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Abstract Environmental heterogeneity, spatial connectivity, and movement of in-
dividuals play important roles in the spread of infectious diseases. To account for
environmental differences that impact disease transmission, the spatial region is di-
vided into patches according to risk of infection. A system of ordinary differential
equations modeling spatial spread of disease among multiple patches is used to for-
mulate two new stochastic models, a continuous-time Markov chain, and a system of
stochastic differential equations. An estimate for the probability of disease extinction
is computed by approximating the Markov chain model with a multitype branch-
ing process. Numerical examples illustrate some differences between the stochastic
models and the deterministic model, important for prevention of disease outbreaks
that depend on the location of infectious individuals, the risk of infection, and the
movement of individuals.

Keywords Multiple patches · Infectious diseases · Multitype branching process ·
Markov chain

1 Introduction

With the expansion of global and regional transportation networks, infectious dis-
eases in humans or domestic and wild animals, such as influenza, tuberculosis, SARS,
malaria, cholera, and foot-and-mouth disease can be more easily transmitted from re-
gion to region (Tatem et al. 2006). Factors such as spatial connectivity, environmental
conditions, and the large-scale movement of individuals can significantly affect the
likelihood that a disease will persist in a given region. For instance, disease may be
absent from rural areas unless infectious individuals from urban centers travel to these
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more remote regions. Alternatively, the reverse may be the case where the disease is
present in rural areas and is spread to urban areas (Scoglio et al. 2010). Similarly,
the spread of disease can occur at an accelerated rate in social or environmental
“hotspots” such as airports, schools, or common water sources (Arino et al. 2012;
Benavides et al. 2012; Khan et al. 2009). Thus, it is important to account for factors
such as large-scale movements and environmental heterogeneity in epidemic models.

Most studies regarding the role of movement on disease dynamics have em-
phasized either a deterministic metapopulation approach (e.g., Allen et al. 2007;
Arino and van den Driessche 2003; Arino et al. 2005, 2007; Brauer and van den
Driessche 2001; McCormack and Allen 2007; Salmani and van den Driessche 2006;
Wang and Mulone 2003; Wang and Zhao 2004) or a stochastic multi-group approach
(e.g., Ball 1983, 1991; Ball and Clancy 1993, 1995; Clancy 1994, 1996; Keeling et al.
2001; Neal 2012). Additional epidemic models which include movement of hosts
have been developed for particular diseases such as influenza (Hsieh et al. 2007;
Rvachev and Longini 1985), tuberculosis (Castillo-Chavez et al. 1998), foot-and-
mouth disease (Keeling et al. 2001), and malaria (Gao and Ruan 2012). Many of
these models subdivide a spatial region into multiple regions or patches to account
for differences in the risk for infection.

In the deterministic setting, patch dynamics are frequently modeled by a system
of ordinary differential equations (ODEs) such as Susceptible–Infectious–Recovered
(SIR). Often the deterministic models concentrate on asymptotic dynamics of the
disease-free or endemic equilibria (e.g., Allen et al. 2007; Arino and van den Driess-
che 2003; Arino et al. 2005; Brauer and van den Driessche 2001; McCormack and
Allen 2007; Wang and Mulone 2003; Wang and Zhao 2004). Model behavior with
host movement can become quite complicated after an outbreak has occurred. For ex-
ample, in an SEIRS model (E = exposed) with constant immigration and death rates,
it is shown that as travel rates increase, a stable endemic state may switch to a stable
disease-free equilibrium (Salmani and van den Driessche 2006). In another deter-
ministic Susceptible–Infectious–Susceptible (SIS) model with a constant population
size, if infectious individuals move between the patches and the rate of susceptible
movement approaches zero, contrary to what is expected, eventually the disease is
eliminated from the population (Allen et al. 2007). Deterministic models have ex-
amined the impact of movement restrictions on disease control. Conducting border
checks, restricting movement of infectious individuals and restricting movement to
and from high-risk patches where disease is more prevalent results in an effective
control (Arino et al. 2007). In the case of influenza, Hsieh et al. (2007) also showed
that restricting movement of infectious individuals from low- to high-risk patches is
an effective control measure. However, banning all travel of infectious individuals
from high- to low-risk patches could result in the low-risk patch becoming disease-
free, while the high-risk patch has an even higher disease prevalence (Hsieh et al.
2007). Similarly, Ruan et al. (2006) showed that the spread of SARS can be con-
tained by implementing border screening for infectious individuals. But screening at
the borders may only be effective in identifying individuals exhibiting symptoms and
movement of exposed individuals may contribute to the spread of disease (Gao and
Ruan 2012).

