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About 40 years ago, seminal work by S. Kauffman (1969) and R. Thomas (1973)
paved the way to the establishment of a coarse-grained, “logical” modelling of gene
regulatory networks. This gave rise to an increasingly active field of research, which
ranges from theoretical studies to models of networks controlling a variety of cellular
processes (Bornholdt 2008; Glass and Siegelmann 2010). Briefly, in these models,
genes (or regulatory components) are assigned discrete values that account for their
functional levels of expression (or activity). A regulatory function defines the evolu-
tion of the gene level, depending on the levels of its regulators. This abstracted rep-
resentation of molecular mechanisms is very convenient for handling large networks
for which precise kinetic data are lacking.

Within the logical framework, one can distinguish several approaches that differ
in the way of defining a model and its behaviour. In random Boolean networks, first
introduced by S. Kauffman, the components are randomly assigned a set of regula-
tors and a regulatory function that drives their evolution, depending on these regula-
tors (Kauffman 1969). In threshold Boolean networks, the function is derived from a
given regulatory structure as a sum of the input signals, possibly considering a thresh-
old (Bornholdt 2008; Li et al. 2004). In the generalised logical approach introduced
by R. Thomas, the logical functions are general, but are constrained by the regulatory
graph. Whenever necessary or useful, the formalism supports multi-valued variables
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(Thomas and D’ Ari 1990). More recently, logical interaction hypergraphs were pro-
posed as an alternate representation (Klamt et al. 2006). Referring to the different
approaches to define a model, it is worth noting that while a set of (Boolean) reg-
ulatory functions uniquely defines a regulatory graph, there may be several sets of
functions compatible with a regulatory structure (Remy and Ruet 2008). Finally, it is
worth mentioning attempts to overcome the determinism of regulatory functions in
Boolean networks and to cope with uncertainty (e.g. Shmulevich et al. 2002).

In these discrete systems, elementary events are defined by updates of gene lev-
els, governed by their regulatory functions. The dynamics of such systems are con-
veniently represented by state transition graphs (or diagrams). Diverse updating
schemes have been proposed, which have an impact on the structure and properties
of the resulting dynamics. The sole invariants are the stable states and the attracting
elementary cycles in which each transition involves a unique component updating.

In the synchronous scheme (Kauffman 1993), updates take place simultaneously,
assuming that all the response times associated with the updating component pro-
cesses are similar. The dynamics are thus deterministic, each state having a unique
successor (image). The state transition graph is composed of linear chains leading
to attractors that are defined by stable states or elementary cycles. Other determin-
istic schemes can be defined, ranging from the synchronous (parallel) update, to the
sequential update, in which components are successively updated following a given
order, or else block-sequential schemes that define blocks of components that are se-
quentially updated, while components are synchronously updated within the blocks
(e.g. Robert 1986; Demongeot et al. 2008).

The asynchronous updating as considered by R. Thomas decouples these up-
dates, assuming that delays associated with actual changes of component levels differ
(Thomas 1991). This turns the system non-deterministic: states may have several po-
tential successors and the structure of the state transition graph may be highly com-
plex. Alternatively, one can consider, for example, random asynchronous schemes
(Chaves et al. 2005; Stoll et al. 2012), time delays (Siebert and Bockmayr 2006) or
priority classes (Fauré et al. 2006).

A wide range of studies focus on the characterisation of the dynamics of generic
logical models under specific updating schemes and specific classes of regulatory
functions. These properties mainly relate to numbers of stable states, existence of
cyclical attractors and also to basins of attraction. Regulatory circuits are known to
play a crucial role in the dynamics of molecular networks (see Thieffry 2007 and
references therein). More specifically, positive circuits are required for multi-stability,
whereas stable oscillations originate from negative circuits. Hence, circuit analysis
provides a valuable approach to relate a model with its dynamical properties (number
and nature of its attractors).

