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                    Abstract
The chemical master equation (CME) represents the accepted stochastic description of chemical reaction kinetics in mesoscopic systems. As its exact solution—which gives the corresponding probability density function—is possible only in very simple cases; there is a clear need for approximation techniques. Here, we propose a novel perturbative three-step approach, which draws heavily on graph theory: (i) we expand the eigenvalues of the transition state matrix in the CME as a series in a nondimensional parameter that depends on the reaction rates and the reaction volume; (ii) we derive an analogous series for the corresponding eigenvectors via a graph-based algorithm; (iii) we combine the resulting expansions into an approximate solution to the CME. We illustrate our approach by applying it to a reversible dimerization reaction; then we formulate a set of conditions, which ensure its applicability to more general reaction networks, and we verify those conditions for two common catalytic mechanisms. Comparing our results with the linear-noise approximation (LNA), we find that our methodology is consistently more accurate for sufficiently small values of the nondimensional parameter. This superior accuracy is particularly evident in scenarios characterized by small molecule numbers, which are typical of conditions inside biological cells.
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Appendices
Appendix A: Eigenvector Formulae
In this appendix, we give complete formulae for the eigenvectors of the transition matrix M for any value of n=0,1,…,Ωα, with Ωα>1; in particular, we include the special cases where n=0,1,Ωα, which were omitted in Sect. 4.1. Then, we quote the corresponding (less compact) expressions that are obtained by retaining only asymptotically relevant terms, i.e., terms up to and including O(K), in these formulae. (We recall that, given an eigenvalue λ
                           
                    n
                   of M, the nth column A
                           
                    n
                  [i,n] of the adjoint matrix A
                           
                    n
                   yields an associated eigenvector, which is then normalized to \(\widetilde{\mathbf {A}}_{n}[i,n]\); cf. again Sect. 4.1.) 
	
                      1<n<Ωα: 
$$ \widetilde{\mathbf {A}}_n[i,n] = \left \{ \begin{array}{l@{\quad}l} {-K f(n)(\lambda ^{^+}_{n-2}-\lambda_n)(\lambda ^{^-}_{n+1}-\lambda_n) \prod_{r=n+2}^{\varOmega \alpha } (\lambda_r-\lambda_n)} &\mbox{if}\ i=n-1; \\ (\lambda ^{^+}_{n-1}-\lambda_n)(\lambda ^{^-}_{n+1}-\lambda_n)(\lambda_{n-2}-\lambda_n)\\ \quad {}\times \prod_{{r=n+2 }}^{\varOmega \alpha } (\lambda_r-\lambda_n) & \mbox{if}\ i=n; \\ (-1)^{i-n}(\lambda ^{^+}_{n-1} -\lambda_n)(\lambda ^{^-}_{i+1} -\lambda_n) (\lambda_{n-2} -\lambda_n)\\ \quad {}\times \prod_{{r=i+2 }}^{\varOmega \alpha } (\lambda_r -\lambda_n) \prod_{r=n}^{i-1} g(r) & \mbox{if}\ n < i < \varOmega \alpha ; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (24)
                


                                 
                    
	
                      
                                    n=0: 
$$ \widetilde{\mathbf {A}}_n[i,0]= \left \{ \begin{array}{l@{\quad}l} {(\lambda ^{^-}_1-\lambda_0)\prod_{{r=2 }}^{\varOmega \alpha } (\lambda_r-\lambda_0)} & \mbox{if}\ i=0; \\ {(-1)^{i}(\lambda ^{^-}_{i+1}-\lambda_0) \prod_{{r=i+2 }}^{\varOmega \alpha } (\lambda_r-\lambda_0)\prod_{r=0}^{i-1}g(r)} & \mbox{if}\ 0<i<\varOmega \alpha ; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (25)
                


                                 
                    
	
                      
                                    n=1: 
$$ \widetilde{\mathbf {A}}_n[i,1]= \left \{ \begin{array}{l@{\quad}l} {-2K(\lambda ^{^-}_2-\lambda_1) \prod_{r=3}^{\varOmega \alpha } (\lambda_r-\lambda_1)} & \mbox{if}\ i=0; \\ {(\lambda ^{^+}_0-\lambda_1)(\lambda ^{^-}_2-\lambda_1) \prod_{{r=3 }}^{\varOmega \alpha } (\lambda_r-\lambda_1)} & \mbox{if}\ i=1; \\ {(-1)^{i-1}(\lambda ^{^+}_0-\lambda_1)(\lambda ^{^-}_{i+1}-\lambda_1) \prod_{{r=i+2 }}^{\varOmega \alpha } (\lambda_r-\lambda_1)} & \mbox{if}\ 1<i<\varOmega \alpha ; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (26)
                


