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Abstract Differentiation and self-renewal of stem cells is an essential process for the
maintenance of tissue composition. The promise of novel medical therapies combined
with the complexity of this process encourage us to employ numerical and mathemat-
ical methods. This will allow us to understand better the mechanisms which regulate
stem cell behaviour. Perturbations to the cellular environment may have an influence
on the death rate, proliferation rate and on the fraction of self-renewal at every stage of
differentiation. In this paper, we present mathematical study of the effect of stochastic
noise on the process of tissue regeneration. Here, a system of Itô stochastic differential
equations with linear diffusion coefficients that is based on a deterministic model of
multistage cell lineages is investigated. Numerical simulations of the stochastic model
are shown for a different number of stages of differentiation. Interactions between the
noise, added to the different stages, are characterised using numerical simulations.
The long-time behaviour of the two-dimensional version of the model is fully char-
acterised; asymptotic stability of the related Markov semigroup is proved using the
theory of the Markov semigroups and the method of the Khasminskií function.

Keywords Stochasticity in the stem cells dynamics · Stochastic differential
equations · Markov semigroups · Khasminskií function

1 Introduction

Tissues are composed of a large number of cells with different functions and mor-
phology. However, most of mature cells are not able to proliferate. Instead, mature
cells are replenished by the presence of population of adult stem cells which possess
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Mathematical Model of Stem Cell Differentiation 1643

the ability to self renew and to differentiate into various cell lineages. The key role of
stem cells is to supply tissue with new cells in homeostatic manner.

The process of maintaining the number of mature cells is a well regulated, multistep
process, consisting of differentiation of stem cells and their progeny and of the self-
renewal of the stem cell population. The process of differentiation may be divided into
several stages. Both stem cells and their progeny can self-renew (Marciniak-Czochra
et al. 2009). However, when the progeny of the stem cells enter to the higher stages of
differentiation, their ability to differentiate is reduced and ultimately lost when they
reach full maturity.

Mechanisms of regulation of these complex processes are not well understood. The
promise of novel stem cells-based therapies, such as therapies for impaired organs,
degenerative diseases (Ehnert et al. 2009; Gratwohl and Baldomero 2009; Macarthur
et al. 2009) or reconstitution of blood structure after chemotherapy in treatment of
leukemias (Marciniak-Czochra and Stiehl 2012), has led to increase of interest in this
field. Several mathematical and numerical models were developed to help in under-
standing stem cell differentiation (Stiehl and Marciniak-Czochra 2010; Marciniak-
Czochra et al. 2009; Till et al. 1964; Wu et al. 2009; Colijin and Mackey 2005).

The aforementioned models present different mathematical approaches to describe
processes of differentiation and self renewal (Stiehl and Marciniak-Czochra 2010;
Marciniak-Czochra et al. 2009; Doumic et al. 2011) involving stem cells proliferation
(Till et al. 1964) and mechanisms of stem cell fate decision (Wu et al. 2009) or stem
cells regulation system (Colijin and Mackey 2005). Each of these models describes
different parts of the process of homeostasis in adult tissue. However, an impor-
tant difference is how an environmental and intracellular perturbations during those
processes are considered, and if they have a reflection in the mathematical form of the
models.

The main purpose of this study is to investigate a stochastic stability of the system
presented in Marciniak-Czochra et al. (2009) and study how the model responds to
noise. We choose this particular model, for its simplicity and for its general macro-
scopic approach to the problem. An additional advantage of this model is a promising
application in describing blood reconstitution after chemotherapy (Marciniak-Czochra
and Stiehl 2012).

The paper is organised as follows. First, we present a short description of the model
developed in Marciniak-Czochra et al. (2009) and also the biological and mathematical
assumptions related to this model. Then, we propose a stochastic version of this model
using a system of stochastic ordinary differential equations that are in the form of the
original model. Further, we present some numerical simulations of the stochastic
model. In the Appendix, we prove mathematical proof of the long-time behaviour of
the distribution of the stochastic process described by the stochastic version of the
model. We study the evolution of the distribution of the solution of stochastic version
of the model which is related to some Markov semigroup. We also investigate the
existence of the stationary distribution of the stochastic model. Finally, the asymptotic
stability of the Markov semigroup related to the stochastic model is shown. The proof
is based on the theory of Markov semigroups and the method of the Khasminskií
function (Rudnicki et al. 2002; Pichór and Rudnicki 1997; Skwara 2010a,b).
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2 Deterministic Model

This section is devoted to the deterministic model proposed in Marciniak-Czochra et
al. (2009) and analysed in Stiehl and Marciniak-Czochra (2010), Nakata et al. (2012).
We assume that there exists a discrete chain of differentiation stages and skipping
of some stages during the process of differentiation is impossible. Cell behaviour at
each stage of maturation is described by parameters of death rate, proliferation rate
and a probability of differentiation. Additionally, it is assumed that the system is
regulated by a single cytokine similarly as the red blood cells production is controlled
by erythropoietin (Fried 2009; Metcalf 2008; Lasota et al. 1981; Adamson 1994;
Ratajczak et al. 1997) or the process of specializing of granulocytes is by G-CSF
(Metcalf 2008; Semerad et al. 2002; Price et al. 1996).

Let c1, . . . , cn describe the density of population of stem cells, cells at i th stage
of differentiation and mature cells, respectively. According to the papers (Stiehl and
Marciniak-Czochra 2010; Marciniak-Czochra et al. 2009; Marciniak-Czochra and
Stiehl 2012) the phrase ‘density of the population’ corresponds to the size of the pop-
ulation. Let s be the concentration of the signalling molecules. Following Marciniak-
Czochra et al. (2009) it is assumed that the concentration s depends only on the density
of mature cells cn . Assuming that the dynamics of the cytokine is a fast process and

ds

dt
= μ(1 − s − kscn(t)), (1)

where μ is the death rate of the mature cells population, and k is a positive constant.
Using a quasi-steady state approximation yields to an algebraic dependence of the
form described by

sk(t) = 1

1 + kcn(t)
. (2)

Assuming that both proliferation and differentiation processes are regulated leads to the
following system of differential equation describing dynamics of n cell subpopulations

dc1

dt
= (2a1sk1(t) − 1)p1sk2(t)c1(t) − μ1c1,

dc2

dt
= (2a2sk1(t) − 1)p2sk2(t)c2(t) + 2(1 − a1sk1(t))p1sk2(t)c1(t) − μ2c2(t),

...
dcn

dt
= 2(1 − an−1sk1(t))pn−1sk2(t)cn−1(t) − μncn(t), (3)

where pi for i = 1, . . . , n − 1 is the proliferation rate of the population at stage i , μi

for i = 1, . . . , n denotes the death rate at the stage i and ai for i = 1, . . . , n − 1 is
the maximal fraction of self-renewal at the stage i . The real fraction of self-renewal
at time t is then given by ai sk1(t) and defined as a fraction of the direct progeny of
cells at stage i which are at the same differentiation stage as their progenitors. The
following assumptions are made
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t ∈ [0,∞),

ci,0 ≥ 0 fori = 1 . . . n,

μi ≥ 0 fori = 1 . . . n − 1,

μn > 0,

pi ≥ 0 fori = 1 . . . n,

ai ∈ [0, 1] fori = 1 . . . n. (4)

The death rate, proliferation rate and initial conditions are non-negative and the fraction
of self-renewal is between 0 and 1, which corresponds to different types of differen-
tiation: symmetric self-renewal, symmetric differentiation and asymmetric divisions.