A number of theoretical studies characterise the relationships between Boolean
and continuous models (Glass and Kauffman 1973; Wilds and Glass 2009; Wittmann
et al. 2009; Jamshidi et al. 2012). Indeed, while different mathematical frameworks
are considered to model molecular networks (de Jong 2002), it is important to under-
stand, for example, how properties of a given model translate to another framework.
Moreover, coarse-grained discrete models can be used as a first step towards more
quantitative, continuous models, which supposes a proper method for this conversion.
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In this context, piecewise linear differential models have gathered a particular interest
because of their proximity to logical models (e.g. Glass and Kauffman 1973; Snoussi
1989; Chaves et al. 2010). In particular, qualitative simulations of such models, using
constraints defined as inequalities between parameters, can also be represented by
state transition graphs (Edwards et al. 2001; De Jong et al. 2004). Finally, methods
are proposed to derive continuous models from Boolean ones (Wittmann et al. 2009;
Mendoza and Xenarios 2006).

In terms of applicability, logical modelling (including all variations mentioned
above) has been used to represent and analyse a wide range of molecular networks
involved in the control of cellular processes (differentiation, proliferation, apoptosis),
in different organisms, from Drosophila development (e.g. Albert and Othmer 2003;
Chaves et al. 2005; Gonzélez et al. 2006; Sanchez et al. 2008), to eukaryotic cell
cycle (see Fauré and Thieffry 2009 for a survey). Immune response has also been
tackled with logical modelling, from the early work of Kaufman et al. (1999), to more
recent modelling efforts to account for T cell activation, differentiation and survival
(e.g. Mendoza and Xenarios 2006; Saez-Rodriguez et al. 2007; Naldi et al. 2010;
Saadatpour et al. 2011).

This brief overview does not do justice to the many contributors to this field; it
only aims to illustrate the range of questions that have been addressed. The contribu-
tions to this special issue reflect the diversity of research studies related to the logical
modelling. Importantly, new methodological needs arise when dealing with biologi-
cal case studies, as illustrated by the last two articles.

The first three contributions relate to asynchronous logical models. We are for-
tunate to have a contribution from R. Thomas, who clarifies the role of the logical
parameters (i.e. the regulatory functions) in defining all the concurrent trajectories in
contrast to delay specifications that would select among these behaviours.

J-P. Comet et al. provide us with an updated discussion on the capacity of reg-
ulatory circuits in generating specific dynamical properties. Focussing on different
notions of circuit functionality, they revisit and clarify these key properties.

Next, Lorenz et al. aim at reducing the complexity of the analysis of large, asyn-
chronous state transition graphs by considering subgraphs derived from extremal
states. Moreover, the authors investigate an alternate reduction by considering multi-
valued models amenable to Boolean representation.

Goles et al. consider threshold Boolean networks and delineate a method to assess
the conservation of some properties of a model (in terms of attractors and their basins
of attraction) when varying the deterministic update schemes. To illustrate their ap-
proach, the authors rely on two published models of the yeast cell cycle.

Chaves et al. propose to use the parameters of their piecewise affine differential
model to define probabilities of transition in the directed graph representing the dy-
namics. This provides a valuable tool to further analyse the behaviour of the system
under study, focussing on reachability and existence of periodic orbits.

Large-scale, comprehensive networks of interest can be handled thanks to the
Boolean abstraction. With their comprehensive model of the influenza-host inter-
actions during infection, Madrahimov et al. demonstrate this capability. Here, the
Boolean model is synchronously updated and, following the approach introduced in
Helikar et al. (2008), simulation specification allows one to define for each external
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signal, the probability that its state is "ON’ at each time step. Then a series of simula-
tions is performed, leading to semi-quantitative representations of the activity levels
of some molecular species.

To properly account for lymphocyte populations, one has to adopt a more sophis-
ticated modelling approach as in Mendoza’s contribution, which presents an original
multilevel modelling of Th cell differentiation. This model takes into account both
intra-cellular molecular networks and cell interactions. First, the author relies on a
method previously presented in Mendoza and Xenarios (2006), which transforms a
Boolean model with specific regulatory functions (a node is activated whenever at
least one of its activators and none of its repressors are present) into a continuous
model. The whole model of a virtual culture is then defined by a hundred of instances
of the same cellular network (contained by each cell), together with pools of secreted
cytokines through which cells interact.
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