                                 
                    
	
                      
                                    n=Ωα: 
$$ \widetilde{\mathbf {A}}_n[i,\varOmega \alpha ]= \left \{ \begin{array}{l@{\quad}l} {-K f(\varOmega \alpha )(\lambda ^{^+}_{\varOmega \alpha -2}-\lambda_{\varOmega \alpha })} & \mbox{if}\ i=\varOmega \alpha -1; \\ {(\lambda ^{^+}_{\varOmega \alpha -1}-\lambda_{\varOmega \alpha })(\lambda_{\varOmega \alpha -2}-\lambda_{\varOmega \alpha })} & \mbox {if}\ i=\varOmega \alpha ; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (27)
                


                                 
                    

 Considering only the relevant terms in the above formulae, we find 
	
                      1<n≤Ωα: 
$$ \widetilde{\mathbf {A}}_n[i,n] = \left \{ \begin{array}{l@{\quad}l} {2 K f(n)(\varOmega \alpha -n)!} & \mbox{if}\ i= n - 1; \\ 2(\varOmega \alpha - n)! \{ 1 - 2 K [2(\varOmega \alpha )^2 + (4 n^2 - 6n+6)\varOmega \alpha \\ \quad {}- 4n^3 + 6n^2 - 15n+ 10 ] \} & \mbox{if}\ i = n; \\ (-1)^{i-n}\binom{\varOmega \alpha -n}{\varOmega \alpha -i}(\varOmega \alpha -n)! \{ 2-K [8(\varOmega \alpha )^2\\ \quad {}+4\varOmega \alpha (2n^2-3n-2i+6 + \frac{n(2n-1)}{i-n+1} ) \\ \quad {}- 4 ( 2n^3 -n^2-2(i-8)n-2i-10\\ \quad {}+\frac{n(2n-1)(n-1)}{i-n+1} ) ] \} & \mbox{if}\ i>n; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (28)
                


                                 
                    
	
                      
                                    n=0: 
$$ \widetilde{\mathbf {A}}_n[i,0] = \left \{ \begin{array}{l@{\quad}l} {(\varOmega \alpha )!-4K\varOmega \alpha (\varOmega \alpha -1)(\varOmega \alpha )!} & \mbox{if}\ i=0; \\ {(-1)^i\binom{\varOmega \alpha }{\varOmega \alpha -i}(\varOmega \alpha )! [1-4K(\varOmega \alpha -1)(\varOmega \alpha -i) ]} & \mbox{if}\ i>0; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (29)
                


                                 
                    
	
                      
                                    n=1: 
$$ \widetilde{\mathbf {A}}_n[i,1] = \left \{ \begin{array}{l@{\quad}l} {-2K(\varOmega \alpha -1)!} & \mbox{if}\ i=0; \\ -(\varOmega \alpha -1)!+4K(\varOmega \alpha -1)(\varOmega \alpha +1)(\varOmega \alpha -1)! &\mbox{if}\ i=1; \\ (-1)^i\binom{\varOmega \alpha - 1}{\varOmega \alpha - i} (\varOmega \alpha - 1)! \{ 1 - K [4(\varOmega \alpha )^2\\ \quad {} - 4 i\varOmega \alpha +2\frac{i+1}{i}\varOmega \alpha +8i - 12 ] \} & \mbox{if}\ i > 1; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (30)
                


                                 
                    


                        
                  Remark 14

                  We note that the particular case where n=Ωα, as given in Eq. (27), is contained in the more general Eq. (28), after simplification of the latter.

                Similarly, we obtain the following formulae for the nth row of the adjoint B
                           
                    n
                   of M
                           T−λ
                           
                    n
                  
                           I introduced in Sect. 4.2 or, rather, for the normalized version \(\widetilde{\mathbf {B}}_{n}[n,i]\); here, we again assume n=0,1,…,Ωα, with Ωα>1. 
	
