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                    Abstract
Dispersal heterogeneity is increasingly being observed in ecological populations and has long been suspected as an explanation for observations of non-Gaussian dispersal. Recent empirical and theoretical studies have begun to confirm this. Using an integro-difference model, we allow an individual’s diffusivity to be drawn from a trait distribution and derive a general relationship between the dispersal kernel’s moments and those of the underlying heterogeneous trait distribution. We show that dispersal heterogeneity causes dispersal kernels to appear leptokurtic, increases the population’s spread rate, and lowers the critical reproductive rate required for persistence in the face of advection. Wavespeed has been shown previously to be determined largely by the form of the dispersal kernel tail. We qualify this by showing that when reproduction is low, the precise shape of the tail is less important than the first few dispersal moments such as variance and kurtosis. If the reproductive rate is large, a dispersal kernel’s asymptotic tail has a greater influence over wavespeed, implying that estimating the prevalence of traits which correlate with long-range dispersal is critical. The presence of multiple dispersal behaviors has previously been characterized in terms of long-range versus short-range dispersal, and it has been found that rare long-range dispersal essentially determines wavespeed. We discuss this finding and place it within a general context of dispersal heterogeneity showing that the dispersal behavior with the highest average dispersal distance does not always determine wavespeed.
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Appendix: Moments and Wavespeed
Appendix: Moments and Wavespeed
In this appendix, we will show that a dispersal kernel with faster tail decay can result in larger wavespeeds than a kernel with a more slowly decaying tail as long as the reproductive rate is sufficiently small.
Let \(M_1(s)\) and \(M_2(s)\) be two moment-generating functions for mean-zero, exponentially bounded, symmetric dispersal kernels \(f_1(x)\) and \(f_2(x)\), respectively. We assume that \(f_2(x)>f_1(x)\) for \(x>y>0\) and that \(f_2(x)<f_1(x)\) for some \(x<y\). Only a finite number of moments of \(f_2\) can be less than those of \(f_1\) (see 7.1 below).
The \(2n\)th moment of a distribution \(f\) is defined as \(m_{i,2n}=\displaystyle \int _{-\infty }^\infty x^{2n} f_i(x)\mathrm{d}x\). We further assume that the first \(k-1\) even moments of the distributions are the same (all odd moments are zero), but that the \(2k\)th moment of \(f_1\) is larger than that for \(f_2\). We drop the first subscript on the first \(k-1\) moments since they are equivalent among the two kernels to get
$$\begin{aligned} M_1(s)&= 1+m_2\frac{s^2}{2!}+m_4\frac{s^4}{4!}+\cdots +m_{2(k-1)}\frac{s^{2(k-1)}}{({2(k-1)})!}+m_{1,2k}\frac{s^{2k}}{(2k)!}\nonumber \\&+\sum _{j=k+1}^\infty m_{1,2j}\frac{s^{2j}}{(2j)!}\end{aligned}$$

                    (36)
                

 
                           $$\begin{aligned} M_2(s)&= 1+m_2\frac{s^2}{2!}+m_4\frac{s^4}{4!}+\cdots +m_{2(k-1)}\frac{s^{2(k-1)}}{({2(k-1)})!}+m_{2,2k}\frac{s^{2k}}{(2k)!}\nonumber \\&+\sum _{j=k+1}^\infty m_{2,2j}\frac{s^{2j}}{(2j)!}. \end{aligned}$$

                    (37)
                

We know that \(m_{1,2k}>m_{2,2k}\), and the rest of the moments can have any arbitrary relationship as long as some \(K\) exists such that \(m_{1,2j}<m_{2,2j}\) for all \(j>K\).
$$\begin{aligned} M_1(s)-M_2(s)=\left( (m_{1,2k}-m_{2,2k})+\sum _{j=k+1}^\infty (m_{1,2j}-m_{2,2j})(2k)!\frac{s^{2j-2k}}{(2j)!}\right) \frac{s^{2k}}{(2k)!} \end{aligned}$$

                    (38)
                

