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Large ant colonies invariably use effective scent trails to guide copious ant numbers to food sources. The success of mass recruitment hinges on the involvement of many colony members to lay powerful trails. However, many ant colonies start off as single queens. How do these same colonies forage efficiently when small, thereby overcoming the hurdles to grow large? In this paper, we study the case of combined group and mass recruitment displayed by some ant species. Using mathematical models, we explore to what extent early group recruitment may aid deployment of scent trails, making such trails available at much smaller colony sizes. We show that a competition between group and mass recruitment may cause oscillatory behaviour mediated by scent trails. This results in a further reduction of colony size to establish trails successfully.
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Appendix
Appendix
As we have seen, a Hopf bifurcation exists whenever N
                           min<N
                           max, provided that \(\hat{N} < N_{\max}\). In this appendix, we study these extremal situations N
                           min≲N
                           max and \(\hat{N} \lesssim N_{\max}\) using an asymptotic analysis. See Fig. 6 for a sketch of both extremal situations, and Fig. 7 for an illustration of the equilibrium solutions near N
                           min=N
                           max. 
Fig. 6[image: figure 6]
The two extremal situations where the Hopf bifurcation appears and vanishes. Left: N
                                       min=N
                                       max, characterized by αβc
                                       3=c
                                       2; right: \(\hat{N} = N_{\max}\), which occurs when \(c_{2} = c_{2}^{*} = \alpha^{2} \beta^{2}\)
                                    


Full size image


                           Fig. 7[image: figure 7]
Schematic bifurcation diagram of model (10)–(12), in the case when N
                                       max=N
                                       min+εN
                                       ∗ with ε small but positive. The figure in the circle on the right gives an impression of the steady states close to the origin and which are still captured by the asymptotic expansion


Full size image


                        1.1 A.1 Unfolding the Orbit Structure: N
                              min≲N
                              max
                           
We start with N
                              min=N
                              max=β, which occurs precisely when 
$$\frac{c_2}{c_3\alpha\beta} = 1, $$

 and assume that the P
                              4 branch intersects P
                              3, which in this particular case is equivalent to requiring that \(\hat{N} < N_{\min}\), or \(c_{2} > c_{3}^{2}\). Let us introduce a small parameter ε by setting 
$$ \varepsilon= \frac{c_2}{c_3\alpha\beta} - 1 $$

                    (21)
                

 and introduce the rescaling 
$$N = \beta+ \varepsilon N^{*}, $$

 where \(N^{*} =\mathcal{O}(1)\). To be concrete, we write (21) in the form 
$$ c_6 = \frac{c_2 c_4 c_7}{c_3 c_8 (1+\varepsilon)}. $$

                    (22)
                

 We substitute a power series expansion of the variables, given by 
 $$\begin{aligned} p(t) &= p_0 (t) + \varepsilon p_1(t) + \varepsilon^2 p_2(t) + \cdots , \end{aligned}$$ 

                    (23)
                


                               $$\begin{aligned} q(t) &= q_0 (t) + \varepsilon q_1(t) + \varepsilon^2 q_2(t) + \cdots , \end{aligned}$$ 

                    (24)
                


                               $$\begin{aligned} l(t) &= l_0 (t) + \varepsilon l_1(t) + \varepsilon^2 l_2(t) + \cdots \end{aligned}$$ 

                    (25)
                

 into Eqs. (10)–(12), and change the time scale by setting τ=εt. (Note that the p
                              
                      i
                    , q
                              
                      i
                     and l
                              
                      i
                     have nothing to do with their previous use in equilibria P
                              1,…,P
                              5.) The \(\mathcal{O}(\varepsilon^{0})\) problem is then simply the set of steady state equations for p
                              0, q
                              0, and l
                              0. Since we are expanding near the origin, we conclude p
                              0=q
                              0=l
                              0=0. The \(\mathcal{O}(\varepsilon)\) problem in time τ is given by 
 $$\begin{aligned} 0 &= q_1 \frac{c_8}{c_7}- p_1\frac{c_2}{c_3}, \\ 0 &= -c_4 q_1+(l_1 +p_1) \frac{c_2 c_4 c_7}{c_3 c_8}, \\ 0 &= l_1. \end{aligned}$$ 

 We thus find that the first two equations both give 
$$ q_1 = \frac{c_2 c_4 c_7}{c_3 c_8}p_1. $$

                    (26)
                

 The order ε
                              2 problem is 
 $$\begin{aligned} \frac {dp_1}{d\tau}&= q_1\bigl(N^{*}-p_1\bigr)+ \frac{c_8}{c_7}q_2-\frac{c_2 p_2-\frac {c_2}{c_3} p_1 q_1}{c_3}, \end{aligned}$$ 

                    (27)
                