The model is based on the assumption that cells divide at the rate pi sk2(t), which
results into pi sk2ci (t) of descendant cells in a unit time t and stage i = 1, . . . , n. The
fraction ai of progeny cells remains at the same stage of differentiation as the parent
cell, while 1−ai fraction of the progeny cells differentiates, i.e. transfers to the higher
differentiation stage. Additionally, cell death at the rate μi is modelled.

We also note that when the population of mature cells cn reaches some value, then
the term (2ai sk1(t) − 1)pi sk2(t)ci (t) becomes negative and the number of cells at
stage i decreases. On the other hand when the density of the mature cells is low, then
(2ai sk1(t) − 1)pi sk2(t)ci (t) is positive and the number of cells at stage i increases
providing that the death rates are not too high. It shows how the dynamics of each cell
subpopulation depends on the level of mature cells.

The model (3) is well posed, the solution exists and it is unique for t ∈ [0,∞) and
for non-negative initial condition, the solution of system (3) remains non-negative,
which is proved in Stiehl and Marciniak-Czochra (2010). Additionally, assuming that

d1 < (2a1 − 1)p1,

0 < 2a1 p1(di + pi ) − 2ai pi (d1 + p1), for i = 2, . . . , n − 1. (5)

it is shown that system (3) has a unique positive steady-state (Stiehl and Marciniak-
Czochra 2010). The first inequality provides that there exists a level of the density of
mature cells such that c′

1 > 0. In other words, the population of stem cells does not
simply decrease and becomes extinct but replenishes itself. The second inequality of
(5) says that the signal intensity for self-maintenance of the population of stem cells
is lower than the concentration needed at some stage of maturation i to maintain the
population without influx from the stage i − 1. This interpretation is straightforward
if we set d1 = · · · = dn−1 = 0 and dn > 0. Then, we obtain that condition (5) is
equivalent to

a1 >
1

2
,

a1 > ai , for i = 2, . . . , n − 1. (6)

The latter assumption on the death rates might be applied to cell systems, such as
granulopoietic system (Stiehl and Marciniak-Czochra 2010).
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In previous works, different numbers of compartments n were chosen. As proposed
in Marciniak-Czochra and Stiehl (2012) n = 8 is a direct reflection of the biological
case of differentiation of white blood stem cells into Neutrophil Granulocyte (Jandl
1996). The number n = 6 considered in Marciniak-Czochra et al. (2009) corresponds
to long term repopulating stem cells, short term repopulating stem cells, multipotent
progenitor cells, committed progenitor cells, precursors and mature cells. We may also
consider model simplifications with n = 2 or 3. In the first case we treat all immature
cells jointly with stem cells as one population and mature cells as another one. The
second case is related to the properties of dividing cells. The first compartment might
be understood as stem cells and their direct progeny, which are characterised by a low
frequency of divisions, the second one as the direct progenitors of mature cells, which
are characterised by a high frequency of division. The third compartment is treated as
a population of mature cells, which do not divide any more.

3 Stochastic Model

In this chapter, we present a stochastic version of the deterministic model (3). We
convert the latter deterministic system of differential equations to a system of Itô
stochastic differential equation in the following way:

dξ1 =
((

2a1

1 + kξn
− 1

)
p1ξ1 − μ1ξ1

)
dt + α1ξ1dW1,t ,

dξ2 =
((

2a2

1 + kξn
− 1

)
p2ξ2 + 2

(
1 − a1

1 + kξn

)
pξ1 − μ2ξ2

)
dt + α2ξ2dW2,t ,

...

dξn =
(

2

(
1 − an−1

1 + kξn

)
pn−1ξn−1 − μnξn

)
dt + αnξndWn,t , (7)

where stochastic processes ξ1, ξ2, . . . , ξn describe the same variables as in the model
(3), the densities of the population of stem cells, cells at different stages of differenti-
ation and mature cells. Coefficients ai , pi for i = 1, . . . , n − 1 and μi for i = 1, . . . n
satisfy assumptions (4), (5). (W1,t , . . . Wn,t ) is an n-dimensional Wiener process and
αi for i = 1, . . . , n are positive.

In the rest of this chapter we will consider the following 2-dimensional version of
the model (7):

dξ1 =
(

2a

1 + kξ2
− 1

)
pξ1dt + α1ξ1dW1,t ,

dξ2 =
(

2

(
1 − a

1 + kξ2

)
pξ1 − μξ2

)
dt + α2ξ2dW2,t , (8)

where as was mentioned in the previous section, processes ξ1, may be interpreted
as a density of population of cells which are not yet differentiated and ξ2 as a den-
sity of mature cells population. The latter model is well posed, the solution exists
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and is unique, which results directly from the following consideration. System (8) is
understood as a solution of the following stochastic integral equation

ξ1(t) = ξ1(0) +
t∫

0

(
2a

1 + kξ2
− 1

)
pξ1dt +

t∫
0

α1ξ1dW1,t ,

ξ2(t) = ξ2(0) +
t∫

0

(
2

(
1 − a

1 + kξ2

)
pξ1 − μξ2

)
dt +

t∫
0

α2ξ2dW2,t . (9)

One may note that the following formulas are bounded

− 1 ≤ 2a

1 + kξ2
− 1 ≤ 2a − 1

0 ≤ 2

(
1 − a

1 + kξ2

)
p ≤ 2p. (10)

Using comparison theorem for one-dimensional Itó process (Ikeda and Watanabe 1981,
p. 352) and (10) we may find two stochastic processes (N1(t), N2(t)), (M1(t), M2(t))
described by the following systems of Itô stochastic differential equations

dM1 = −pM1dt + α1 M1dW1,t

dM2 = −μM2dt + α2 M2dW2,t (11)

dN1 = (2a − 1)pN1dt + α1 N1dW1,t ,

dN2 = (2pN1 − μN2)dt + α2 N2dW2,t , (12)

and satisfying the following inequalities

M1(t) ≤ ξ1(t) ≤ N1(t),

M2(t) ≤ ξ2(t) ≤ N2(t) a.s. (13)

Since a solution of the system (11)–(12) exists and is unique, then the process described
in Eq. (9) exists and is unique. It is straightforward that the processes ξ1, ξ2 are non-
negative if and only if the initial processes are non-negative. Since the solution of the
Eqs. (11) is as follows

M1(t) = M1(0) exp

{(
−p − α2

1

2

)
t + α1W1,t

}
,

M2(t) = M2(0) exp

{(
−μ − α2

2

2

)
t + α2W2,t

}
(14)

and M1(0), M2(0) ≥ 0, the processes ξ1(t), ξ2(t) are non-negative.
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3.1 Biological Interpretation of the Noise in the Model

There are different ways to introduce stochastic perturbations into a continuous model.
In some cases, stochastic perturbations might be computed as a limit of the discrete
random process. In population dynamics, a random birth–death process is usually the
base of such consideration.