In the stochastic setting, models generally take the form of a continuous-time
Markov chain (CTMC) model with movement modeled either by a contact distri-
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bution or by transition rates between groups (Ball 1983, 1991; Ball and Clancy 1993,
1995; Clancy 1994, 1996; Neal 2012). In some cases, the general stochastic pro-
cess can be approximated by a branching process or by an underlying ODE model
when the population size is large (Ball 1991; Clancy 1994, 1996). In these cases, a
stochastic threshold for disease extinction is obtained but the probability of disease
extinction is generally not calculated. The stochastic models have also shown that
the total size of the epidemic depends on the speed of movement and total size in-
creases with movement of infectious individuals (e.g., Clancy 1994). Previous studies
focused on deterministic models in which the probability of disease extinction cannot
be determined, or on stochastic models in which the probability of disease extinction
was not calculated.

Our goals in this investigation are to extend some of the work on deterministic
multipatch models to closely related stochastic multipatch models to account for the
variability in the transmission, recovery, and movement behavior at the initiation of
an outbreak. Our approach differs from other stochastic multigroup models in that
we begin from the deterministic setting and formulate stochastic multipatch models
based on the assumptions of the ODE model. The stochastic multipatch models pro-
vide additional information about disease dynamics at the initiation of an outbreak
and during an outbreak that cannot be obtained from the deterministic models. The
stochastic models applied in this investigation are continuous-time Markov chains
(CTMCs) and stochastic differential equations (SDEs). A multitype branching pro-
cess approximation of the nonlinear CTMC model is used to estimate the probability
of disease extinction. We investigate the risk of infection in a patch and the location of
an outbreak on the probability of disease extinction. Our stochastic results illustrate
that the location of the initial infectious individuals, whether in a high-risk or low-risk
area, has a significant impact on the probability of an outbreak. Our stochastic results
confirm that at the initiation of an outbreak, directing the movement of infectious in-
dividuals into low-risk areas is an effective disease control strategy, while directing
the movement of susceptible individuals does not impact the probability of disease
extinction.

In the next section, a multipatch ODE model is introduced and the dynamics with
respect to disease extinction are summarized. In Sect. 3, a multipatch CTMC model
is formulated and an approximating branching process is defined. In Sect. 4, a mul-
tipatch SDE model is derived from the CTMC model. Finally, in Sect. 5, numerical
examples are presented for the ODE, CTMC, and SDE models as well as estimates
for the probability of disease extinction. The last section summarizes our findings
on the impact of environmental heterogeneity, spatial connectivity, and movement to
disease outbreaks and discusses their implications for disease control.

2 ODE Model

Consider a multipatch SIS model with movement of both susceptible and infectious
individuals between patches. Let n be the total number of patches, Ω = {1,2, . . . , n},
and Sj (t) and Ij (t) denote the number of susceptible and infectious individuals in
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patch j at time t , respectively. Denote the total population size in patch j by Nj(t) =
Sj (t) + Ij (t). The model takes the form

Ṡj = −βj

Sj

Nj

Ij + γj Ij +
∑

k∈Ω

(
ds
kj Sk − ds

jkSj

)
, (1)

İj = βj

Sj

Nj

Ij − (γj + αj )Ij +
∑

k∈Ω

(
di
kj Ik − di

jkIj

)
, (2)

where Sj (0) > 0 and Ij (0) ≥ 0 for all j ∈ Ω , with standard incidence rate
βjSj Ij /Nj . The parameters ds

kj ≥ 0 and di
kj ≥ 0 represent the rate of movement

(dispersal) from patch k to patch j by susceptible and infectious individuals, respec-
tively. The parameters βj > 0, γj > 0, and αj ≥ 0 represent the rates of infection,
recovery, and disease-related death in patch j , respectively. This model is similar
to the multipatch SIS model of Allen et al. (2007) with the exception that there are
disease-related deaths. Solutions to (1)–(2) are nonnegative for t ∈ [0,∞).

The only demographic processes in this model are disease-related deaths (i.e., no
births or other recruitment). Thus, N(t) ≤ N(0) for t ∈ [0,∞) and solutions to (1)–
(2) are bounded. Summing the equations for Ṡj and İj in (1)–(2), it follows that for
each j ∈ Ω ,

Ṅj = −αj Ij +
∑

k∈Ω

(
ds
kjSk − ds

jkSj + di
kj Ik − di

jkIj

)
. (3)

Let N denote the total population size in all patches, N = ∑
j∈Ω Nj . It follows from

Eq. (3) that

Ṅ = −
∑

j∈Ω

αj Ij . (4)

If there are no disease-related deaths, αj = 0 for each j ∈ Ω , then N(t) ≡ N(0) is
constant.