For \(s\) small enough, \(M_1(s)-M_2(s)>0\) because the dominant term becomes that with the \(2k\)th moment \(m_{i,2k}\), which is larger for \(f_1\). However, \(M_1(s)<M_2(s)\) for \(s\) large enough, since the higher-order moments of \(f_2\) are larger. Thus, \(\hat{s}\) exists such that \(M_1(\hat{s}) = M_2(\hat{s})\), \(M_1(s) > M_2(s)\) for \(0 < s < \hat{s}\) and \(M_1(s) < M_2(s)\) for \(\hat{s} < s < \tilde{s}\) (for some \(\tilde{s}\)—depending on the precise relationship between the moments—it may be possible for the moment-generating functions to cross at multiple points).
For any given reproductive rate, \(R\):
$$\begin{aligned} c(\hat{s};R)=c_1(\hat{s};R)=\frac{1}{\hat{s}}\ln { \left( RM _1(\hat{s}) \right) }=\frac{1}{\hat{s}}\ln { \left( RM _2(\hat{s}) \right) }=c_2(\hat{s};R), \end{aligned}$$

                    (39)
                

and \(c_1(s;R)>c_2(s;R)\) for \(s<\hat{s}\). The wavespeed is defined as
$$\begin{aligned} c_i^*=c(s_i^*;R)=\min { \left\{ \frac{1}{s}\ln \left( RM _i(s) \right) \right\} }. \end{aligned}$$

                    (40)
                

As \(R\) goes down to one, both \(s_1^*\) and \(s_2^*\) go to zero since \(R=1\) corresponds to a wavespeed of zero with a shape parameter \(s^*=0\). So for \(R\) sufficiently close to one, we can get \(s_1^*\) and \(s_2^*\) as close to zero as we like (see Appendix 7.2) and hence both smaller than \(\hat{s}\). Because both critical shape parameters are in the region where \(c_1(s;R)>c_2(s;R)\), \(c_1^*>c_2^*\). This shows that a dispersal kernel with a “thinner” tail can give a larger wavespeed than a dispersal kernel with a “fatter tail” as long as the former dominates the latter in lower-order moments and that the net reproductive rate is sufficiently close to one.
When the mean dispersal location is negative, the critical reproductive rate is greater than one and the above argument does not apply since \(s^*\) does not approach zero as \(R\) goes down to \(R^*\). However, as long as the mean dispersal location is close enough to zero, \(R^*\) is close to one, and for a fixed \(R\) close enough to \(R^*\), \(f_1\) gives larger wavespeeds than \(f_2\).
1.1 Miscellaneous Moment Calculations

                              High-order moments tend toward infinity Here, we show that the magnitude of a probability distribution’s moments grows unboundedly as we look at higher and higher-order moments.
To see that the \(2n\)th moment goes to infinity as \(n\rightarrow \infty \) for a symmetric kernel \(f\) which has support for \(x>1\), find \(j>1\) such that \(f(x)>C_j\) on the interval \((j,j+1)\). The \(2n\)th moment is \(m_{2n}=2\int _0^\infty x^{2n}f(x)\mathrm{d}x\). This integral is then bounded from below by \(2 j^{2n} C_j\). As \(n\rightarrow \infty \), \(m_{2n}>2 j^{2n} C_j \rightarrow \infty \) which proves the result.

                              High-order moments are larger for slower decaying tail In this section, we show that if one dispersal kernel is eventually above another \(f_2(x)>f_1(x)\) for all \(x\) greater than some \(y\), then the higher-order moments of \(f_2\) are all larger than those of \(f_1\) (for sufficiently large order). This is a somewhat looser requirement than \(f_2\) having a slower tail decay rate, which may involve showing that the ratio \(f_1(x)/f_2(x)\) goes to zero as \(x\) goes to infinity.
Assume that symmetric, mean-zero, exponentially bounded kernels satisfy \(f_2(x)>f_1(x)\) for all \(x>y\). Also, assume that the minimum of \(f_2(x)-f_1(x)=-C<0\) for \(0<x<y\). For the interval \(0<x<y\), \(x^{2n}(f_2(x)-f_1(x))>-Cy^{2n}\), and for \(x>y\), \(x^{2n}(f_2(x)-f_1(x))>\tilde{C}z^{2n}\) assuming that \(f_2(x)-f_1(x)>\tilde{C}\) for \(z<x<z+1\) given some \(z>y\).
$$\begin{aligned} \frac{1}{2}(m_{2,2n}-m_{1,2n})&= \int _0^y x^{2n}(f_2(x)-f_1(x))\mathrm{d}x+\int _y^\infty x^{2n}(f_2(x)-f_1(x))\mathrm{d}x \\&>-Cy^{2n{+1}}+\tilde{C}z^{2n} \end{aligned}$$

