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                    Abstract
Cooperation between species is often regarded to mean that the increase of each species promotes the growth of the other. The well-known cooperative model is the Lotka–Volterra equations (LVEs). In the LVEs, population densities of species increase infinitely as the cooperation is strong, which is called the divergence problem. Moreover, LVEs never exhibit an Allee effect in the case of obligate cooperation. In order to avoid these problems, several models have been established although most of them are rather complex. In this paper, we consider a cooperative system of two species with bidirectional interactions, in which each species also has negative feedback on the other. Population densities of the species will not increase infinitely because of the limited resource and negative feedback. Then, we focus on an extended lattice model of cooperation, which is deduced from reactions on lattice and has the same form as that of LVEs. In the case of obligate cooperation, the model predicts an Allee effect. Global dynamics of the system exhibit essential features of cooperation and basic mechanisms by which the cooperation can lead to coexistence/extinction of species. Intermediate cooperation is shown to be beneficial in cooperation under certain conditions, while extremely strong cooperation is demonstrated to lead to extinction of one/both species. Numerical simulations confirm and extend our results.
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Appendices
Appendix 1: Proof of Proposition 2.1
(i) By (H3), we have \(du/dt<0, dv/dt<0\) as \(u\ge K\) or \(v\ge K\), which implies the result in (i).
(ii–iii) By (H1–H3), each vertical line \(u_0 \times R\) meets the set \(l_1 = f^{-1}(0)\) exactly once if \(0 \le u_0<a\). For \(u_0=a\), the function \(f(u_0,v)\) with \(f(u_0,0)=0\) increases monotonously as \(v<c(u_0)\) and decreases monotonously as \(v>c(u_0)\). By (H3), there are two roots of equation \(f(u_0,v) =0\). Thus, the vertical line \(u_0 \times R\) meets the set \(l_1\) exactly twice if \(u_0=a\). For a fixed \(u_0\) with \(u_0>a\), the function \(f(u_0,v)\) with \(f(u_0,0)<0\) increases monotonously as \(v<c(u_0)\) and decreases monotonously as \(v>c(u_0)\). By (H3) and the implicit function theorem, the u-isocline \(l_1\) consists of two curves: one is above the line \(v=c(u)\), while the other is below it.
The u-isocline \(l_1\) is bounded and connected. Indeed, it follows from (H3) that \(l_1\) is in the region \(u<K\). Let \(v=h(u)\) be the curve of \(l_1\) which is above the line \(v=c(u)\). From \(f(u,v)=0\), we have \(f_u + f_v dh/du =0\). Since \(f_v<0\), \(dh/du\) is bounded, which implies that \(h(u)\) is bounded as \(u<K\). Thus, \(l_1\) is bounded. By (H2), \(l_1\) is connected. Therefore, at the left of \(l_1\), \(f>0\) and at the right, \(f<0\) as shown in Fig. 1a.
A similar discussion shows that the v-isocline \(l_2 = g^{-1}(0)\) consists of two curves: one is at the left of \(u=d(v)\), while the other is at the right of \(u=d(v)\). \(l_2\) is bounded and connected. Below the curve \(l_2\), \(g>0\) and above it, \(g<0\) as shown in Fig. 1b.
(iv) Since there is no interior equilibrium of (1), every trajectory tends to one of the equilibria \((0,0)\), \((a,0)\), and \((0,b)\) by (i). Assume that \(l_2\) is at the left of \(l_1\). Then, phase portrait analysis shows that all positive solutions converge to \((a,0)\) as shown in Fig. 1c. A similar discussion can be given for the case that \(l_1\) is below \(l_2\), where equilibrium \((0,b)\) is globally asymptotically stable as shown in Fig. 1d.
Appendix 2: Proof of Proposition 3.1
When \(u+v \ge 1\), we have \(du/dt <0\) and \(dv/dt <0\), which implies that all solutions of (2) satisfy \(u(t)+v(t) \le 1\) as \(t\) is sufficiently large. Thus, solutions of (2) are bounded.
Let \(B(u,v) = 1/uv\) and let \(F(u,v)\) and \(G(u,v)\) be the right-hand sides of (2), respectively. Then, we have
$$\begin{aligned} \frac{\partial (BF)}{\partial u}+\frac{\partial (BG)}{\partial v} = - \frac{r_1(1+c_1+e_1 v)}{v}- \frac{r_2(1+c_2+e_2 u)}{u}<0 \end{aligned}$$

for all \(u>0,v>0.\) It follows from Bendixson–Dulac Theorem (Hofbauer and Sigmund (1998)) that system (2) admits no periodic orbit.
Appendix 3: Proof of Proposition 3.2
Let \(E(u,v)\) be an interior equilibrium of (2). Then, \(E(u,v)\) satisfies
$$\begin{aligned}&-d_2 + \left( 1+e_2 \frac{-d_1 + (1+e_1 v)(1-v) }{1+c_1+e_1 v}\right) \\&\quad \times \left( 1-v-\frac{-d_1 + (1+e_1 v)(1-v) }{1+c_1+e_1 v}\right) -c_2 v =0 \end{aligned}$$

that is,
$$\begin{aligned} a_0v^3+a_1v^2+a_2v+a_3=0, \end{aligned}$$

where
$$\begin{aligned} a_0&= c_1e_1e_2,\quad a_1=(c_2-c_1) e_1 +c_1e_2 -(2 c_1+d_1)e_1e_2\\ a_2&= - (c_1+c_2+c_1c_2+c_1^2) +(c_1+d_1-d_2+c_1d_2)e_1\\&\quad +\, (-2c_1 - d_1+c_1d_1)e_2 + d_1e_1e_2\\ a_3&= c_1+d_1-d_2+c_1d_1-c_1d_2+c_1^2 +(c_1+d_1-c_1d_1 -d_1^2)e_2. \end{aligned}$$