                               $$\begin{aligned} \frac {dq_1}{d\tau}&= -c_4 q_2 + \frac{c_2 c_4 c_7}{c_3 c_8} (l_2 +p_2 -p_1), \end{aligned}$$ 

                    (28)
                


                               $$\begin{aligned} \frac {dl_1}{d\tau}&= 0. \end{aligned}$$ 

                    (29)
                

 Substituting Eq. (26) into the second Eq. (28), we can solve for q
                              2 and substitute into the first Eq. (27). The p
                              2 terms cancel, and we are left with 
$$ \frac {dp_1}{d\tau}= \frac{c_2 c_4 c_7}{c_3^3(c_8 + c_4 c_7)} \bigl( c_7\bigl(c_3^2 - c_2\bigr) p_1^2 + c_3^2 \bigl(c_7 N^* - c_8\bigr)p_1 + c_3^2l_2 \bigr). $$

                    (30)
                

 Together with the order ε
                              3 equation for l
                              2, 
$$ \frac {dl_2}{d\tau}= c_7l_2 \bigl(N^{*}-p_1\bigr), $$

                    (31)
                

 Eqs. (30) and (31) for p
                              1 and l
                              2 form a closed set of equations. This set of equations has three equilibria. First the origin, second, a pheromone-only steady state 
$$(\bar{p}_1, \bar{l}_2) = \biggl(\frac{c_3^2 (c_8 - c_7 N^{*})}{c_7(c_2 - c_3^2)}, 0 \biggr), $$

 which is biologically relevant when \(c_{2} > c_{3}^{2}\), which we assumed at the start of this section, and when \(N^{*} < \frac{c_{8}}{c_{7}} = \beta\). This steady state is the part of the family of P
                              23 equilibria close to the origin, and thus remains in this scaling. Third, we find a mixed steady state, 
$$(\hat{p}_1, \hat{l}_2) = \biggl(N^{*}, N^{*} \biggl(1- \frac{ c_2 c_7}{c_3^2 c_8}N^{*} \biggr) \biggr). $$

 This steady state exists for \(N^{*} \in[0,\frac{c_{3}^{2}}{c_{2}} \beta]\). Note that \(\frac{c_{3}^{2}}{c_{2}} \beta< \beta\) since \(c_{3}^{2} < c_{2}\) by assumption.
How much of the dynamics of the full three-dimensional system can be recovered in this two-dimensional system? First, we can recover the Hopf bifurcation occurring between N
                              ∗=0 and \(N^{*} = \frac{c_{3}^{2}}{c_{2}} \beta\). The Jacobian at this mixed steady is 
$$J = \left ( \begin{array}{c@{\quad}c} \frac{c_2 c_4 c_7}{c_3^3 c_8 (c_4 c_7+c_8)} (c_7N^{*}(2c_2-c_3^2)-c_3^2 c_8) & \frac{c_2 c_4 c_7}{c_3(c_4 c_7+c_8)}\\ \frac{c_7 N^{*}(c_7 N^{*}c_2-c_3^2 c_8)}{c_3^2 c_8} & 0 \end{array} \right ). $$

 The conditions for a Hopf bifurcation are \(\operatorname{tr}J = 0\) and \(\operatorname{det}J > 0\). The value of N
                              ∗ at which the trace becomes zero is 
$$N^{*} = \beta\frac{c_3^2}{2c_2 - c_3^2}=\beta\frac{c_3^2}{c_2 + (c_2- c_3^2)} < \beta\frac{c_3^2}{c_2}. $$

 It is easy to check that the determinant remains positive at the above value of N
                              ∗.
The heteroclinic cycle does appear in this scaling. To find it, we study the 2D system more abstractly. Equations (30)–(31) have the form 
 $$\begin{aligned} \frac {dp}{dt} &=Ap(p-B) + Cl, \end{aligned}$$ 

                    (32)
                


                               $$\begin{aligned} \frac {dl}{dt} &= Dl\bigl(N^*-p\bigr), \end{aligned}$$ 

                    (33)
                

 for suitable positive constants A, B, C, and D. Whenever the pheromone-only steady state \((\bar{p},0)\) exists, there also exists an orbit connecting it with the origin, through the p-axis. We now show that for a particular choice of N
                              ∗ there also exists an orbit connecting the orbit with \((\bar{p},0)\) forward in time. For a particular value of B, this system has solutions symmetric about u=N, namely for B=2N
                              ∗: then the term Ap(p−2N
                              ∗) is symmetric about the p=N
                              ∗ line. For this particular choice of B, we can find a function which is conserved along orbits. Write 
$$\frac {dl}{dp} = \frac{D l(p)(N^{*}-p)}{A p (p-2 N^{*})+C l(p)}, $$

 and solve for l(p) (directly, using Maple) to find 
$$ M(p,l) := Dl^{2A/D} \biggl(\frac{1}{2} p\bigl(p-2N^{*}\bigr) + \frac{CDl}{2A + D} \biggr) = \text{constant}. $$

