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Abstract The basic reproductive number, R0, provides a foundation for evaluating
how various factors affect the incidence of infectious diseases. Recently, it has been
suggested that, particularly for vector-transmitted diseases, R0 should be modified to
account for the effects of finite host population within a single disease transmission
generation. Here, we use a transmission factor approach to calculate such “finite-
population reproductive numbers,” under the assumption of homogeneous mixing,
for both vector-borne and directly transmitted diseases. In the case of vector-borne
diseases, we estimate finitepopulation reproductive numbers for both host-to-host and
vector-to-vector generations, assuming that the vector population is effectively infinite.
We find simple, interpretable formulas for all three of these quantities. In the direct
case, we find that finite-population reproductive numbers diverge from R0 before R0
reaches half of the population size. In the vector-transmitted case, we find that the
host-to-host number diverges at even lower values of R0, while the vector-to-vector
number diverges very little over realistic parameter ranges.

Keywords Basic reproductive number · Transmission factors · Malaria · Modeling ·
Vector-borne diseases

1 Introduction

The basic reproductive number, R0, measures the expected number of new infections
that can be traced back to a single infectious individual in an otherwise totally sus-
ceptible population. The concept of R0 provides a foundation for evaluating when
infectious diseases can spread in a population, what factors determine disease inci-
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1144 L. Keegan, J. Dushoff

dence, and when interventions can eliminate disease (Dietz 1993; Heffernan et al.
2005). Its foundations go back over a century (Ross 1910; Kermack and McKendrick
1927).

In a study of malaria reproductive numbers, Smith et al. (2007) pointed out that
classical calculations of R0 implicitly assume infinite host population sizes, and are
hard to interpret when R0 approaches or exceeds the population size. They introduced
the idea of measuring the typical number of new infections per infectious individual
for a disease invading a finite host population. These finite-population reproductive
numbers account for the fact that some individuals get bitten by multiple mosquitoes,
at random, and absorb some of the infections. However, like classic calculations of R0,
Smith et al. (2007) are only interested in the initial spread of infection; their estimates
of these reproductive numbers ignore longer term depletion of susceptibles. They used
simulations to estimate the vector-to-vector and host-to-host reproductive numbers,
which they called Z0(H) and R0(H), respectively, and ask how these reproductive
numbers change when vector biting is heterogeneous—where some hosts are more
attractive to mosquitoes than others. They showed that in the case of finite-sized pop-
ulations, unlike the infinite-population case, the number of vectors infected per vector
is not necessarily the same as the number of hosts infected per host, and suggested
that measuring Z0(H) and R0(H) could be informative for understanding the effects
of different control measures.

Other studies (Keeling and Grenfell 2000; Ross 2011) have done similar work on
directly transmitted diseases using stochastic models, here we use a next-generation
framework to explore the impact of finite-population size on both directly transmitted
and vector-borne diseases.

Here, we take a step towards better understanding of these “finite-population
reproductive numbers” by calculating them analytically for homogeneous mixing
between hosts (or hosts and vectors). We consider both directly transmitted and
vector-transmitted diseases. For directly transmitted diseases, we calculated the aver-
age number of hosts infected by a single infectious host, which we call R(N ). In the
latter case, we calculate separate finite-population reproductive numbers for transmis-
sion from host species (via the vector) back to the host species, and for the vector
species (via the host) back to the vector species which we call R(H) and Z(H)

respectively.
Our calculations are based on Nåsell’s idea of transmission factors, as described by

Bailey (1982). Transmission factors are analogous to reproductive numbers for a single
“leg” of host-vector transmission (or heterosexual HIV transmission, see Dushoff et
al. 2011). They give the number of new cases of one group that can be attributed to a
single infectious individual of another group. In the case of malaria, the transmission
factor from hosts to vectors (τhv) is the average number of vector infections that are
caused by a single infectious host, and the transmission factor from vectors to hosts
(τvh) is the average number of host infections that are caused by a single infectious
vector. Unlike the reproductive numbers, we use these transmission factors only in
the infinite-population limits. The reproductive number R0, for a vector-transmitted
disease is equal to the product τhvτvh , we call the ratio of the transmission factors
ρ = τhv/τvh . For a directly transmitted disease, there is only one “transmission factor,”
which we call τ , and which is equal to R0.
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Analytic Calculation of Finite-Population Reproductive Numbers 1145

Although we consider only homogeneous mixing here, in order to implement a
model that takes finite-population size into account, we need to account for the fact
that each infectious individual will create a discrete number of new infections. Since
we assume that each infectious individual will have a constant contact rate over an
exponentially distributed infectious period, the number of contacts is geometrically
distributed. We then account for the fact that the population size is finite by allowing
some of the potential infections to land on the same host.