On the other hand, a non-degenerated diffusion in a system of stochastic differential
equations, which is proportional to the variables, may be understood as an environ-
mental stochastic perturbation. Similarly to papers (Allen 2003; Arnold et al. 1979;
Dalal et al. 2008) a stochastic noise in the model (8) is understood as an environmental
perturbation which act independently and proportionally on each population. Noise
in the model (8) may be introduced as a limit of birth–death process but in our model
it would be difficult to justify it. It is related to the macroscopic response of the pop-
ulation for environmental perturbation. Additionally, the noise in the first equation of
system (8) might be understood as an environmental stochastic noise that has an impact
on the death and proliferation process. We also assume that this noise has no impact on
the regulation of the differentiation process. Independence of the noise in system (8) is
understood as a lack of correlation between Wiener processes W1,t , W2,t . The case that
the processes W1,t , W2,t are correlated is much more complicated and needs different
mathematical methods to be investigated hence, we omit this case in this paper.

4 Analytical Results

The main result presented in this chapter is related to the long-time behaviour of
the solution of the model (8). We investigate the evolution of the probability density
u(t, x, y) of the stochastic process (ξ1(t), ξ2(t)). Since we assumed that the diffusion
process (ξ1(t), ξ2(t)) is not degenerate, hence by the remark (13) in Appendix, the
transition probability function P(t, ξ1,0, ξ2,0, A) of the process (ξ1(t), ξ2(t)) is defined
as follows

P(t, ξ1,0, ξ2,0, A) = Prob

(
(ξ1(t), ξ2(t)) ∈ A

∣∣(ξ1(0), ξ2(0)) = (ξ1,0, ξ2,0)

)
(15)

and has a smooth density. The evolution of the density of the diffusion process is
related to a Markov semigroup {P(t)}t≥0 in the following way

P(t)v(x, y) = u(t, x, y) for t > 0, (16)

where v(x, y) is an initial probability density of the process (ξ1(t), ξ2(t)). We say that
the Markov semigroup is asymptotically stable if and only if there exists a unique time
independent density u∗(x, y) such that

lim
t→∞ ‖P(t)v(x, y) − u∗(x, y)‖ = 0. (17)

It is equivalent to the convergence of the distribution of the process (ξ1(t), ξ2(t)) to
the unique stationary distribution for time tending to infinity.
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Fig. 1 Mean value, q1, q3 quartiles and histograms of 150 trajectories of stochastic processes in time
Tend = 50 of 8-dimensional version of the model (7) with small diffusion coefficients, where a1 = 0.735,
a2 = 0.7298, a3 = 0.7245, a4 = 0.7140, a5 = 0.5775, a6 = 0.4725, a7 = 0.3675, p1 = 0.006, p2 =
0.03, p3 = 0.18, p4 = 0.6, p5 = 0.65, p6 = 1, p7 = 1.5, μ1 = μ2 = μ3 = μ4 = μ5 = μ6 = μ7 = 0,
μ8 = 2.77, α1 = 0.011, α2 = 0.013, α3 = 0.015, α4 = 0.017, α5 = 0.019, α6 = 0.021, α7 = 0.023,
α8 = 0.025, k = 1.28 × 10−9

The following proposition provides the necessary condition for the coefficients of
the model (8) to guarantee the asymptotic stability of the related Markov semigroup.

Proposition 1 Let (ξ1(t), ξ2(t)) be a solution of the system (8) and assume that

(2a − 1)p − α2
1

2 > 0. Then, the Markov semigroup {P(t)}t≥0 related to the process
(ξ1(t), ξ2(t)) is asymptotically stable.

The condition (2a − 1)p − α2
1

2 > 0 is essential for the model (8). If it is not satisfied,
the process ξ1 in the model (8) tends to zero almost sure. And from the fact that the
growth of the process ξ2 depends only of the level of the process ξ1, we may conclude
that the process ξ2(t) tends to zero almost sure. Analytical consideration of this fact
and the proof of the proposition 1 are presented in Appendix. The proposition 1 shows

an important fact that under the condition (2a − 1)p − α2
1

2 > 0, the distribution of the
populations stabilises and tends to the stationary distribution.

5 Numerical Simulation

In this chapter, we present some numerical simulations of the solutions of the two
versions of model (7). As it is mentioned in the previous chapters, model (7) might be
considered with several values of n. We present two possibilities, the 2-dimensional
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Fig. 2 Mean value, q1, q3 quartiles and histograms of 150 trajectories of stochastic processes in time
Tend = 50 of 8-dimensional version of the model (7) with large diffusion coefficients for subpopulations
ξ1

t , ξ2
t , ξ3

t , where a1 = 0.735, a2 = 0.7298, a3 = 0.7245, a4 = 0.7140, a5 = 0.5775, a6 = 0.4725,
a7 = 0.3675, p1 = 0.006, p2 = 0.03, p3 = 0.18, p4 = 0.6, p5 = 0.65, p6 = 1, p7 = 1.5, μ1 = μ2 =
μ3 = μ4 = μ5 = μ6 = μ7 = 0, μ8 = 2.77, α1 = 0.185, α2 = 0.18, α3 = 0.1, α4 = 0.05, α5 = 0.03,
α6 = 0.025, α7 = 0.02, α8 = 0.015, k = 1.28 × 10−9

model and the 8-dimensional version. We choose the 8-dimensional version because
of its direct connection to the process of differentiation of white blood cells. Its deter-
ministic realisation and application to hematopoietic reconstitution are presented in
Marciniak-Czochra and Stiehl (2012).

The simulations are done using the Matlab R2007b, and SDE Toolbox created by
Picchini (2007). The stochastic trajectories were approximated using Euler–Maruyama
scheme (Picchini 2007) while the approximation of mean values is done using Monte–
Carlo simulations.

All the simulations present mean trajectory and quartiles of 150 realisations of
solutions of the model (7) and histograms created on a base of realisation of 150
trajectories at the time Tend. The values of parameters of the model (7) are taken
from Marciniak-Czochra and Stiehl (2012), where three different sets of values are
proposed. Presented simulations are done for one of those sets of parameters while in
the other cases the general behaviour is similar.

We present three numerical simulations of the stochastic model with n = 8 for
three different sets of diffusion coefficients. Figure 1 depicts the simulation with small
diffusion coefficients for all population. It is well known that the realisation of the
process with small diffusion coefficients is similar to the solution of deterministic
model (Freŏdlin and Wentzell 1998).