To characterize the dynamics of model (1)–(2), it is useful to introduce some no-
tation involving the parameters ds

kj and di
kj . Define the dispersal matrices for suscep-

tible and infectious individuals as

Ds = [
ds
kj

]
and Di = [

di
kj

]
. (5)

In the case of two patches,

Ds =
[
ds

11 ds
21

ds
12 ds

22

]
and Di =

[
di

11 di
21

di
12 di

22

]
.

For each patch j ∈ Ω , define the patch reproduction number as

R0j = βj

γj + αj

. (6)
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If R0j > 1, then patch j is said to be a high-risk patch. Otherwise, it is called a
low-risk patch (Allen et al. 2007). Whether a patch is high- or low-risk depends on
many factors that affect transmission βj , recovery γj , and mortality αj . These fac-
tors may be environmental (water-borne diseases such as cholera) or host-dependent
(differences in contacts or susceptibility among hosts).

The following theorem summarizes the dynamics of the SIS epidemic model in
each patch when there is no movement. All proofs are given in the Appendix.

Theorem 2.1 Assume the dispersal matrices Ds = Di = O (zero matrices). For the
multipatch epidemic model (1)–(2), the patch reproduction numbers determine the
long-term behavior in each patch.

(i) If R0j > 1, then

lim
t→∞

(
Sj (t), Ij (t)

) =
{(Nj (0)

R0j
, (1 − 1

R0j
)Nj (0)

)
, αj = 0,

(0,0), αj > 0.

(ii) If R0j ≤ 1, then

lim
t→∞

(
Sj (t), Ij (t)

) =
{

(Nj (0),0), αj = 0,

(Cj ,0), αj > 0,

for some Cj where 0 ≤ Cj < Nj (0).

With no disease-related deaths, the population size remains constant, so that if
R0j > 1, the disease becomes endemic, but with disease-related deaths, if R0j > 1,
first an outbreak occurs followed by complete population extinction.

To define the basic reproduction number for model (1)–(2), we linearize (2) about
Ij (0) ≈ 0 and Sj (0) ≈ Nj(0). In particular,

İj ≈
[
βj − γj − αj −

∑

k∈Ω

di
jk

]
Ij +

∑

k∈Ω

di
kj Ik (7)

for j ∈ Ω . Following van den Driessche and Watmough (2002), let

F = diag[βj ], (8)

V = diag

[
γj + αj +

∑

k∈Ω

di
jk

]
− Di. (9)

The basic reproduction number is the spectral radius of FV −1,

R0 = ρ
(
FV −1). (10)

The eigenvalues of the linearized system (7), written as İ = (F − V )I , have negative
real part if and only if the spectral radius of FV −1 is less than one. The entries of F
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and V and, therefore, the value of R0, do not depend on the movement of susceptible
individuals (Allen et al. 2007).

If individuals move between the patches (Ds and Di nonzero), the following the-
orem shows that there is global disease extinction if R0 < 1, regardless of the initial
population size in each patch.

Theorem 2.2 For the multipatch SIS epidemic model (1)–(2),

(i) if R0 < 1, then limt→∞ Ij (t) = 0 for all patches j ∈ Ω , and
(ii) if R0j < 1 for a given patch j ∈ Ω and di

jk = di
kj = 0 for k 	= j , then

limt→∞ Ij (t) = 0.

The disease-free equilibrium becomes unstable when R0 > 1 in the ODE model
and generally a major outbreak occurs. For a small number of infectious individuals,
this is not necessarily the case for the corresponding Markov chain (MC) model.

3 Markov Chain Models

3.1 CTMC Model

For a small number of infectious individuals, the predictions of the ODE model do
not necessarily agree with the MC model. If R0 > 1, there is a possibility in the MC
model that infectious individuals die or recover before an outbreak occurs. In this
case, a MC model with a discrete number of individuals is more realistic than an
ODE model.