2 Methods

We calculate finite-population reproductive numbers for directly transmitted diseases,
R(N ), in a finite population of size N ; and we calculate these finite-population repro-
ductive numbers for vector-borne diseases, for host-to-host R(H), and vector-to-
vector Z(H) transmission in a finite host population of size H (under the assump-
tion of an effectively infinite vector population). To calculate these finite-population
reproductive numbers, we trace infections through one cycle of transmission. For
a directly transmitted disease, hosts infect other hosts: we start with one “typical”
infected individual and calculate how many individuals are infected by that individ-
ual. For a vector-borne disease, we look at cycles of transmission: for R(H), we start
with one typical infected host and calculate how many vectors are infected from that
host, and then how many hosts will become infected, on average, from that distribution
of vectors; likewise for Z(H), we start with one infected vector, calculate how many
hosts it infects and then how many vectors those hosts are expected to infect. These
three scenarios R(N ), R(H), and Z(H) are depicted diagrammatically in Fig. 1 for
an infinite population, where the dashed arrows depict steps that change in the finite
case.

Fig. 1 Schematic of one generation of disease transmission for a, b vector-borne and c directly transmitted
diseases. The compartmental depiction represents transmission for both the infinite and the finite case. The
dashed arrows indicate places where we change the calculation to take account of finite host populations.
The depiction using transmission factors describes transmission only in the infinite case. a Transmission
beginning with a single infectious host (H0). That host goes on to produce τhv infected vectors (M0) who
each produce τvh new infected hosts resulting in τhvτvh new infected hosts (H1) from a single infectious
host. b Transmission beginning with a single infectious vector (M0) who on average, infects τvh hosts
(H0). Each of those infectious hosts goes on to produce τhv new infected vectors, resulting in τhvτvh new
infected vectors (M1). c Direct transmission beginning with one infected individual (H0) who infects an
average of τ new individuals (H1)
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To validate our results, we simulated host-to-host and vector-to-vector transmis-
sion under the same assumptions used to calculate the finite-population reproductive
numbers. Starting with a single infectious host (or vector), we simulate the number of
hosts (or vectors) infected by those infectious individuals. We repeated those simula-
tions 1000 times for a mosquito population of M = 100, 000, and took the mean of
those 1000 simulations for each value of R0. Results are plotted in Figs. 2 and 4 (for
direct- and vector-borne transmission, respectively). We explore the effects of smaller
vector-population sizes in the appendix.

2.1 Assumptions

For directly transmitted diseases, we assume a finite population of size N . Each
infected host produces an average of τ potential new infections, using the geometric
distribution, as discussed above; this is equivalent to assuming that the infection and
recovery processes are Markovian. We assume that all hosts behave identically and
independently. Since the host population is finite, some of these potential infections
may fall at random on the same susceptible host, so the average number of realized
infections in general, will be smaller.

In the case of vector-borne transmission, we assume that the host population is finite,
of size H , and that the vector population is effectively infinite (i.e., much larger than
the host population; we relax this assumption in the appendix) since mosquitoes are not
the limiting factor. Thus, a single infected host produces a geometrically distributed
number of new infections, with mean τhv , in a susceptible vector population. We
assume that all hosts and all vectors are identical and independent, as in the case
of directly transmitted diseases. A single infected vector produces a geometrically
distributed number of potential infectious events (we call these infectious bites) in the
host population, with mean τvh , however, because the host population is finite, some
of these bites may fall at random on the same host, so the average number of new
infections will be smaller.