Because \(z\) is greater than \(y\), \(n\) being large enough ensures that \(\tilde{C}z^{2n}-Cy^{2n{+1}}\) is positive, demonstrating that all higher-order moments of \(f_2(x)\) are larger than those of \(f_1(x)\).
1.2 As \(R\searrow 1\), \(c^*\rightarrow 0\) and \(s^*\rightarrow 0\)
                           
As the net reproductive rate \(R\) goes down to one, we will show that the wavespeed \(c^*\) goes to zero and the corresponding critical shape parameter \(s^*\) also goes to zero.
Let \(R_n\) be a decreasing sequence of reproductive rates which converges to one. The moment-generating function for some mean-zero, symmetric, and exponentially bounded dispersal kernel is
$$\begin{aligned} M(s)=1+m_2\frac{s^2}{2}+\cdots . \end{aligned}$$

When \(s\) is near zero, the moment-generating function is near one and is thus \(M(s)=1+O(s^2)\). The power series expansion of the natural logarithm is \(\ln (1+x)=x-\frac{1}{2}x^2+\cdots \), thus \(\ln (M(s))=O(s^2)\). Now, we look at the sequence of functions
$$\begin{aligned} c_n(s)=\frac{1}{s}\ln \left( R_nM(s)\right) . \end{aligned}$$

It is clear that \(c_n(s)>c_{n+1}(s)\) for any \(n\) and for any \(s\) because \(R_n\) is a decreasing sequence and the natural logarithm is a monotone function.
Following a standard analytical technique, for any \(\epsilon >0\), choose an \(s\) close enough to zero such that \(\frac{1}{s}\ln (M(s))=O(s)<\frac{\epsilon }{2}\). Because \(R_n\rightarrow 1\) and for the fixed value of \(s\) we just chose, a natural number \(N\) can be chosen such that \(\frac{1}{s}\ln (R_n)<\frac{\epsilon }{2}\) for any \(n>N\) since \(\ln (R_n)\) can be made as close to zero as we like.
Now, we have established that, for the sequence of functions \(c_n(s)\), we can choose an \(N\) and a fixed \(s\) such that for any \(n>N\),
$$\begin{aligned} c_n(s)=\frac{1}{s}\ln (R_n)+\frac{1}{s}\ln (M(s))<\frac{\epsilon }{2}+ \frac{\epsilon }{2}=\epsilon . \end{aligned}$$

Because \(c_n(s)<\epsilon \) at some \(s\), its minimum is also less than \(\epsilon \). Thus, we can choose \(R\) close enough to one to make the wavespeed as close to zero as we like.
Using the parametric representation (6) and letting \(R\) go down to one
$$\begin{aligned} c^*=\frac{M'(s^*)}{M(s^*)}\rightarrow 0. \end{aligned}$$

Since the moment-generating function \(M(s)\) is positive and monotonically increasing in \(s\) (hence \(M'(s)>0\) for any \(s>0\)), as \(R\) goes down to one, \(M'(s^*)\) must go to zero. This happens only if \(s^*\rightarrow 0\).
Now, we have established that for any exponentially bounded, symmetric dispersal kernel with mean-zero, we can choose a \(R\) close enough to one to give \(s^*\) as close to zero as we like.


Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Stover, J.P., Kendall, B.E. & Nisbet, R.M. Consequences of Dispersal Heterogeneity for Population Spread and Persistence.
                    Bull Math Biol 76, 2681–2710 (2014). https://doi.org/10.1007/s11538-014-0014-z
Download citation
	Received: 29 July 2013

	Accepted: 18 August 2014

	Published: 28 October 2014

	Issue Date: November 2014

	DOI: https://doi.org/10.1007/s11538-014-0014-z


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Heterogeneity
	Variation
	Dispersal
	Wavespeed 
	Persistence








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					44.192.75.148
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    