                    (34)
                

 The zero level set yields 
$$l=0,\qquad l = \frac{2A+D}{2CD} p\bigl(2N^{*}-p\bigr). $$

 The latter is a parabola connecting (p,l)=(0,0) to (p,l)=(2N,0). The two orbits connecting \((\bar{p}, 0)\) and the origin form a heteroclinic cycle. For level sets above zero, we find a set of nested periodic orbits centered on the mixed steady state \((\hat{p}_{1}, \hat{l}_{2})\); see Fig. 8. Finally, using the full equation for p
                              1 (30), note that B=2N
                              ∗ means that 
$$N^{*} = B/2 = N^{*}_{\text{Hopf}} = \beta\frac{c_3^2}{2c_2 - c_3^2}. $$

 Hence, the Hopf bifurcation occurs at the same value of N
                              ∗ as the heteroclinic orbit. 
Fig. 8[image: figure 8]
Example contours for the conserved quantity M(p,l)=constant given by (34). Parameters were A=2, B=4, C=2, D=2, N
                                          ∗=2. Contours are plotted for levels −10, 0, 10, 20, 100, 200, from outside to inside. The two parts of the level 0 contour together form a heteroclinic connection
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                           We can also show that N
                              ∗=B/2 is the only value of N
                              ∗ at which periodic orbits and the heteroclinic cycle exist. We treat the case B>2N
                              ∗; the argument for B<2N
                              ∗ is a straightforward extension.
Let us thus assume that B>2N
                              ∗. Local stability analysis shows that the mixed equilibrium is locally stable in this case. The result follows from the following monotonicity property. Let Q be any point on the l-isocline above the equilibrium: \(Q = (N^{*}, \bar{l})\). Consider the orbit with initial data Q. The forward orbit is described by the graph p=ϕ
                              +(l), the backward orbit by p=ϕ
                              −(l), at least until the orbits hit the l-isocline again. Note that \(\phi_{+}(l) > \phi_{\pm}(\bar{l}) = N^{*} > \phi_{-}(l)\) for \(l < \bar{l}\).
The flow lines are determined by 
$$ \frac {d\phi_{\pm}}{dl} = G\bigl(\phi_\pm(l),l \bigr), $$

                    (35)
                

 with 
$$G(p,l) = \frac{Ap(p-B) + Cl}{Dl(N^{*}-p)}. $$

 Now reflect the orbit p=ϕ
                              −(l) in the l-isocline: \(p=\phi^{*}_{-}(l) = 2N^{*} - \phi_{-}(l)\). Then 
$$ \frac {d\phi^{*}_-}{dl} = G^{*}\bigl(\phi^{*}_{-}(l),l\bigr), $$

                    (36)
                

 with 
$$G^{*}(p,l) = G\bigl(2N^{*} - p,l\bigr). $$

 Since B>2N
                              ∗, we infer that 
$$G^{*}(p,l) < G(p,l) \quad \text{for all } p<N^{*}. $$

 Hence, (35) and (36) now imply that \(\phi _{+}(l) < \phi_{-}^{*}(l)\) by usual ODE techniques. Using standard phase-plane arguments, one finds for example that no periodic orbit exists, and that the orbit forming the unstable manifold of the origin spirals towards the nontrivial equilibrium.
For B<2N
                              ∗, the origin remains unstable, as is now the nontrivial equilibrium. All orbits now tend to infinite p while l vanishes.
1.2 A.2 Unfolding the Orbit Structure: \(\hat{N} \lesssim N_{\max}\)
                           
We now consider the other extremal situation, where the Hopf bifurcation ceases to exist: \(\hat{N} = N_{\max}\) (see Fig. 6). We conjecture that the heteroclinic cycle remains as \(\hat{N}\) approaches N
                              max, but it is not to be expected that asymptotic analysis reveals this: the heteroclinic cycle consists of orbits connecting the origin and a steady state far removed from the origin. Expanding solutions around this second steady state, we will not be able to find those heteroclinic orbits. (In the first extremal case, the second steady state was situated close the origin, and the heteroclinic cycle was present in the asymptotic expansion.) Nevertheless, performing expansions still reveals much of the structure of solutions close to the point where \(\hat{N} = N_{\max}\), in particular the distance between N
                              
                      h
                     and N
                              max as ε→0.
One way to characterize \(\hat{N} = N_{\max}\) is by choosing \(c_{2} = c_{2}^{*}= \alpha^{2} \beta^{2}\), so that \(\hat{N} = N_{\max}= 2\beta- c_{3}/\alpha\). Performing an asymptotic expansion as in the first case is now more subtle. We introduce a small parameter ε by setting 
$$ c_2 = \alpha^2 \beta^2 (1-\varepsilon). $$