                      1≤n<Ωα−1: 
$$ \widetilde{\mathbf {B}}_n[n,i] = \left \{ \begin{array}{l@{\quad}l} {-K f(n+1)(\lambda ^{^+}_{n-1}-\lambda_n)(\lambda ^{^-}_{n+2}-\lambda_n)\prod_{r=0}^{n-2} (\lambda_r-\lambda_n)} & \mbox{if}\ i=n+1; \\ {(\lambda ^{^+}_{n-1}-\lambda_n)(\lambda ^{^-}_{n+1}-\lambda_n)(\lambda_{n+2}-\lambda_n) \prod_{r=0}^{n-2}(\lambda_r-\lambda_n)} & \mbox{if}\ i=n; \\ {(-1)^{n-i}(\lambda ^{^+}_{i-1} - \lambda_n)(\lambda ^{^-}_{n+1} - \lambda_n) (\lambda_{n+2} - \lambda_n)} \\ \quad {}\times {\prod_{r=0}^{i-2}(\lambda_r-\lambda_n)\prod_{r=i}^{n-1}g(r)} & \mbox{if}\ 0<i<n; \\ {(-1)^n(\lambda ^{^-}_{n+1}-\lambda_n)(\lambda_{n+2}-\lambda_n)\prod_{r=i}^{n-1} g(r)} & \mbox{if}\ i=0; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (31)
                


                                 
                    
	
                      
                                    n=0: 
$$ \widetilde{\mathbf {B}}_n[n,i] = \left \{ \begin{array}{l@{\quad}l} {-2K(\lambda ^{^-}_2-\lambda_0)} & \mbox{if}\ i=1; \\ {(\lambda ^{^-}_1-\lambda_0)(\lambda_2-\lambda_0)} & \mbox{if}\ i=0; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (32)
                


                                 
                    
	
                      
                                    n=Ωα−1: 
$$ \widetilde{\mathbf {B}}_n[\varOmega \alpha - 1,i] = \left \{ \begin{array}{l@{\quad}l} -Kf(\varOmega \alpha )(\lambda ^{^+}_{\varOmega \alpha -2}-\lambda_{\varOmega \alpha -1})\\ \quad {}\times \prod_{r=0}^{\varOmega \alpha -3} (\lambda_r-\lambda_{\varOmega \alpha -1}) &\mbox{if}\ i=\varOmega \alpha ; \\ (\lambda ^{^+}_{\varOmega \alpha -2}-\lambda_{\varOmega \alpha -1})(\lambda ^{^-}_{\varOmega \alpha }-\lambda_{\varOmega \alpha -1})\\ \quad {}\times \prod_{r=0}^{\varOmega \alpha -3} (\lambda_r-\lambda_{\varOmega \alpha -1}) & \mbox{if}\ i=\varOmega \alpha -1; \\ (-1)^{\varOmega \alpha -1-i}(\lambda ^{^+}_{i-1} - \lambda_{\varOmega \alpha -1})\\ \quad {}\times (\lambda ^{^-}_{\varOmega \alpha } - \lambda_{\varOmega \alpha -1}) \prod_{r=0}^{i-2}\\ \quad {}\times (\lambda_r-\lambda_{\varOmega \alpha -1})\prod_{r=i}^{\varOmega \alpha -2}g(r) & \mbox{if}\ 0 <i< \varOmega \alpha - 1; \\ {(-1)^{\varOmega \alpha -1}(\lambda ^{^-}_{\varOmega \alpha }-\lambda_{\varOmega \alpha -1})\prod_{r=i}^{\varOmega \alpha -2}g(r)} & \mbox{if}\ i=0; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (33)
                


                                 
                    
	
                      
                                    n=Ωα: 
$$ \widetilde{\mathbf {B}}_n[\varOmega \alpha ,i] =1. $$

                    (34)
                


                                 
                    

 In particular, the expression for n=Ωα is obtained by observing that none of the remaining expressions for \(\widetilde{\mathbf {B}}_{n}[n,i]\) equals the vector [image: ] (or a multiple thereof). Hence, by Remark 8, we may take the last row to equal [image: ], after normalization.
In sum, considering only asymptotically relevant terms for Ωα>2, we have 
	