2.2 Calculation Framework

If we know that a generation of infected vectors produces a potentially infectious bites
on the finite host population, the probability that any individual host escapes infection

is
(
1 − 1

H

)a
. Thus, the expected number of new infections is H

(
1 − (

1 − 1
H

)a
)

.

To calculate expectations, we use probability distributions over numbers of poten-
tially infectious events p(a), and corresponding generating functions, φ(x) =∑

a p(a)xa . In particular, the generating function that corresponds to a geometric
distribution with probability P is:

φ(x) =
∞∑

a=0

(1 − P)Pa xa = 1 − P

1 − Px
. (1)

Since τ = P
1−P is the mean number of events, we can solve for P to get P =

τ/(τ + 1) and substitute to write φ(x) = 1
1+τ(1−x)

.
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Analytic Calculation of Finite-Population Reproductive Numbers 1147

In particular, if φa(x) corresponds to the distribution of infectious bites on the host
population p(a), then we have that the expected number of infections, I , is:

I =
∞∑

a=0

H(1 − (1 − 1/H)a)p(a) (2a)

= H

( ∞∑

a=0

p(a) −
∞∑

a=0

(1 − 1/H)a p(a)

)

(2b)

= H(1 − φa(1 − 1/H)) (2c)

3 Results

3.1 Calculation Framework

We use generating functions to calculate finite-population reproductive numbers for
both directly transmitted and vector-borne diseases.

Since we assume that the number of infectious bites that land on a host is geomet-
rically distributed, the generating function for the expected number of bites from one
infectious vector is

φv1(x) = 1 − Pvh

1 − Pvh x
, (3)

where Pvh = τvh/(τvh + 1) is the probability that an infected vector bites a host.
If we substitute Eq. (3) into Eq. (2c), we have that the expected number of infections

from one infectious vector is I1 = H − φv1(1 − 1/H). Solving yields

I1 = Hτvh

H + τvh
. (4)

Equation (3) gives the generating function for the number of infectious bites from
one infectious vector, from this, we can calculate the generating function for the
number of infectious bites by m infectious vectors is

φvm(x) =
(

1 − Pvh

1 − Pvh x

)m

(5)

Plugging in to (2), with mean Pvh = τvh/(τvh + 1), the distinct number of hosts
infected by m vectors is:

Im = H

(
1 −

(
H

H + τvh

))m

(6)

3.2 Direct Transmission, R(N )

The expected number of infections that can be traced back to a single infected host is
analogous to the expected number of bites from a single infectious vector in a finite
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Fig. 2 The finite-population reproductive number R(N ) versus the basic reproductive number, R0, for
directly transmitted diseases. Host population size is N = 1000. The blue points represent the average of
1000 simulations each (Color figure online)

population, above (for a vector-borne disease). Thus, by analogy with (4), the expected
number of new infections from a single infectious host is

I1 = Nτ

N + τ
. (7)

Since R0 is exactly τ , the expected number of infections from a single host is

R(N ) = Nτ

N + τ
= NR0

N + R0
(8)

Figure 2 shows how our analytic calculation and simulations of R(N ) increase
with the basic reproductive number, for a fixed value of H = 1000. R(N ) diverges
from R0 as the basic reproductive number approaches the population size—around
R0 = 1/2H , and approaches the population size for very large values ofR0. Simulated
results match the analytically calculated results, as expected. Figure 3 shows how
R(N ) varies with H for fixed R0 = 1000; R(N ) converges on R0 as the population
size increases relative to the basic reproductive number.

3.3 Vector-Borne Disease Transmission

3.3.1 Vector-to-Vector Transmission, Z(H)

To calculate the vector reproductive number, Z(H), we start with a single infectious
vector, calculate the expected number of hosts infected by that single infectious vector,
and then calculate the expected number of vectors infected by those infectious hosts.
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Fig. 3 The finite-population reproductive number R(N ) versus the population size, N , for directly trans-
mitted diseases. The basic reproductive number is R0 = 1000 (Color figure online)

Since we assume that the vector population is effectively infinite, (from (3)), we
know that the number of hosts infected by a single infectious vector is

I1 = Hτvh

H + τvh
. (9)

Those I1 infected hosts go on to infect τhv vectors. Thus, the finite-population
reproductive number for vectors is

Z(H) = Hτvhτhv

H + τvh
= H

H + τvh
R0 (10)

3.3.2 Host-to-Host Transmission, R(H)

To calculate the host reproductive capacity, R(H), we start with a single infectious
host, calculate the expected number of vectors infected by that one host; then we
calculate the expected number of hosts infected by infected vectors.