To formulate a continuous-time Markov chain (CTMC) model, let


X(t) = (
S1(t), I1(t), . . . , Sn(t), In(t)

)

denote a discrete-valued random vector where Sj (t), Ij (t) ∈ {0,1, . . . ,N(0)} for
j ∈ Ω . For simplicity, the same notation is used for the discrete random variables
and parameters as for the deterministic model (see Eqs. (1) and (2)). The state tran-
sitions and rates for the CTMC model are given in Table 1. Because of the Markov
assumption, the time between events is exponentially distributed with parameter

ω( 
X) =
∑

j∈Ω

[
βj

Sj

Nj

Ij + γj Ij + αj Ij +
∑

k∈Ω\{j}

(
ds
jkSj + di

jkIj

)]
. (11)

To derive a relationship between model parameters and the probability of disease
extinction, we apply the powerful theory of multitype branching processes to ap-
proximate the nonlinear CTMC model near the disease-free equilibrium. A multitype
branching process assumes the transition rates are linear. In particular, in Table 1, the
transition rate for the infection process near the disease-free state is βj Ij .
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Table 1 State transitions and
rates for the multipatch CTMC
model. The expression r�t +
o(�t) is the infinitesimal
transition probability for the
change � 
X(t) = 
X(t + �t) −

X(t), Sj ≡ Sj (t), and
Ij ≡ Ij (t)

Description 
X(t + �t) Rate, r

Infection patch j (0, . . . , Sj − 1, Ij + 1, . . . ,0) βj Sj Ij /Nj

Recovery patch j (0, . . . , Sj + 1, Ij − 1, . . . ,0) γj Ij

Death of Ij (0, . . . , Ij − 1, . . . ,0) αj Ij

Movement of Sj (0, . . . , Sj − 1, . . . , Sk + 1, . . . ,0) ds
jk

Sj

Movement of Ij (0, . . . , Ij − 1, . . . , Ik + 1, . . . ,0) di
jk

Ij

3.2 Branching Process Approximation

The dynamics of the nonlinear CTMC model can be approximated near the disease-
free equilibrium by a multitype (Galton–Watson) branching process (Dorman et al.
2004; Harris 1963; Pénnison 2010). The branching process is applied only to the
infectious individuals and the susceptible individuals are assumed to be at the disease-
free state. In particular, assume that infectious individuals of type j , Ij , give “birth”
to infectious individuals of type k, Ik , and that the number of offspring produced by
a type j individual does not depend on the number of offspring produced by other
individuals of type j or k 	= j . Moreover, assume that the initial population in each
patch is sufficiently large, Sj (0) ≈ Nj(0). Because the multitype branching process
is linear near the disease-free state, time-homogeneous, and births and deaths are
independent, we can define offspring probability generating functions (pgfs) for the
birth and death of the infectious individuals, which in turn can be used to calculate
the probability of disease extinction.

We define additional discrete random variables for the number of infected off-
spring in patch k that arise from an infectious individual in patch j . Let Ykj denote
these offspring random variables. The offspring pgf for Ij defines probabilities asso-
ciated with “birth” of infectious individuals in patch k or “death” of the infectious in-
dividual Ij , given that the process starts with only one infectious individual of type j ,
Ij = 1, and Ik = 0 for k 	= j ,

fj (x1, . . . , xn) =
∞∑

	n=0

· · ·
∞∑

	1=0

Pj (	1, . . . , 	n)x
	1
1 · · ·x	n

n ,

where

Pj (	1, . . . , 	n) = Prob{Y1j = 	1, . . . , Ynj = 	n}
(see, e.g., Athreya and Ney 1972; Dorman et al. 2004; Harris 1963; Karlin and Taylor
1975; Pénnison 2010). The offspring pgf for Ij is used to calculate the expected num-
ber of offspring produced by an infectious individual of type j and the probability of
disease extinction of type j .

The rates in Table 1 with the additional assumption that the infection rate is βj Ij

at the disease-free equilibrium are used to define the offspring pgf for Ij :

fj (x1, . . . , xn) = βjx
2
j + γj + αj + ∑

k∈Ω\{j} di
jkxk

βj + γj + αj + ∑
k∈Ω\{j} di

jk

(12)
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(Allen and Lahodny 2012; Dorman et al. 2004). The term βj/(βj + γj + αj +∑
k∈Ω\{j} di

jk) represents the probability that a susceptible individual in patch j be-
comes infectious and the infectious individual causing the infection does not die
which results in two infectious individuals in patch j (Yjj = 2 and Yij = 0 for
i 	= j ). The term (γj + αj )/(βj + γj + αj + ∑

k∈Ω\{j} di
jk) = Pj (0, . . . ,0) repre-

sents the probability that an infectious individual in patch j is lost due to recov-
ery or death resulting in zero infectious individuals (Yij = 0 for all i). The term
di
jk/(βj + γj + αj + ∑

k∈Ω\{j} di
jk) represents the probability of an infectious indi-

vidual moving from patch j to k resulting in one infectious individual in patch k and
zero infectious individuals in patch j (Ykj = 1 and Yij = 0 for i 	= k). The offspring
pgfs do not depend on the movement of susceptible individuals, only the facts that
Sj (0) ≈ Nj(0) is large, the births and deaths are independent of each other, and the
process is time-homogeneous.