                      0≤n<Ωα−1: 
$$ \widetilde{\mathbf {B}}_n[n,i] = \left \{ \begin{array}{l@{\quad}l} {4K(-1)^{n-1}(2n+1)(n+1)!} & \mbox{if}\ i=n+ 1; \\ (-1)^n n! \{2-4K [(4n^2+6n+9)\varOmega \alpha \\ \quad {}-(4n^3+6n^2+17n+14) ] \} & \mbox{if}\ i=n; \\ (-1)^{n-1}\frac{n!}{(n-i+1)!}\frac{(\varOmega \alpha -i)!}{(\varOmega \alpha -n)!} \{ 2(i-n-1)\\ \quad {}+4K [ (2n^3-(2i-5)n^2+(i+12)n\\ \quad {}-2 i^2-6 i+9 )\varOmega \alpha -2 n^4 \\ \quad {}+(2i-5)n^3-(i+20)n^2\\ \quad {}+(2 i^2+14i-31)n+14(i-1) ] \} & \mbox{if}\ 1 \leq i < n; \\ {2(-1)^n\frac{(\varOmega \alpha )!}{(\varOmega \alpha -n)!} \{1-2K [(2n^2+3n+9)\varOmega \alpha } \\ \quad {}-(2n^3+3n^2+17n+14) ] \} & \mbox{if }i=0; \\ o(K)& \mbox{otherwise}. \end{array} \right . $$

                    (35)
                


                                 
                    
	
                      
                                    n=Ωα−1: 
$$ \widetilde{\mathbf {B}}_n[\varOmega \alpha -1,i] = \left \{ \begin{array}{l@{\quad}l} {2K(-1)^{\varOmega \alpha -2}(2\varOmega \alpha -1)(\varOmega \alpha )!} & \mbox{if}\ i=\varOmega \alpha ; \\ (-1)^{\varOmega \alpha -1}(\varOmega \alpha -1)!\\ \quad {}\times [1-4K(2\varOmega \alpha -1)(\varOmega \alpha -1) ] & \mbox{if}\ i=\varOmega \alpha -1; \\ (-1)^{\varOmega \alpha -1}(\varOmega \alpha -1)!\\ \quad {}\times \{\varOmega \alpha -i-2 K [2(\varOmega \alpha )^3 \\ \quad {}-(2 i+5)(\varOmega \alpha )^2+3(3 i+1)\varOmega \alpha \\ \quad {}- 2i(i+2) ] \} & \mbox{if}\ 0<i<\varOmega \alpha -1; \\ {(-1)^{\varOmega \alpha -1}(\lambda ^{^-}_{\varOmega \alpha }-\lambda_{\varOmega \alpha -1})\prod_{r=i}^{\varOmega \alpha -2}g(r)} & \mbox{if}\ i=0; \\ o(K) & \mbox{otherwise}. \end{array} \right . $$

                    (36)
                


                                 
                    
	
                      
                                    n=Ωα: 
$$ \widetilde{\mathbf {B}}_n[\varOmega \alpha ,i] =1. $$

                    (37)
                


                                 
                    


                        
                  Remark 15

                  The particular case of n=0 in Eq. (32) is contained in the more general Eq. (35); cf. also Remark 14 above.

                Finally, we note that the restriction to Ωα>2 is necessary to ensure that the products in Eq. (33) remain well-defined. When Ωα=2, particular care has to be taken when evaluating the latter; still, one can show that, while \(\widetilde{\mathbf {B}}_{1}[1,1]=-1+12K\) in that case, the above formulae for the remaining rows \(\widetilde{\mathbf {B}}_{n}[n,i]\) continue to be valid.
Appendix B: Derivation of LNA
In Sect. 5.1, we compared the error incurred by LNA with the accuracy that is achieved by our perturbative approach. In this Appendix, we present a concise derivation of LNA for the dimerization reaction on which our comparison was based.
Let ϕ(t) and ψ(t) represent the concentrations of molecules of A and B, respectively, at time t. Then the conventional rate equations (Klipp et al. 2009) for the reaction scheme \(A+ A\displaystyle {\mathop {\rightleftharpoons }_{k_2}^{k_1}}B\) are given by 
[image: ]

 Assuming that ϕ(0)=0, i.e., that the initial concentration of A is zero, we find 
[image: ]

                    (38)
                


                           [image: ]

                    (39)
                

 for the time-dependent solution of this pair of coupled differential equations, where 
[image: ]

 in particular, the conservation law in (39) implies ψ(0)=2α.
Now, the CME for the dimerization reaction, Eq. (2), can be rewritten as 
[image: ]

                    (40)
                

 where \(E^{i}_{n_{j}}\) is the step operator defined by 
[image: ]

 The principal idea underlying LNA is to make the following change of variables (Grima 2010b) in (40): 
[image: ]

 (Typically, one assumes deterministic initial conditions, i.e., one sets ξ(0)=0 and η(0)=0.) The above ansatz has the effect of transforming all functions of n
                           
                    A
                   and n
                           
                    B
                   into functions of the continuous random variables ξ and η, leading to a series expansion of Eq. (40) in powers of Ω
                           1/2. The derivation is carried out for general chemical reaction networks in Grima (2010b); we simply quote the result here, as applied to dimerization: 
[image: ]