Starting from a single infected host, we calculate the expected number of vectors
infected by that host. The number of infected vectors is distributed geometrically with
mean Phv = τhv/(τhv + 1) where Phv is the probability that an infectious host infects
a vector. Thus, the distribution of infected vectors (from a single infectious host) is

p(m) = (1 − Phv)Pm
hv (11)

From (6), we know that the number of hosts infected by m vectors is Im = H(1 −
( H

H+τvh
))m . The finite-population reproductive number for is R(H) = ∑

m p(m)Im .
We calculate the finite-population reproductive number for hosts to be
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Fig. 4 Plot of the basic reproductive number, R0 (black), versus the finite-sized reproductive numbers
R(H) (blue) and Z(H) (red), for three values of ρ, for vector-borne diseases. The host population size,
H = 1000 (gray). We simulated the host-to-host reproductive number (blue points) and the vector-to-vector
reproductive number (red points). For the simulations, the vector population size is M = 100, 000 (Color
figure online)

R(H) = τhvτm H

H + τvhτhv + τvh
= R0 H

R0 + H + τvh
(12)

The relationship between R(H), Z(H), and R0 is shown in Figs. 4 and 5, and the
results are compared in Table 1. Figure 4 is a plot of the finite-population reproductive
numbers (R(H) and Z(H)) compared to R0 for a fixed population of size H. We varied
τhv for three fixed values of ρ. It highlights the divergence of the host-to-host and
vector-to-vector finite-population reproductive numbers and R0 as the reproductive
numbers approach the size of the host population, H ; which occurs at aboutR0 = H/3.
It also highlights the effect of ρ on the divergence of Z(H) from R0, an effect better
shown in Fig. 5.

In addition, Fig. 4 shows the results of our simulations of vector-borne transmission
in a finite-population. We simulated vector-to-vector and host-to-host transmission
and plotted the resulting reproductive numbers. We see that our simulations match the
analytically calculated results.

Figure 5 displays the relationship between the finite-sized reproductive numbers
(R(H) and Z(H)) and the infinite-population reproductive number, R0, for a fixed
value of R0, varying the host population size, H, for three values of ρ. It shows R(H)

and Z(H) converging on R0 as the size of the population increases and highlights the
importance of ρ in the convergence of Z(H) on R0. When hosts infect few vectors
(relative to vectors infecting hosts), that is, when ρ is small, Fig. 5a, Z(H) converges
on R0 slower compared to when ρ is large, Fig. 5c. ρ has much less of an effect on
the convergence of R(H).
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Fig. 5 Plot of the population size H versus the finite-population reproductive number, R(H) (blue) and
Z(H) (red), for three values of ρ. The basic reproductive number, R0 = 1000 (black). a ρ= 0.1, b ρ= 1,
and c ρ=10 (Color figure online)

Table 1 Finite-population
reproductive number for direct-
and vector-borne diseases
compared with the basic
reproductive number (for infinite
population sizes)

Finite-sized reproductive
numbers

Basic reproductive
numbers

Direct Vector-borne Direct Vector-borne

R(N ) R(H) Z(H) R0 R0

Nτ
N+τ

τhvτvh H
τhvτvh+H+τvh

τhvτvh H
H+τvh

τ τhvτvh

4 Discussion

Accurate calculation of the basic reproductive number, R0, is crucial for designing and
implementing control and elimination programs. Smith et al. (2007) suggested that
when R0 is large relative to the size of the population, as can happen with malaria,
R0 does not accurately reflect the disease dynamics. They introduced the idea of
finite-population reproductive numbers for both host and vectors, for malaria, and
used simulations to estimate both R0 and the finite-population reproductive numbers
(Z0(H) and R0(H)), while allowing for heterogeneous biting, transmission-blocking
immunity, and sampling issues.