                    (37)
                

 Next, both \(\hat{N}\) and N
                              max will change when we vary ε, and the distance between these two points is of order ε
                              2. It is to be expected from (19) that for ε>0 small, the Hopf bifurcation appears at some value of N
                              
                      H
                     close to N
                              max, but it turns out that it occurs at a distance of order ε, not ε
                              2, as we will show later on. Hence, when performing the asymptotic expansion using N=2β−c
                              3/α+ε
                              2
                              N
                              ∗, we find in timescale τ=εt solutions which do not undergo any Hopf bifurcation.
The direct approach of studying the eigenvalues near \(\hat{N} = N_{\max}\) is more fruitful. Next to (37), we set 
$$N = 2\beta- \frac{c_3}{\alpha}+ \varepsilon N^{*}. $$

 We compute the Jacobian matrix of our original system of equations, and substitute the branch of mixed equilibria P
                              4, along which the Hopf bifurcation should occur. The resulting eigenvalue equation is of the form 
$$Q_0(\varepsilon) + Q_1(\varepsilon)\lambda+ Q_2(\varepsilon) \lambda^2 + \lambda^3=0, $$

 for suitable functions Q
                              0, Q
                              1, Q
                              2. In ε=0, there is a double root λ=0 and one negative root λ
                              1<0. Hence, we can write the above equation as 
$$\bigl(\lambda- \lambda_1(\varepsilon)\bigr) \bigl(R_0( \varepsilon) + R_1(\varepsilon) \lambda+ \lambda^2\bigr) = 0, $$

 where λ
                              1(0)<0, and R
                              0 and R
                              1 are suitable functions satisfying R
                              0(0)=R
                              1(0)=0. We are only interested in the case when \(R_{0} = A\varepsilon+ \mathcal{O}(\varepsilon^{2})\), with A>0, since we want to find complex eigenvalues. To lowest order then, the second factor is of the form λ
                              2+Bελ+Aε=0, from which we conclude that the imaginary part of these complex eigenvalues are of order \(\sqrt{\varepsilon}\), and the real part is of order ε. To find the Hopf bifurcation, we thus substitute \(\lambda= i \sqrt{\varepsilon}\mu \) into the eigenvalue equation, and separate imaginary and real parts. We find that μ and N
                              ∗ must satisfy the following two linear equations: 
 $$\begin{aligned} S_1 \mu^2 + S_2 N^{*} &= 0, \end{aligned}$$ 

                    (38)
                


                               $$\begin{aligned} \mu^2 + S_3 N^2 &= S_4, \end{aligned}$$ 

                    (39)
                

 where 
 $$\begin{aligned} S_1 &= c_3 - 2\alpha\beta- c_4, \\ S_2 &= c_4c_7(c_3 - \alpha \beta), \\ S_3 &= \frac{c_7}{c_4} \biggl(\frac{c_3}{c_4} - 1 + \frac{c_3}{\alpha \beta} \biggr) - \frac{c_3}{\beta} - \frac{c_8 c_6}{c_4^2}, \\ S_4 &= \frac{c_3 - \alpha\beta}{c_4}. \end{aligned}$$ 

 Inequality (6) and the specific choice of c
                              2 may be combined to infer that c
                              3<(1−ε)αβ. Therefore, S
                              1, S
                              2, and S
                              4 are all negative.
Writing out the α’s and β’s in S
                              3, and then collecting terms to produce a polynomial in c
                              7, we get 
$$ S_3 = \frac{c_4^2 c_3}{c_6 c_8} c_7^2 + \biggl(-c_4-\frac{c_4 c_3}{c_8}+ c_3 \biggr) c_7-\frac{c_6c_8}{c_4}. $$

                    (40)
                

 The restriction 0<c
                              3<αβ can be rewritten as 0<c
                              7<c
                              6
                              c
                              8/c
                              3
                              c
                              4. On this interval S
                              3<0 as a function of c
                              7, since it is negative in both end points of the interval.
Finally, directly solving the two linear equations yields 
$$\mu^2 = \frac{S_2S_4}{S_1S_3 - S_2} > 0,\qquad N^{*} = -\frac{S_1 S_4}{S_1S_3 - S_2} = - \frac{S_1}{S_2} \mu^2 < 0. $$

 This completes the proof that a Hopf bifurcation occurs at a distance of order ε from N
                              max. (It was to be expected that N
                              ∗<0, since we expect the value of N to be less than N
                              max, and we have set N=N
                              max+εN
                              ∗.)
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