Thus, there are at most three roots of the above equation, and there are at most three intersection points between hyperbolas \(l_1\) and \(l_2\).
Assume \(c_1/e_1 \ne c_2/e_2\). We focus on \(c_1/e_1 < c_2/e_2\), while a similar discussion can be given for the case \(c_1/e_1 > c_2/e_2\). Since \(c_1/e_1 < c_2/e_2\), the asymptote \(u+v-1-c_2/e_2=0\) of \(l_2\) is above the asymptote \(u+v-1-c_1/e_1=0\) of \(l_1\). Thus, there always exists an intersection point \(E^*\) of \(l_1\) and \(l_2\) in the fourth quadrant as shown in Fig. 2, which implies that there are at most two interior equilibria of (2).
Assume \(c_1/e_1 = c_2/e_2\). Then, \(l_1\) and \(l_2\) have a same asymptote \(u+v-1-c_1/e_1=0\). It follows from the second equations of (3) and (6) that \(E(u,v)\) satisfies
$$\begin{aligned} u = -\frac{1+c_2}{e_2} + \frac{D_2}{e_2D_1}(1+c_1+e_1 v), \end{aligned}$$

where \(u=u(v)\) is a linear function. By the first equation of (3), \(v\) satisfies
$$\begin{aligned} \alpha _0 v^2 +\alpha _1 v +\alpha _2 =0, \end{aligned}$$

where
$$\begin{aligned} \alpha _0&= e_1^2\left[ c_2(1+ c_2)e_1^2 +c_1(1+ c_1)e_2^2 +(c_1+ d_1)e_1 e_2^2 +(c_2+ d_2)e_1^2 e_2\right] ,\\ \alpha _1&= e_1\left[ 2c_2(1+ c_1+ c_2 + c_1 c_2 )e_1^2 - c_1 (1+ c_1+ c_2 + c_1 c_2)e_1e_2 \right. \\&\quad +\,c_1(1+ c_1)e_2^2+(d_1- c_1^2)e_1 e_2^2+(- c_1+ 2 c_2 - d_1 + 2 d_2\\&\quad +\, c_1 c_2+ 2 c_1 d_2 - c_2 d_1)e_1^2 e_2\left. -(c_1 + d_1)e_1^2 e_2^2\right] ,\\ \alpha _2&= c_1(1+ c_1)e_2 +c_2(1 + 2 c_1 + c_2 + 2 c_1 c_2 + c_1^2 + c_1^2 c_2)e_1^2+( d_1- 2 c_1^2 - c_1^3\\&\quad -\, 2 c_1^2 c_2 - c_1^3 c_2- c_1 c_2)e_1e_2+( c_2- c_1 - d_1 + d_2 +c_1^2+ c_1 c_2\\&\quad -\, c_1 d_1+ 2 c_1 d_2 - c_2 d_1+ c_1^2 d_2- c_1 c_2 d_1)e_1^2 e_2-c_1^2(1 + c_1)^2 e_2^2 \\&\quad -\,c_1(1 +3 c_1+ d_1+ 2 c_1^2 + c_1 d_1 )e_1 e_2^2-(c_1 + d_1+ c_1^2+ c_1 d_1)e_1^2 e_2^2. \end{aligned}$$

Thus, there are at most two intersection points of \(l_1\) and \(l_2\), which implies that there exist at most two interior equilibria of (2).
Therefore, we conclude the result in Proposition 3.2.
Appendix 4: Proof of Proposition 3.3
We focus on the proof for \(e_1\), while a similar discussion can be given for \(e_2\).
(i) Since \(e_1 \le e_1^{0}\), \(E_2\) is above \(l_1\). Since \(u=-(1+c_2)/e_2\) is an asymptote of \(l_2\) and \(v=-(1+c_1)/e_1\) is an asymptote of \(l_1\), there are two intersection points of \(l_1\) and \(l_2\) in the second and third quadrants. By Proposition 3.2, there is no interior equilibrium of (2).
(ii) Since \(e_1 > e_1^{0}\), \(E_2\) is below \(l_1\). Notice that \(l_1\) and the two axes form a convex area \(D\) in the first quadrant. Suppose that there are two interior equilibria. Then, \(l_2\) would go out of \(D\) first and then enter into \(D\) second. In this situation, \(l_2\) would go out of \(D\) third (not necessary in the first quadrant) since it has the asymptote \(u+v-1-\frac{c_2}{e_2}=0\). Thus, there are three intersection points of \(l_1\) and \(l_2\) in \(D\). Since there is an intersection point in the fourth quadrant, this forms a contradiction by Proposition 3.2.
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