123



Mathematical Model of Stem Cell Differentiation 1651

Fig. 3 Mean value, q1, q3 quartiles and histograms of 150 trajectories of stochastic processes in time
Tend = 50 of 8-dimensional version of the model (7) with large diffusion coefficients for subpopulations
ξ5

t , ξ6
t , ξ7

t , ξ8
t , where a1 = 0.735, a2 = 0.7298, a3 = 0.7245, a4 = 0.7140, a5 = 0.5775, a6 = 0.4725,

a7 = 0.3675, p1 = 0.006, p2 = 0.03, p3 = 0.18, p4 = 0.6, p5 = 0.65, p6 = 1, p7 = 1.5, μ1 = μ2 =
μ3 = μ4 = μ5 = μ6 = μ7 = 0, μ8 = 2.77, α1 = 0.01, α2 = 0.012, α3 = 0.018, α4 = 0.03, α5 = 0.18,
α6 = 0.5, α7 = 0.6, α8 = 1, k = 1.28 × 10−9

In simulations presented in Fig. 2, we increase the diffusion coefficients for the stem
cells population and populations at first two stages of maturation. A large noise of first
three populations leads to the extinction. In this description by ‘extinction’ we mean
a convergence of the expected value to zero. However, the interesting observation is
that the noise added to the first stages of differentiation does not have any influence on
the population of mature cells and the populations at late stages of differentiation. On
the other hand, Fig. 3 presents the simulations where we increased the noise for the
population of mature cells and the three last stages of differentiation. One may notice
that the effect seen in Fig. 2 is obtained in Fig. 3. While the addition of noise disturbs
the processes at last stages of differentiation, the first stages of differentiation seem
to be insensitive for such perturbation. We might form a conclusion of those three
simulations that the effect of noise directed to some subpopulation is dumped at the
sufficiently distant subpopulation.

Figure 4 presents a realisation of the 2-dimensional deterministic and stochastic
version of the model (7). It is seen that in the Fig. 4b we present the case where
perturbations applied to the subpopulations of undifferentiated cells and mature cells
are relatively small consequently, the mean value of 150 trajectories of the stochastic
process is almost indifferent to the numerical solution of the equivalent deterministic
model shown in the Fig. 4a. In the Fig. 4c one can notice that the level of the noise
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Fig. 4 Mean value, q1, q3 quartiles and histograms of 150 trajectories of stochastic processes in time Tend
of 2-dimensional version of the model (8), where a = 0.7, p = 0.6, μ = 2.77, k = 1.28 × 10−9

that is required to lead most paths to zero is relatively large and even in this figure
there are still many of trajectories that reach a high level. One can observe that even in
this case the mean value of the simulated trajectories stabilises at some time t , which
is a consequence of the asymptotic stability of the related Markov process.

5.1 Conclusions

Simulations presented in Figs. 1, 2 and 3 show the behaviour of the stochastic model
(7) and these need to be interpreted together with the form of the deterministic model.
In Fig. 2, we see the extinction of the first three subpopulations. Provided that a4 > 1

2 ,
the fourth subpopulation should take the role of the stem cells and maintain the whole
process. On the other hand, since the third quartiles of the first three subpopulations
reach a high level in comparison to the unperturbed case, some of the trajectories also
reach large values. However, such a case is not observed in subsequent subpopulations.
In Fig. 3 we may observe similar effects. The four last subpopulations are perturbed,
although, mean values and quartiles of the trajectories of the first three subpopulations
are similar to those presented in Fig. 1. Since some of the realisations of the last
subpopulation reach very low levels, the negative feedback should lead to an increase
of the stem cell population; however, this is not observed in the stochastic simulation.
In Fig. 3, we note that some of the trajectories of the fourth subpopulation reach
twice level observed in Fig. 1. Therefore, in the case when the last subpopulatons are
perturbed, subpopulations which are the nearest to the maturation level are mobilized
to stabilize the process.
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Appendix

Basic Definitions

Let (S, �, m) be a σ -finite measure space and let D ⊂ L1 = L1(S, �, m) be the set
of densities i.e.

D = { f ∈ L1; f ≥ 0, ‖ f ‖ = 1} (18)

We call a linear mapping P : L1 → L1 a Markov operator if P(D) ⊂ D. A family
{P(t)}t≥0 of Markov operators is called a Markov semigroup if and only if

1. P(0) = id
2. P(t + s) = P(t)P(s) for every t, s ≥ 0
3. for each f ∈ L1 the function t → P(t) f is continuous with the respect to the L1

norm.

Definition 2 (Rudnicki 2003, p. 96) A Markov operator P is called integral if there
exists a measurable function k : S × S → [0,∞] such that

∫
S

k(x, y)m(dx) = 1 (19)

for almost all y ∈ S and

P f (x) =
∫
S

k(x, y) f (y)m(dy) (20)

for every f ∈ D. We call function k a kernel of the operator P .

Definition 3 (Rudnicki 2003, p. 97) A Markov semigroup {P(t)}t≥0 is called integral
if for every t > 0 a Markov operator P(t) is an integral Markov operator. That is there
exists a measurable function k : (0,∞) × S × S → [0,∞) such that

P(t) f (x) =
∫
S

k(t, x, y) f (y)m(dy), for every f ∈ D. (21)
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Definition 4 A density f ∗ is called invariant if P(t) f ∗ = f ∗ for each t > 0.

Definition 5 The Markov semigroup {P(t)}t≥0 is called asymptotically stable if there
is an invariant density f ∗ such that

lim
t→∞ ‖P(t) f − f ∗‖ = 0 for every f ∈ D. (22)

Remark 6 Let {P(t)}t≥0 be an integral Markov semigroup generated by the equation

∂u

∂t
= Au (23)

where A is some differential operator. If there exists a unique stationary solution
u∗ ∈ D of (23), u∗ > 0, then {P(t)}t≥0 is asymptotically stable which is equivalent
to

lim
t→∞ ‖u(t) − u∗‖ = 0. (24)

Definition 7 A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set
A ∈ � if for every f ∈ D

lim
t→∞

∫
A

P(t) f (x)m(dx) = 0. (25)

Definition 8 (Foguel alternative) (Rudnicki et al. 2002, p. 10) We say that a Markov
semigroup {P(t)}t≥0 satisfies the Foguel alternative if it is asymptotically stable or
sweeping from a sufficiently large family of sets. For example this family can consist
of all compact sets.

Theorem 9 (Rudnicki 2003, p. 98) Let {P(t)}t≥0 be an integral Markov semigroup
with a continuous kernel k(t, x, y) for every t > 0. Assume that for every f ∈ D we
have

∞∫
0

P(t) f dt > 0. (26)

Then the semigroup {P(t)}t≥0 is asymptotically stable or sweeping with the respect
to the family of compact sets.

Definition 10 (Rudnicki et al. 2002, p. 10) Consider a Markov semigroup {P(t)}t≥0
and let A be the infinitesimal operator of {P(t)}t≥0. Let R = (1, A) = (1−A)−1 be the
resolvent operator at point 1 for an infinitesimal generator of the Markov semigroup
{P(t)}t≥0. A measurable function V : S → [0,∞) is called a Khasminskií function
for the Markov semigroup {P(t)}t≥0 and a set Z ∈ � if there exist M > 0 and ε > 0
such that∫

S

V (x)R f (x)dm(x) ≤
∫
S

(V (x) − ε) f (x)dm(x) +
∫
S

M R f (x)dm(x). (27)
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Theorem 11 (Rudnicki et al. 2002, p. 10) Let {P(t)}t≥0 be a Markov semigroup
generated by the equation

∂u

∂t
= Au. (28)

Assume that there exist a Khasminskií function for the operator {P(t)}t≥0 and the set
Z. Then the semigroup {P(t)}t≥0 is asymptotically stable.

