this section, we apply the model developed previously to the age distribution of
dengue in Mexico during 2013 (SINAVE 2014). These data are shown in Fig. 1.

As was said in the Introduction, several candidates for a dengue vaccine are being
developed, in particular a tetravalent vaccine composed of four recombinant live atten-
uated vaccines (Guy et al. 2010). Clinical trials were conducted in the USA, the Philip-
pines, Mexico, and Australia among other countries, in a three dose regimen over
12 months to evaluate vaccine reactions, viremia induction, and antibody response.
Reported results indicate that the majority of the adverse symptoms were from mild
to moderate, and transitory. In the trial done to Mexican children aged 2-5 years, the
found seropositivity was from 88 to 100 % (Guy et al. 2010). However, we should
mention that in Sabchareon et al. (2012), it is shown that, despite the levels of pro-
tection against the four serotypes combined, protection against serotype 2 was small
(efficacy of 9.2 %).

We normalize data given in Fig. 1 with respect to the total number of cases, and we
fit a function of the form

f(a) = kae %, (22)

with k£ = 0.0244, and d = 0.0625 (see Fig.2). The data were normalized in order
to interpret f(a) as the age-specific probability of becoming infected through vector
bites, B, (a). Therefore, the infection rate o, (@) = mbf (a), where b is the biting rate,
and m is the quotient of vectors to humans, defined in Sect.2.1.
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Fig. 1 Distribution of dengue cases by age groups, Mexico, 2013. Data taken from SINAVE (2014)
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Fig. 2 Adjusted function f(a) = 0.0244q¢~0-0625a of he proportion of dengue infections by age group
with respect to the total number of cases. Data taken from SINAVE (2014)
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Substituting o, and the parameter values of Table 1 in the expression for Ry(V')
given in (19), we obtain

o0 o
Ro(V) = / V(a)®(a)da = 0.014m / ae~lo@+0.06254al g,
0 0

Since we want the infected proportion to decrease, we need Ro(V) < I; therefore,
o (a) must satisfy

/ooae—[d(a)+0.06254a]da S w (23)
0 m

By definition, V (a) is a non-increasing function that takes values in the interval [0,1]
and represents the fraction of individuals not yet immunized at age a. Then, inequal-
ity (23) gives a condition for the fraction of not immunized individuals that should
be satisfied in order to get mass immunity. Observe that this condition is inversely
proportional to m, and therefore, if the quotient of vectors to humans increases, the
fraction of immunized individuals o (a) should increase as it is expected.

4.1 Optimal Vaccination Strategies

This section is based upon the work of Thieme (2003). We apply his results to the data
of dengue disease in Mexico.

The goal of a vaccination campaign is to reduce as much as possible the disease
prevalence considering the limitations of the health budget. In designing an optimal
vaccination policy, the cost of vaccination should be balanced with the degree of
protection of the population. Here, we will assume that increasing the protection of
the population is proportional to decreasing the net reproductive number.

Two optimization problems can be considered: a) find a vaccination strategy V (a)
that minimizes the cost C (V) of vaccination restricted to Rg(V) < p, and b) find a
vaccination strategy V (a) that minimizes Ro (V') restricted to C(V) < c. Here, we
will focus on the second problem; that is, minimizing the net reproductive number,
and consequently, maximizing the protection of the population.

Let c(a) be the cost associated with one vaccination at age a. Such cost depends on
several factors, cost of vaccine, rate of vaccination, accessibility to the age class, among
others. Recalling that s* = Be™ @YV (a) represents the susceptible population of age
a under a vaccination scheme given by o, then the total cost of a vaccination program
is given by

C= /OO c(a)o(a)s)(a)da. (24)
0

Since V(a) = —o(a)V(a), where - = d/da, the cost function can be written in the
form:
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C = —/oo c(@)Be M@y (a)da. (25)
0

The vaccination distribution, W (a), represents the probability of being vaccinated up
to age a:

W) =1- V(a). (26)

W (a) is a non-decreasing function that takes values between 0 and 1, and W(0) = 0.
When all individuals are vaccinated at one age, a > 0, W (a) adopts the form

0 O0<a<a
1 a>a,

Wﬂ@:[ @7

and for 0 < g < 1, gW; represents a vaccination schedule where a fraction g of
individuals of age a is vaccinated.
Taking du = ®da and v = V in (19), Ro(V) becomes

Ro(V) = /oo ®(a)da +/oo (/OO qa(a/)da’) V(a)da.
0 0 a

Therefore, in terms of W, the net reproductive number and the cost function become:

Ro(W) = h1(0) — /Ooo hi(a)W (a)da
C(W) = /OOO ha(a)W (a)da. (28)
with
hi(a) = / ” ®(a')dd' (29)
ha(a) = ct(la)Be*W“)