                    (41)
                

 where \(\varPi:=\varPi(\xi,t):=\mathbb {P}(n_{A},t)\) denotes the reduced distribution, rewritten in terms of n
                           
                    A
                   only. (We note that we have also applied the conservation law from Eq. (39) in (41) to eliminate η, as ξ+2η=0, as well as that the above initial conditions correspond to assuming \(\mathbb {P}(n_{A}=0,t=0)=1\); recall Sect. 5.) The above equation is the Fokker–Planck approximation to the CME; as its drift and diffusion coefficients are linear in ξ, it admits a Gaussian solution at all times.
Multiplying Eq. (41) by ξ and integrating, we find a differential equation for the mean 〈ξ〉, 
[image: ]

 which, due to the deterministic initial condition ξ(0)=0, implies 〈ξ〉=0 for all times. Equivalently, we have 
[image: ]

 Hence, the mean concentrations obtained from LNA are identical to those obtained from the conventional rate equations.
The advantage of LNA lies in the resulting simple expression for the second moment 〈ξ
                           2〉 of the distribution: multiplying Eq. (41) by ξ
                           2 and integrating with respect to ξ, we find the ordinary differential equation 
[image: ]

 which is known as the Lyapunov equation. In particular, the variance in the number of monomer molecules is then given by \(\langle n_{A}^{2}\rangle- \langle n_{A}\rangle^{2}=\varOmega(\langle\xi^{2}\rangle-\langle\xi\rangle ^{2})=\varOmega\langle\xi^{2}\rangle\), which implies 
[image: ]

 for the (continuous) probability density function that is obtained from LNA. Finally, to determine a corresponding discrete probability distribution for a given state n
                           
                    A
                  , we need to integrate p over a neighborhood of width 1 around that state: 
[image: ]

                    (42)
                


                        Appendix C: Additional Examples
In this Appendix, we present two additional examples to which the graph-based approach developed in this article can be applied. Given the motivational character of the following discussion, we omit much of the detail; rather, our intention is to show that conditions (A) through (D) imposed in Sect. 6 can be verified in a straightforward fashion.
3.1 C.1 Cooperative Catalysis: Case I
We first consider the catalytic mechanism that is described by Fall et al. (2002) 
[image: ]

                    (43)
                

 here, S, E, and P are substrate, (free) enzyme, and product, respectively, while C
                              0 and C
                              1 denote the two intermediate complexes.
As there is no input of molecules into the above network, condition (A) is trivially satisfied.
Next, dividing the CME that corresponds to the reaction scheme in (43) by k
                              2, rescaling time, and abusing notation to denote the new nondimensional time by t, as before, we obtain 
[image: ]

                    (44)
                

 for \(K:=\frac{k_{1}}{k_{2}\varOmega}\), where \(E_{n_{j}}^{i}\) is the step operator defined in Appendix B. Thus, condition (B) holds in the limit as K→0.
The “fast” transition matrix M
                              0, i.e., the matrix corresponding to the “fast” subsystem 
[image: ]

 in the reaction scheme defined by (43), is lower triangular, since the associated graph is acyclic; hence, condition (C) is satisfied.
Finally, we need to show that condition (D) is met. Each reversible reaction in the scheme in (43) generates cycles of any even length 2d and weight Θ(K
                              d) (as long as they are compatible with the initial condition), since for each “fast” reaction, the reverse reaction is “slow,” and vice versa. Hence, the weight of cycles of length two is Θ(K), whereas it is o(K) otherwise. It only remains to prove that there can be no other cycles, i.e., cycles that involve one of the irreversible reactions. Now, each reaction R in the system is associated to a vector v
                              
                      R
                    , which is given by the negative of the difference between a given state and the state of the system after R has occurred. Clearly, the corresponding reverse reaction −R satisfies v
                              −R
                              =−v
                              
                      R
                    . In our case, these vectors, arranged in columns in a stoichiometric matrix and excluding reverse reactions, are given by 
[image: ]

                    (45)
                

 (Here, the entries in each column correspond to the number of molecules of substrate, enzyme, complexes 0 and 1, and product, in that order.) A necessary condition for the existence of a cycle is for a linear combination of the columns of the above matrix to be zero. However, since the nullspace of (45) is generated by the vector (1,−1,−1,1), any such cycle would have to contain at least one of the reactions P+E⟶C
                              0 or P+C
                              0⟶C
                              1; as neither of the two occurs in (43), we have verified (D).