Assume that the semigroup {P(t)}t≥0 is generated by the following Fokker–Planck
equation

∂u

∂t
=

d∑
i, j=1

(
∂2ai j (x)u

∂xi∂x j

)
+

d∑
i=1

(
∂2bi (x)u

∂x2
i

)
. (29)

where matrix a = [ai j ] is symmetric and positive definite. It means that

d∑
i j=1

ai j (x)λiλ j ≥ 0 for every λ �= 0. (30)

For the following theorem let A be a differential operator such as on the right-hand
side of the Eq. (29).

Theorem 12 (Pichór and Rudnicki 1997, p. 59) Let {P(t)}t≥0 be the Markov semi-
group and let A∗ be a adjoint operator of the infinitesimal generator A of this semi-
group. Assume that there exist a C2 function V : S → [0,∞), r > 0 and ε > 0 such
that

sup
x /∈B(r)

A∗V (x) ≤ −ε. (31)

Then{P(t)}t≥0 is asymptotically stable and V is a Khasminskií function for the Markov
semigroup {P(t)}t≥0.

Approximation Theorem for One Dimensional Itô stochastic Differential Equation

Let μ, σ be Lipschitz functions and assume that σ(x) > 0. Let X (t) be the solution
of the following SDE with X (0) = x0

dX (t) = μ(X (t))dt + σ(X (t))dWt . (32)

For every x let

I1(x) =
x∫

−∞
exp

⎛
⎝−

s∫
0

2μ(r)

σ 2(r)
dr

⎞
⎠ ds,
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I2(x) =
∞∫

x

exp

⎛
⎝−

s∫
0

2μ(r)

σ 2(r)
dr

⎞
⎠ ds.

If I1(x0) = ∞ and I2(x0) = ∞, then

P(lim sup
t→∞

Xt = ∞) = P(lim sup
t→∞

Xt = −∞) = 1. (33)

If I1(x0) < ∞ and I1(x0) < ∞, then

P(lim sup
t→∞

Xt = ∞) = I1(x0)

I1(x0) + I2(x0)
,

P(lim inf
t→∞ Xt = −∞) = I2(x0)

I1(x0) + I2(x0)
. (34)

If I1(x0) < ∞ and I2(x0) = ∞, then

P( lim
t→∞ Xt = −∞) = 1. (35)

If I1(x0) = ∞ and I2(x0) < ∞, then

P( lim
t→∞ Xt = ∞) = 1. (36)

An invariant density f∗ of the semigroup {P(t)}t≥0 related to the Eq. (32) should
satisfy the following equation

− d

dx
(μ(x) f∗(x)) + 1

2

d2

dx2 (σ 2(x) f∗(x)) = 0 (37)

and invariant density f∗ exist if and only if

∞∫
∞

1

σ 2(x)
exp

⎛
⎝2

x∫
0

μ(r)

σ 2(r)
dr

⎞
⎠ dx < ∞. (38)

Additionally, we may obtain that

f∗(x) = C
1

σ 2(x)
exp

⎛
⎝2

x∫
0

μ(r)

σ 2(r)
dr

⎞
⎠ (39)

for C > 0. We consider the first equation from the system of stochastic differential
Eq. (12)

dN (t) = (2a − 1)pN (t)dt + α1 N (t)dWt , (40)
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where a > 1
2 , p, α > 0 and N (0) = n0. An invariant density for the diffusion N (t)

does not exist what is seen by

I =
∞∫

0

1

α2
1

exp

⎛
⎝

s∫
1

2(2a − 1)pr

α2
1r2

dr

⎞
⎠ ds

=
∞∫

0

1

α2
1

exp

(
2(2a − 1)p

α2
1

ln(s)

)
ds

=
∞∫

0

1

α2
1

s
2(2a−1)p

α2
1 ds = ∞. (41)

To investigate the behaviour of trajectories, we need to notice that N (t) > 0 a.s. for
n0 > 0. Hence, we may write the following integrals

I1(n0) =
n0∫

0

exp

⎛
⎝

s∫
0

2(2a − 1)pr

−α2r2 dr

⎞
⎠ ds

=
n0∫

0

s
2(2a−1)p

−α2 ds

I2(n0) =
∞∫

n0

exp

⎛
⎝

s∫
0

2(2a − 1)pr

−α2r2 dr

⎞
⎠ ds

=
∞∫

n0

s
2(2a−1)p

−α2 ds. (42)

One may notice that for (2a −1)p− α2

2 < 0 we get that I1(n0) < ∞ and I2(n0) = ∞.
Therefore, from (35), we obtain that

P( lim
t→∞ N (t) = 0) = 1 (43)

and for (2a − 1)p − α2

2 > 0 we obtain that I2(x) < ∞ and I1(n0) = ∞ so from (36)

P( lim
t→∞ N (t) = ∞) = 1. (44)

As is shown in Sect. 3 the stochastic process ξ1(t) is bounded from above by the
process N (t) a.s. Therefore, for (2a − 1)p − α2

2 < 0 we obtain that

P( lim
t→∞ ξ1(t) = 0) ≥ P( lim

t→∞ N (t) = 0) = 1. (45)
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Proof of the Proposition 1

To show that the statement of the Proposition 1 is true, firstly, we show that the density
of the solution of the system (9) is related to an integral Markov semigroup {P(t)}t≥0.
From the theorem 9 we know that the integral semigroup satisfies Foguel alternative.
Therefore, semigroup {P(t)}t≥0 is asymptotically stable or sweeping from the family
of all compact sets. In order to exclude sweeping we construct a function V such that
the condition (31) from the proposition 1 is satisfied.

Let (S, �, m) = (R2, B(R2), m), where m is a Lebesgue measure on R
2 and B(R2)

is a σ -field of Borel sets in R
2. We consider the system of differential equations (8),

where c1(t), c2(t) are stochastic processes adapted to the natural filtration. The solution
of this system is non-negative providing the initial processes are non-negative. We may
make the following technical substitution ξ1 = ex , ξ2 = ey and consider the following
system of differential equations

dx =
((

2a

1 + key
− 1

)
p − 1

2
α2

1

)
dt + α1dW1,t ,

dy =
(

2

(
1 − a

1 + key

)
pex−y − μ − 1

2
α2

2

)
dt + α2dW2,t . (46)

where the process (x(t), y(t)) ∈ R
2. The probability density of the transition proba-

bility function of the process (x(t), y(t)) is described by the following Fokker–Planck
equation

dν

dt
= 1

2
α2

1
∂2ν

∂x2 + 1

2
α2

2
∂2ν

∂y2 − ∂(νg1)

∂x
− ∂(νg2)

∂y
, (47)

where g1, g2 : R
2 → R are defined as follows

g1(x, y) =
(

2a

1 + key
− 1

)
p − 1

2
α2

1,

g2(x, y) = 2

(
1 − a

1 + key

)
pex−y − μ − 1

2
α2

2 . (48)

Let A be the differential operator defined as

Aν = 1

2
α2

1
∂2ν

∂x2 + 1

2
α2

2
∂2ν

∂y2 − ∂(νg1)

∂x
− ∂(νg2)

∂y
. (49)

Then, the adjoint operator of operator A is given by

A∗ν = 1

2
α2

1
∂2ν

∂x2 + 1

2
α2

2
∂2ν

∂y2 + g1
∂ν

∂x
+ g2

∂ν

∂y
, (50)
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Fig. 5 Level lines of the
Khasminskií function and the
vector field (g1(x, y), g2(x, y))

Let {P(t)}t≥0 be the Markov semigroup related to the Eq. (47) in the following way

P(t)v0(x, y) = ν(t, x, y) for t > 0 (51)

where v0(x, y) is the initial probability density of the process (x(t), y(t)). Addition-
ally, the operator A defined in (49) is an infinitesimal generator of the semigroup
{P(t)}t≥0.