The functions /1 and & satisfy

h@ _ L@

m@ — ' ) G0

fooo e—M@) g,/
where L(a) = i@

We will assume that everybody is vaccinated at the same age (one-age strategy).
We want to minimize Ro(V) with the cost constraint C(w) < c. If newborns can be
vaccinated, and the cost of immunizing everybody at birth is less than c, it is better
to adopt a vaccination distribution Wy with W(0) = 0, and W(a) > 0 fora > O.

is the expected remaining life at age a.
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If C(Wy) > c, the problem is not trivial, and in this case, minimizing Ry(W) is
equivalent to maximizing

/°° : /l hi(a) :
hi(@)W(a)a = ——hy(a)W(a)da 31D
0 0 ha(a)

where [ is the maximum lifetime. Assuming L(a)/c(a) — 0, it is proved that for a
one-age strategy concentrated at age a, g W3, the maximum is obtained vaccinating at
age a* where h1/ h; attains its maximum. Furthermore, if C(W,«) > ¢, then the one-
age strategy concentrated at age a* is optimal. In this case, the percentage of people
vaccinated is chosen such that ¢ = ¢/C(W,+). If C(W,+) < c, a better strategy can
be obtained combining it with vaccination at age 0, and, in fact, optimal strategies
are one-age strategies where everybody is vaccinated when reaching the same specific
age a < a*, or two-age strategies where at the second vaccination age, i/ h, takes
its maximum, and all the individuals that have not been vaccinated at the first age are
vaccinated at the second age (see Hadeler and Miieller 1993a,b).

Next, we apply the above concepts to dengue data in Mexico. Let assume that & is
given by (21) with parameters values in Tables 1 and 2. Then,

> o [T "
hi(a) = / bmka' e~ @7 (/ L Be~(ty)a da”) da’
a a’

Nh
= KB ((d+pa+1)e @tma,

bmkay,
Ni(u+y)d + p)?

where K = . Therefore,

hi _ K(d+wa+1)ed

= 32

hy c(a) (32)

Suppose c(a) is a constant equal to ¢, > ¢, the optimal strategy is to vaccinate at the

age where h)(a) attains its maximum value a* = L For 1/ = 70years,
d(d+ )

and d = 0.0625 = 1/16years, a* = 2.9, which implies that the maximum protection
against the disease is obtained vaccinating between 2 and 3 years of age. In this case,
the proportion of individuals to vaccinate is ¢ = ¢/cp.

It is interesting to observe from Fig. 1 that the maximum incidence of dengue is
around 16years of age, but the optimal age of vaccination is around 3 years of age.
If, for instance, the maximum incidence was at 25 years old, the optimal age would
be around 6-7 years old. According to the above example, if vaccination cost is age
independent, the optimal schedule depends on the maximum age incidence.

4.2 Age-Independent Vaccination Strategy

When costs of the immunization campaign are not the most important restriction, and
vaccination can be done at any age, the vaccination rate, o, can be considered constant
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in order to give a rough estimation of the proportion that has to be immunized to
achieve herd immunity. In this case, V (a) = ¢~ ?¢, and after integration (23) becomes

1 _ 71.43
(0 +0.062544)2 = m

’

or

Jm —0.53

o> ——.

8.45

Recall that ¢ = vn where 7 is the vaccination rate, and 0 < v < 1 is the vaccine

efficacy. For dengue disease, it is estimated that vaccine efficacy against the four

serotypes is between 88 and 100 %; therefore, if v = (.88, immunity can be achieved
if the vaccination rate

(33)

_/m—053 _ Jm—053
T="R45xv 744

On the other side, the fraction of individuals that have not been immunized are given

1 1
by fo V(a)da = —, and therefore, 1 — — represents the fraction of immunized ones.

Thus, from condition (33), we obtain in thlS example that the fraction of individuals
that have to be immunized in order to get mass immunity is

1 7.44
—>1—= _—
o m —0.53

In the hypothetical case m = 100, we obtain that at least 78 % of the population should
be immunized.

1— (34)

5 Conclusions

The model and methods described in this work can be employed to obtain estimates of
the degree of vaccination required to get herd immunity against a vector-borne disease.
Assuming age-independent infection, the approximate values for the fraction o of
individuals that should be vaccinated to eradicate transmission may be derived from
the relation o > ,u(R% — 1), where Ry is the basic reproductive number. However,
the severity of the infection is in general age dependent and has an effect on the
immunization for the control of the disease, and therefore, there should be an optimal
age to immunize. For this reason, our main interest is the introduction of age structure
in Ry, and in the vaccination strategies. For this end, we formulate an age-structured
model which allowed us to find an age-dependent expression for Ry. Besides, we prove
local stability of the disease-free equilibrium, as well as the existence of a unique
endemic equilibrium. We analyze the dynamics of the disease under a vaccination
scheme in terms of the net reproductive number Ry(V'), and we obtain conditions over
the vaccination rate to eradicate the infection.