                    Remark 16

                    We note that we implicitly assume \(\frac{k_{4}}{k_{1}}\) to be constant as K→0 in (44), which imposes a direction in the parameter plane \((K,K\frac{k_{4}}{k_{1}})\). As that limit can be realized by fixing the rate constants in the reaction and by increasing the volume Ω, the direction taken is mathematically justified. (In practice, we require k
                                 1≈k
                                 4, k
                                 2≈k
                                 3≈k
                                 5≈k
                                 6, and \(\varOmega\gg\frac{k_{1}}{k_{2}}\).)

                  3.2 C.2 Cooperative Catalysis: Case II
In general, it may be necessary to study the reaction scheme in (43) in the limit as certain rate constants go either to zero or to infinity, thus specifying directions in the parameter space; one such limit, with \(\frac{k_{4}}{k_{1}}\) constant, was studied in the previous subsection. A potential further candidate that has been considered in the literature—albeit in the context of the derivation of the Hill equation via the deterministic rate equations—is defined by 
[image: ]

                    (46)
                


                              [image: ]

                    (47)
                


                              [image: ]

                    (48)
                

 as discussed for instance in Fall et al. (2002); here, \(n_{T}=n+E+n_{C_{0}}+n_{C_{1}}\) denotes the total number of enzyme molecules that is present in the system.
We begin by noting that, obviously, condition (A) remains true, as shown in the previous subsection.
Next, we observe that the limits in Eqs. (46) and (47) can be achieved, for instance, if one assumes that k
                              2 and k
                              4 tend to infinity, while all other rate constants in the system and the reaction volume Ω remain fixed. (We remark that the left-hand sides in these equations correspond to the Michaelis–Menten constants for the first and second reactions in (43), respectively.) The direction thus imposed in Eq. (48) can then be written as 
[image: ]

 Dividing the CME corresponding to (43) by k
                              2, rescaling time accordingly, and defining \(K:=\frac{1}{\varOmega k_{2}}\), we obtain 
[image: ]

 where \(Q:=\frac{k_{5}+k_{6}}{K^{2}_{m} k_{1}}\) denotes a new parameter. Clearly, condition (B) is satisfied, since K→0 by definition.
To verify condition (C), we observe that the “fast” system 
[image: ]

 is acyclic. In fact, all states that are reachable from any fixed state n are of the form n+β(1,1,−1,0,0)+γ(−1,0,−1,1,0), for some \(\beta,\gamma\in\mathbb{N}\). Hence, no cycles can exist due to the linear independence of the vectors (1,1,−1,0,0) and (−1,0,−1,1,0).
Finally, it is easy to verify that condition (D) still holds, by the same argument as above.
3.3 C.3 Push-Pull Mechanism
As our second example, we consider the reaction scheme 
[image: ]

 which is known as the push-pull mechanism (Tănase-Nicola et al. 2006). (Here, E
                              
                      a
                     and E
                              
                      d
                     denote free enzyme, with W and X the corresponding substrates and C
                              
                      a
                     and C
                              
                      d
                     the resulting complexes, respectively.) We study the parameter regime where \(\frac{k_{1}}{\varOmega}\) and \(\frac{k_{4}}{\varOmega}\) tend to infinity in such a manner that the ratio \(k:=\frac{k_{1}}{k_{4}}\) remains constant. Magnitudes of rate constants that are well-suited to that regime are common in prokaryotic and eukaryotic cells (van Albada and ten Wolde 2007).
As usual, the validity of condition (A) is guaranteed by the absence of molecule input into the network.
A nondimensionalization that satisfies condition (C) is obtained by dividing the corresponding CME by \(\frac{k_{4}}{\varOmega}\), rescaling time, and by defining the small parameter \(K:=\varOmega\frac{k_{2}}{k_{4}}\), which ensures that condition (B) is met. The resulting nondimensional equation is given by 
[image: ]


                           As in the previous example, the weight of cycles of length 2d that are generated by one of the reversible reactions in the above system is Θ(K
                              d). The associated stoichiometric matrix is given by 
[image: ]

 its nullspace is spanned by the vector (1,1,1,1). The corresponding cycle is realized by the following set of reactions: 
[image: ]

 the weight of which is Θ(K
                              2). Other cycles could be obtained by permuting the above set; moreover, repeating each reaction in that set any given number of times in any order gives another cycle. Since, however, the weight of the resulting cycles is always o(K), it follows that condition (D) is also satisfied.
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