The following remark shows that the semigroup {P(t)}t≥0 generated by the model
(8) is integral.

Remark 13 If the Wiener processes W1,t , W2,t are not correlated, then the operator A
is elliptic and for every (x0, y0) the transition probability function P(t, x0, y0, B) of
model (46) is absolutely continuous with the respect to the Lebesgue measure and has
a density ν(t, x0, y0, x, y) ∈ C2

(
(0,∞) × R

2 × R
2
)
. In addition,

P(t) f (x, y) =
∫

R2

ν(t, x0, y0, x, y) f (x, y)dxdy for every f ∈ D. (52)

Hence the semigroup {P(t)}t≥0 is integral.

Therefore, by Theorem 9 the Markov semigroup {P(t)}t≥0 satisfies the Foguel alter-
native.

According to the Theorem 12, in order to exclude sweeping we need to construct
the Khasminskií function for the semigroup {P(t)}t≥0. To simplify the form of the
proof, we firstly show the general way of finding Khasminskií function.

Level lines of a Khasminskií function V (x, y) for sufficiently large R and
x2 + y2 > R should consist of line segments and circle segments. A construction
should be done in the following way. The vector field (g1(x, y), g2(x, y)) at the level
line V (x, y) = z is directed inside the domain 
 = {(x, y): V (x, y) ≤ z}, see Fig. 5
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for graphical interpretation. Since the vector field is directed inside the domain 
 we
may notice that at the line segments of the Khasminskií function, for some b0 > 0 the
following condition is true

A∗
1V (x, y) = g1(x, y)

∂V

∂x
+ g2(x, y)

∂v

∂y
≤ −b0. (53)

At the circle segments we may easily check that

0 <
∂2z

∂x2 ,
∂2z

∂y2 <
6

r
. (54)

Therefore, because α1, α2 are constant, then for sufficiently large r we may obtain that

A∗
2ν = 1

2
α2

1
∂2ν

∂x2 + 1

2
α2

2
∂2ν

∂y2 ≤ b0

2
. (55)

Hence, from (54), (55) we conclude that there exists such b0 > ε > 0 that the following
condition holds

A∗V (x, y) ≤ −ε (56)

for some r > 0 and (x, y) /∈ B(r). Since ε > 0 the condtion from the Theorem 12
holds. To finish the proof of asymptotic stability of the Markov semigroup {P(t)}t≥0
we need function V to be C2-function. The following technique presents how to obtain
such condition.

We convolute our function V with a function f η constructed in the follow-
ing way. Let f η be a sufficiently smooth function with compact support con-
tained in a closed ball B(η) ⊂ R

2 with centre in (0, 0) and radius η. Let K η be
η-neighbourhood of the set K , K1, respectively. It means that
K η = {x ∈ R

2: infu∈K ‖x − u‖ ≤ η}. Hence, let V η = V ∗ f η and then for
x /∈ K η we obtain

A∗V η = (A∗(V ∗ f η)(x) =
∫

R2

A∗V (x − z) f η(z)dz

=
∫

B(η)

A∗V (x − z) f η(z)dz ≤ −ε, (57)

because x − z /∈ K for z ∈ B(η). In this way we obtain C2-function V such that
the condition from theorem 12 holds and the proof of the preposition 1 is finished.
Therefore, the semigroup {P(t)}t≥0 is asymptotically stable.

Exact construction of Khasminskií function is very technical. We have omitted pure
algebraic computation and left only important conditions and inequalities. The proof
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is divided into two parts. In the first one we assume that

μ + 1

2
α2

2 − p − 1

2
α2

1 > 0. (58)

In the second one we assume that there exists n ∈ N such that

(n − 1)

(
μ + 1

2
α2

2

)
− p − 1

2
α2

1 > 0. (59)

At first we show seweral conditions which holds for model (9). Then we present
the exact formula of the function V (x, y) and domains D1, . . . , D12 for related line
and circle segments. Consequently we show the boundaries of the derivatives of the
function V which lead to estimation of A∗V on each domain D1, . . . , D12. Similar
computation is done for the second case. Ultimately we obtain function V for which
A∗V < −ε for some ε > 0.

By virtue of (4), (58) the following inequalities hold for some sufficiently small
ε > 0

μ + 1

2
α2

2 − p − 1

2
α2

1 − 2ε > 0,

(2a − 1)p − 1

2
α2

1 > ε. (60)

We fix ε > 0 such that the Eq. (60) hold and define the following constants for r > 0

γ = ln

⎛
⎝

4ap
α2

1+2p
− 1

k

⎞
⎠ ,

γ1 = ln

(
μ + 1

2α2
2 − p − 1

2α2
1 − 2ε

2p

)
− r,

γ2 = ln

(
μ + 1

2α2
2 + (2a − 1)p − 1

2α2
1 + 2ε

2(1 − a)p

)
+ r. (61)

We may notice that there exists δ > 0 and sufficiently big M > 0 such that the
following inequalities hold

(
2a

1 + ey
− 1

)
p − 1

2
α2

1 < −2ε for y > γ + δ − r,

(
2a

1 + ey
− 1

)
p − 1

2
α2

1 > 2ε for y < γ − δ + r,

(
2a

1 + ey
− 1

)
p − 1

2
α2

1 < −3ε for y > γ + M,

(
2a

1 + ey
− 1

)
p − 1

2
α2

1 > 3ε for y < γ − M. (62)
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We note that for every y > x − γ1

2

(
1 − a

1 + key

)
pex−y − μ − 1

2
α2

2 < −p − 1

2
α2

1 − 2ε (63)

and for every y < x − γ2

2

(
1 − a

1 + key

)
pex−y − μ − 1

2
α2

2 > (2a − 1)p − 1

2
α2

1 + 2ε. (64)

Let z = V (x, y) : R
2 → [0,∞) be defined as follows

(x − z − γ − γ1)
4 + (y − z − γ )4 = r4 for x, y ∈ D1,

z = y − γ − r for x, y ∈ D2,

(y − z − γ )4 + (x − y + z − γ1)
4 = r4 for x, y ∈ D3,

z = y − x − r + γ1 for x, y ∈ D4,

(x + z + δ − γ − γ1)
4 + (y − x − z + γ1)

4 = r4 for x, y ∈ D5,

z = −x + γ + γ1 − δ − r for x, y ∈ D6,

(x + z + δ − γ − γ1)
4 + (y + z + δ − γ − γ1 + γ2)

4 = r4 for x, y ∈ D7,

z = −y − δ + γ + γ1 − γ2 − r for x, y ∈ D8,

(y + z + δ − γ − γ1 + γ2)
4 + (x − y − z − γ1 + δ)4 = r4 for x, y ∈ D9,

z = x − y − γ1 + δ − r for x, y ∈ D10,

(x − z − γ − γ1)
4 + (y − x + z + γ1 − δ)4 = r4 for x, y ∈ D11,

z = x − γ − γ1 − r for x, y ∈ D12, (65)

where domains D1, . . . , D12 are defined as follows for some z0 > 0

D1:={(x, y) ∈ R
2; y > z0 + γ + r, x > z0 + γ + γ1, x − γ1 − r < y < x − γ1 + r},