Here, we consider the simpler case of homogeneous mixing, where all hosts are
equally attractive to mosquitoes, and we are able to derive analytic formulas for those
finite-population reproductive numbers for both vector-borne (Z(H) and R(H)) and
for directly transmitted diseases (R(N )). We find simple formulas for these quantities
in terms of transmission factors (τhv , τvh , and τ ) (Bailey 1982) (Table 1), and show
that the finite-population reproductive numbers, particularly R(N ) and R(H), diverge
from R0 when R0 approaches the population size. We then simulated our results in a
finite population of hosts to validate our analytic calculations (Figs. 2, 4).
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Since we assume a finite-population size in the direct transmission case, and a
finite host population size in the vector-borne case (with an infinite vector population
size), the reproductive numbers R(N ) and R(H) are necessarily smaller than the
size of the population, however, for vector-borne transmission, Z(H) can exceed the
host population size as the vector population is infinite (Figs. 4, 5). However, unlike
R0, Z(H) does decrease as it approaches the population size, but not as quickly as
R(H) does (Figs. 4, 5). Our results show that Z(H) is very similar to R0 when
τhv is large relative to τvh (large ρ) (Figs. 4c, 5c), and somewhat smaller (though
still larger than R(H)) when τhv is small relative to τvh (small ρ) (Figs. 4a, 5a).
In other words, the number of vectors infected by a single infectious vector is more
strongly affected by the host population size, when the number of hosts infected
by a single vector is large compared to the number of vectors infected by a single
host.

If we were to relax the assumption of infinite vector population size, both R(H)

and Z(H) would be limited by M in an analogous way to how they are limited by
H : R(H) would decrease if M was small relative to the reproductive number (in the
same way that Z(H) decreases as a result of H ) but it would not be limited by M ;
and Z(H) would be bounded by M (just as R(H) is bounded by H ).

Since R(N ) and R(H) are bounded by the population size and R0 is not, they
diverge. In the case of directly transmitted diseases, R(N ) diverges from R0 near
R0 = N/2 (Fig. 2). Similarly, for vector-borne diseases, R(H) diverges much sooner
than R(N ) (for directly transmitted diseases). Our results show that when R0 is near
the size of the host population size, R0 overestimates the actual dynamics, making
control and elimination seem more difficult then they actually are.

It is well known that malaria-transmitting mosquitoes prefer some hosts over others
for a variety of reasons (for example Knols et al. 1995; Mukabana et al. 2002). This
heterogeneity has complicated effects in simple models, it increases the reproductive
number (Woolhouse et al. 1997; Dye and Hasibeder 1986), but it can decrease finite-
population reproductive numbers (Smith et al. 2007). Extending the work here to
gain analytic insight into finite-population reproductive numbers in the presence of
heterogeneity in host attractiveness to mosquitoes would be a valuable contribution to
understanding diseases spreading in small populations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix: Finite Vector Population

We assume for the calculations of R(H) and Z(H)that the population of vectors is
effectively infinite. In our simulations of finite-sized reproductive numbers, we chose
a population of vectors to be very large relative to the host population size. However,
here we explore how finite vector population size affects the simulations of the finite-
population reproductive numbers (Fig. 6).
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Fig. 6 The basic reproductive number, R0 (black), versus the finite-sized reproductive numbers R(H)

(blue) and Z(H) (red), for three values of ρ, for vector-borne diseases. The host population size, H =
1000 (gray). Points represent the average of 1000 simulations. We vary the vector population size, from
M = 100, 000 (closed circles) to M = 10, 000 (triangles), to 1, 000 (squares). a ρ= 0.1, b ρ= 1, and
c ρ=10 (Color figure online)

We find that the vector-population size, M, does not significantly affect the finite-
sized reproductive numbers unless M is small relative to the host population size, H .
We also see that when M is small relative to H , ρ has the opposite effect on Z(H)

than when the vector population size is infinite: when ρ is small, for the same value
of M , Z(H) diverges from R0 slower than when ρ is large. That is, when hosts are
better at transmitting to vectors (than vectors are at transmitting to hosts) the effect of
small vector-population size is smaller than when the vectors are better at transmitting
to hosts (relative to hosts transmitting to vectors).
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