We applied these theoretical results to dengue data in Mexico. We assumed that
age-infective rate oy, (a) is proportional to the age-dependent dengue prevalence, and
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Fig. 3 Comparison between the numerical simulation of model (10) and the proportions of infected indi-
viduals of age a with respect to the reported infections. In this simulation, m = 1, and the other parameters
are as in Table 1. Initial conditions in the simulation are s(0) = 0.6, i(0) = 0, z(0) = 0. The number of
reported infected individuals in 2013 was 61,871. Data taken from SINAVE (2014)

we found that the proportion of individuals to be vaccinated depends on the vector
density. The results were compared with data from Mexico, and we obtained a good
agreement as can be seen in Fig. 3, which shows a comparison between the numerical
simulation of the system of Eq. (10) and the proportions of infected individual of age
a. Further, we applied cost-related vaccination strategies to the same example, and
we obtained that under a one-age vaccination scheme, the optimal age of vaccination
is between 2 and 3years of age. In general, our model predicts that if vaccination
cost is independent of the age, early vaccination is an optimal strategy. Finally, we
gave a rough estimation of the proportion to be immunized to achieve herd immunity
considering a vaccination rate independent of age.
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6 Appendix: Stability Analysis

We proceed with the stability analysis of the steady state age distributions given by
model (8). For this end, we take a perturbation of the steady states

s(a, 1) =s*(a) +¥(a,t)
i(a, 1) =i*(a) +nla,t) (35)
i(t) =i¥+06(1)
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Substituting the variables above in (1) and neglecting terms of order bigger than two,
we obtain the following PDE system for v, 1, and 6:

d d
E£+_ﬂ=_%wxwanﬁ+ﬁwwa»—mmWJ> (36)
a dr
d d
b = @ @ Dif + 5 @OW0) — (@) + p@n,
o  [* ay(a) , ey kg r
== jﬁ @ 00— i) — @Bl — 000

with the initial and boundary conditions

¥ (a,0) = so(a) — s™(a), n(a, 0) =io(a) — i*(a), 0(0) = iy, — iy,
¥ (0,1) = n(0,1) =0.

Following Castillo-Chavez et al. (1989), we restrict to perturbations in separable form
given by

V(a,t) = Y(a)e
na,t) = na)e” 37
O(a,t) = Oel!

with @ constant. If real part of p is less than zero, then the perturbations given in (37)
will approach zero as ¢ goes to infinity. Substituting them in system (36), we obtain
after some manipulations that

A

- S i T M “ pla—d
V(a) = —OBe (g M@+ (a)]/ ap(a)e P dq’
0

A

i(a) = G Be~(C@+M(@) /“ (@ ye T =G @ +pa=a)
0

)\,* Ll/ ’ "
x (1 - = ;M / ap(a’ye P@—a >da”) dd’ (38)
v v JO
f = adl / ¥ % o da
(P + py +25) (o +23) Jo Ny

Assuming 6 # 0, and substituting 7j(a) into the equation for §, we obtain that p is
solution of the following characteristic equation:

2
1= My
(p + pw + A5 (1 + A%)

[ee] a / AS ’ /
X/ C(v(f) Be_(M(aH_G(a)) |:/ ap(a )e_[)»?Hltv Ap(a")—G(a")]
o N, 0 M
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/

A.* a "
v / an(@Ne P da" Vdd' | da. (39)
0

-pla=a’) _ _"v
[y + A%

Xy e

We have two cases, A} = 0, and A} # 0. In the first one, the steady state age
distribution is the trivial one, and the inequality

Ry = / T ol@ p o m@+Ga / @) 6@ g1 da <1 (40)
0 0

i oy

holds. On the other hand, the characteristic Eq. (39) becomes

1 > ay(a) —(M(a)+G(a)) “ NG )—pla—a') 4,/
1= Py N Be ap(a)e da" ) da. (41)
v JO h 0

It is clear from equations above that (40) has only a real root p < 0, and p = 0 only
at the threshold. Now, if p = g 4+ si is a complex root, then substituting it in (40), we
obtain that the real part that satisfies the equation

gt
(‘]“l‘ﬂv)z“t‘sz

F @, @6 [ G
——Be M a) / ap(a —r)eC 74" cos(sr)dr ) da,
o N, 0

(42)

q + 1y

5 5 < , it follows that
g+ pp)*+s q + iy

where r = a — a’. Since cos(sr) < 1, and

1 (@) . _m@+cay [ [° Gla—r)—
— Be / ap(a —r)e” ™7 dr ) da > 1, (43)
q+ v Jo Ny, 0

and comparing this result with Eq. (40), we conclude that ¢ < p < 0. Therefore, if
Rp < 1, the trivial disease-free steady state age distribution is locally asymptotically
stable for perturbations of the form (37). If Ry > 1, then (41) has a unique positive
root, and the disease-free steady state age distribution becomes unstable.

For 1* > 0, Ry > 1, and the endemic steady state distribution emerges.
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