D2:={(x, y) ∈ R
2; y > z0 + γ + r, x > γ + γ1 + r, x − γ1 − r < y},

D3:={(x, y) ∈ R
2; y > z0 + γ, x < γ + γ1 + r, 1

2 x + γ+γ1+r
2 + z0 < y},

D4:={(x, y) ∈ R
2; y > x + z0 − γ1 + r + δ + r, x < γ + γ1 − r, γ − δ + r < y},

D5:={(x, y) ∈ R
2; y > 2(x + z0 − γ1) − γ + δ + r, γ − δ − r < y < γ − δ + r},

D6:={(x, y) ∈ R
2; x < z0 + γ + γ1 − δ − z0 − r, x − γ2 + r < y < γ − δ − r},

D7:={(x, y) ∈ R
2; y < −x − 2(z0 + γ + γ1 − δ) − γ2 + r,

x − γ2 − r < y < x − γ2 + r},
D8:={(x, y) ∈ R

2; y < −z0 − δ + γ + γ1 − γ2 − r, x < 2(γ1 − δ) + γ − γ2 − r,
y < x − γ2 − r},

D9:={(x, y) ∈ R
2; y < −z0 − δ + γ + γ1 − γ2, x > 2(γ1 − δ) + γ − γ2 − r,

y < 1
2 (x − δ + γ − γ2) − z0 + γ1},

D10:={(x, y) ∈ R
2; y > −z0 − δ + γ + γ − 1 − γ2, x > 2(γ1 − δ) + γ2 + r,

y < γ + δ − r},
D11:={(x, y) ∈ R

2; y > γ + δ − r, x > z0 + γ + γ1, y < 2(x − z0 − γ1) − γ + δ},
D12:={(x, y) ∈ R

2; y > γ + δ + r, x > z0 + γ + γ1 + r, y < x − γ1 − r}. (66)
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We can estimate the first and the second order derivative of the function z = V (x, y)

in the domains D1, . . . , D12 and obtain the following inequalities

0 <
∂z

∂x
,
∂z

∂y
< 1, 0 <

∂2z

∂x2 ,
∂2z

∂y2 <
6

r
for x, y ∈ D1,

∂z

∂x
= 0,

∂z

∂y
= 1 for x, y ∈ D2,

−1 <
∂z

∂x
< 0,

∂z

∂y
= 1, 0 <

∂2z

∂x2 <
6

r
,
∂2z

∂y2 = 0 for x, y ∈ D3,

∂z

∂x
= −1,

∂z

∂y
= 1 for x, y ∈ D4,

∂z

∂x
= −1, 0 <

∂z

∂y
< 1,

∂2z

∂x2 = 0, 0 <
∂2z

∂y2 <
6

r
for x, y ∈ D5,

∂z

∂x
= −1,

∂z

∂y
= 0 for x, y ∈ D6,

−1 <
∂z

∂x
,
∂z

∂y
< 0, 0 <

∂2z

∂x2 ,
∂2z

∂y2 <
6

r
for x, y ∈ D7,

∂z

∂x
= 0,

∂z

∂y
= −1 for x, y ∈ D8,

0 <
∂z

∂x
< 1,

∂z

∂y
= −1, 0 <

∂2z

∂x2 <
6

r
,
∂2z

∂y2 = 0 for x, y ∈ D9,

∂z

∂x
= 1,

∂z

∂y
= −1 for x, y ∈ D10,

∂z

∂x
= 1,−1 <

∂z

∂y
= 0,

∂2z

∂x2 = 0, 0 <
∂2z

∂y2 <
6

r
for x, y ∈ D11,

∂z

∂x
= 1,

∂z

∂y
= 0 for x, y ∈ D12. (67)

One can also notice that in the domains D1, D7 the following equalities are obtained

∂z
∂x + ∂z

∂y = 1 for x, y ∈ D1,
∂z
∂x + ∂z

∂y = −1 for x, y ∈ D7.
(68)

Using (62) we can estimate functions g1, g2 defined in (48) in the domains D1, . . . , D12

g1(x, y) < −3ε in D1, D2, D5, D6,

g1(x, y) < −p − 1

2
α2

1 − 2ε in D3, D4,

g1(x, y) > 3ε in D7, D8, D10, D11, D12,

g1(x, y) > (2a − 1)p − 1

2
α2

1 + 2ε in D9, D10,

g2(x, y) < −3ε in D1, D2, D3,
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g2(x, y) < −2ε in D4, D11, D12,

g2(x, y) > 2ε in D5, D6,

g2(x, y) > 3ε in D7, D8, D9. (69)

By virtue of properties (67), (68) and (69) and assuming that A∗ is an infini-
tesimal generator of the Markov semigroup {P(t)}t≥0 related to the model (8),
r > 2 max{ 1

ε
α2

1, 1
ε
α2

2}, z0 > 0 is sufficiently large, we obtain that

A∗V < −3ε

(
∂z

∂x
+ ∂z

∂y

)
+ 3

r
(α2

1 + α2
2) < −ε for x, y ∈ D1,

A∗V < −3ε
∂z

∂y
< −ε for x, y ∈ D2,

A∗V <
∂z

∂x

((
2a

1 + key − 1

)
p − 1

2
α2

1

)
− p − 1

2
α2

1 − 2ε + 3

r
α2

1 < −ε for x, y ∈ D3,

A∗V < −
((

2a

1 + key − 1

)
p − 1

2
α2

1

)
− p − 1

2
α2

1 − 2ε < −ε for x, y ∈ D4,

A∗V < −
((

2a

1 + keγ−δ+r
− 1

)
p − 1

2
α2

1

)
+ 3

r
α2

2 < −ε for x, y ∈ D5,

A∗V < −
((

2a

1 + keγ−δ+r
− 1

)
p − 1

2
α2

1

)
< −ε for x, y ∈ D6,

A∗V < 3ε

(
∂z

∂x
+ ∂z

∂y

)
+ 3

e
(α2

1 + α2
2) < −ε for x, y ∈ D7,

A∗V < −3ε
∂z

∂y
< −ε for x, y ∈ D8,

A∗V <
∂z

∂x

((
2a

1 + key − 1

)
p − 1

2
α2

1

)
− (2a − 1)p + 1

2
+ α2

1 − 2ε + 3

r
α2

1

< −ε for x, y ∈ D9,

A∗V <
∂z

∂x

((
2a

1 + key − 1

)
p − 1

2
α2

1

)
− (2a − 1)p + 1

2
α2

1 − 2ε < −ε for x, y ∈ D10,

A∗V <

((
2a

1 + keγ+δ−r
− 1

)
p − 1

2
α2

1

)
+ 3

r
α2

2 < −ε for x, y ∈ D11,

A∗V <

((
2a

1 + keγ+δ−r
− 1

)
p − 1

2
α2

1

)
< −ε for x, y ∈ D12. (70)

Inequalities (70) show that A∗V < −ε for x, y /∈ K , where K ⊂ R
2 is a compact set

bounded by the following lines

y = z0 + γ − r, y = z0 + x + r − γ1,

x = −z0 + γ + γ1 − δ − r, y = −z0 − δ + γ + γ1 − γ2 − r,

y = −z0 + x − γ1 + δ − r, x = z0 + γ + γ1 + r. (71)
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Under the condition (59) we construct function z = V (x, y) in the following way

(x − z − γ − γ1)4 + (y − z − γ )4 = r4 for x, y ∈ D1,

z = y − γ + r for x, y ∈ D2,

(y − z − γ )4 + (x − ny + (n + 1)(z + γ ))4 = r4 for x, y ∈ D3,

z = ay − x − r

a + 1
− γ for x, y ∈ D4,

(x + (n + 1)(z + γ ) − n(γ − δ))4 + (ay − x − (n + 1(z + γ ))4 = r4 for x, y ∈ D5,

z = (γ − δ)n − x − r

n + 1
− γ for x, y ∈ D6,

(x + (n + 1)(z + γ ) − n(γ − δ))4 + (y + (n + 1)(z + γ ) − n(γ − δ) + γ2)4 = r4

for x, y ∈ D7,

z = −(n + 1)(z + γ ) + n(γ − δ) − γ2 − r

n + 1
− γ for x, y ∈ D8,

(y + (n + 1)(z + γ ) − n(γ − δ) + γ2)4 + (x − y − z − γ1 − δ)4 = r4 for x, y ∈ D9,

z = x − y − γ1 − δ − r for x, y ∈ D10,

(x − z − γ − γ1)4 + (y − x + z + γ1 + δ)4 = r4 for x, y ∈ D11,

z = x − γ − γ1 − r for x, y ∈ D12,

(72)

where γ1 = ln(
μ+ 1

2 α2
2

2p ) − r and γ , γ2, δ are the same as in (61). The domains
D1, . . . , D12 are defined as follows

D1:={(x, y) ∈ R
2; y > z0 + γ, x − γ1 − r < y < x − γ1 + r},

D2:={(x, y) ∈ R
2; y > z0 + γ + r, y > −x + (n + 1)r, x − γ1 + r < y},

D3:={(x, y) ∈ R
2; y > z0 + γ, y < −x + (n + 1)r, y > −x − r},

D4:={(x, y) ∈ R
2; y < −x − r, γ − δ + r

n < y, y >
x+(n+1)(z0+γ )

n + r
n }
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D5:={(x, y) ∈ R
2; γ − δ + r

n > y, γ − δ − r
n < y},

D6:={(x, y) ∈ R
2; γ − δ − r

n > y, x − γ2 + r < y},
D7:={(x, y) ∈ R

2; x − γ2 − r < y < x − γ2 + r},
D8:={(x, y) ∈ R

2; y < n+1
n x + r+γ−δγ2

n+1 − γ1 + γ + δ, y < x − γ2 − r},
D9:={(x, y) ∈ R

2; y > n+1
n x + r+γ−δγ2

n+1 − γ1 + γ + δ,

y < n+1
n x + r+γ−δγ2

n+1 − γ1 + γ + δ + r},

D10:={(x, y) ∈ R
2; y > n+1

n x + r+γ−δγ2
n+1 − γ1 + γ + δ + r, y < γ + δ − r},

D11:={(x, y) ∈ R
2; y > γ + δ − r, y < γ + δ + r, x > z0 + γ + γ1},

D12:={(x, y) ∈ R
2; y > γ + δ + r, x > z0 + γ + γ1 + r, y < x − γ1 − r}.

(73)

An approximation of the first and the second order derivative of the function z =
V (x, y) in domains D1, . . . , D12 is following

0 <
∂z

∂x
,
∂z

∂y
< 1, 0 <

∂2z

∂x2 ,
∂2z

∂y2 <
6

r
for x, y ∈ D1,

∂z

∂x
= 0,

∂z

∂y
= 1 for x, y ∈ D2,

− 1

n + 1
<

∂z

∂x
< 0,

n

n + 1
<

∂z

∂y
< 1, 0 <

∂2z

∂x2 <
6

r
for x, y ∈ D3,

∂z

∂x
= − 1

n + 1
,
∂z

∂y
= n

n + 1
for x, y ∈ D4,

∂z

∂x
= − 1

n + 1
, 0 <

∂z

∂y
<

n

n + 1
,

∂2z

∂x2 = 0, 0 <
∂2z

∂y2 <
6

r
for x, y ∈ D5,

∂z

∂x
= − 1

n + 1
,
∂z

∂y
= 0 for x, y ∈ D6,

− 1

n + 1
<

∂z

∂x
,
∂z

∂y
< 0, 0 <

∂2z

∂x2 ,
∂2z

∂y2 <
6

r(n + 1)
for x, y ∈ D7,

∂z

∂x
= 0,

∂z

∂y
= − 1

n + 1
for x, y ∈ D8,

0 <
∂z

∂x
< 1,−1 <

∂z

∂y
< − 1

n + 1
, 0 <

∂2z

∂x2 <
6

r(n + 1)
for x, y ∈ D9,

∂z

∂x
= 1,

∂z

∂y
= −1 for x, y ∈ D10,
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∂z

∂x
= 1,−1 <

∂z

∂y
= 0,

∂2z

∂x2 = 0, 0 <
∂2z

∂y2 <
6

r
for x, y ∈ D11,

∂z

∂x
= 1,

∂z

∂y
= 0 for x, y ∈ D12.

(74)

We assume additionally that r > 0 satisfies the following condition for sufficiently
small ε > 0

r >
3a(α2

1 + α2
2) + 2ε

(a − 1)(μ + 1
2α2

2) − p − 1
2α2

1

. (75)

Using the latter inequality we may similarly to the first part of the proof estimate the
infinitesimal operator A∗V (x, y) and obtain that A∗V (x, y) < −ε for x, y /∈ K1,
where K1 ⊂ R

2 is the set bounded by the following straights

y = z0 + γ − r, y = (n + 1)(z0 + γ ) + x + r

n
,

x = −(n + 1)(z0 + γ ) + a(γ1 − δ) − r, y = −(n + 1)(z0 + γ ) + a(γ − δ) − γ2 − r,

y = −(n + 1)(z0 + γ ) + x − β − r, x = z0 + γ + γ1 + r, (76)

where β = (n2−2)γ−2nδ−nγ2
n+1 − γ1.

In the first part of the proof, under the assumption (58) we may construct the
Khasminskií function in the more approachable form, we may obtain the following
function

V (x, y) =
⎛
⎝x − log

⎛
⎝ α2

1
2 + (2a − 1)p

2apα1

⎞
⎠

⎞
⎠

4

+
⎛
⎝y − x − log

⎛
⎝ (μ + α2

2
2 )(1 + key)

2p(1 + key − a)

⎞
⎠

⎞
⎠

4

(77)
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and show that for the operator A∗ defined in (50) there exists ε > 0 such that the
following inequality holds

A∗V (x, y) < −ε (78)

for x2 + y2 > K where K > 0 is some sufficiently big but finite constant. The latter
form of Khasminskií function is easier to generalise and use in the similar forms of
the model (8).
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