The expectation matrix M = [mkj ] of the offspring pgfs is a nonnegative n × n

matrix whose entry mkj gives the expected number of infectious offspring in patch k

produced by an infectious individual in patch j . That is,

mkj = ∂fj

∂xk

∣∣∣∣
x=
1
. (13)

In particular, for the multipatch SIS model,

mkj =

⎧
⎪⎨

⎪⎩

2βj

βj +γj +αj +∑
k∈Ω\{j } di

jk

, k = j,

di
jk

βj +γj +αj +∑
k∈Ω\{j } di

jk

, k 	= j.

(14)

Explicitly, the expectation matrix has the form

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2β1

A1

di
21

A2
· · · di

n1

An

di
12

A1

2β2

A2
· · · di

n2

An
...

...
. . .

...

di
1n

A1

di
2n

A2
· · · 2βn

An

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Aj = βj + γj +αj +∑
k∈Ω\{j} di

jk for j ∈ Ω . If the patches are connected by
movement of infectious individuals, then M is irreducible.

Let

W = diag

[
βj + γj + αj +

∑

k∈Ω\{j}
di
jk

]
, (15)

an n × n diagonal matrix. The j th diagonal entry in W is the parameter in an expo-
nential distribution for the time between events for one infectious individual of type j
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(Eq. (11) with only terms affecting Ij ). It can be easily verified that

[M − I]W = F − V = [
FV −1 − I

]
V, (16)

where I is the n × n identity matrix and matrices F and V are defined as in
(8) and (9), respectively (see Allen and van den Driessche 2013). The impor-
tant identity defined in (16) relates the linear branching process approximation
of the CTMC model to the linearization of the ODE model near the disease-
free equilibrium. Applying the theory of branching processes, it follows that the
continuous-time multitype branching process is subcritical, critical, or supercritical
if the spectral abscissa (the maximum real part of any eigenvalue) of [M − I]W
is less than, equal to, or greater than zero, respectively (Athreya and Ney 1972;
Dorman et al. 2004; Harris 1963; Karlin and Taylor 1975; Pénnison 2010). It has
been verified that the identity (16) leads to the following relationship provided M

is irreducible and V is a nonsingular M matrix (Allen and van den Driessche 2013;
van den Driessche and Watmough 2002):

R0 < 1 (= 1,> 1) if and only if ρ(M) < 1 (= 1,> 1). (17)

For the subcritical and critical cases, R0 ≤ 1 and ρ(M) ≤ 1, the probability of
ultimate extinction is one

lim
t→∞ Prob

{ 
I (t) = 
0} = 1. (18)

For the supercritical case, R0 > 1 and ρ(M) > 1, if M is irreducible and the fj are
nonsingular (fj 	= ∑

aixi ), then

P0 = lim
t→∞ Prob

{ 
I (t) = 
0} = q
i1
1 q

i2
2 · · ·qin

n , (19)

where ij = Ij (0) and qj is the unique fixed point lying in (0,1) of the pgf,
fj (q1, . . . , qn) = qj , for j ∈ Ω (Athreya and Ney 1972; Harris 1963; Pénnison 2010).
The value of qj is the probability of disease extinction for patch j . In the supercritical
case, the probability of an outbreak is approximately

1 − q
i1
1 · · ·qin

n . (20)

Although the preceding result is a limiting result, the split between persistence and
extinction in the branching process occurs rapidly. That is, either sample paths grow
without bound or approach zero. Of course, in the nonlinear CTMC model, the in-
fectious variables are bounded but when R0 > 1, the linear branching process in this
supercritical case is a good approximation to the nonlinear CTMC model near the
disease-free equilibrium when the susceptible population size is large. The birth and
death process of infectious individuals either results in a sufficient number of births to
cause an outbreak or results in death of infectious individuals and disease extinction.

We cannot obtain simple analytical expressions for the extinction probabilities
qj of the branching process approximation of the multipatch model, except in some
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special cases. For example, a single isolated patch j with no movement into or out of
patch j and R0j > 1 has a pgf of the form

fj (xj ) = βjx
2
j + αj + γj

βj + αj + γj

.

In this case, it can be easily shown that the probability of extinction is qj = 1/R0j .
This classic result is due to Whittle (1955) who applied this result to an SIR epidemic
model. For n connected patches, we compute the extinction probability qj numer-
ically in Sect. 5 and check whether this estimate for disease extinction agrees with
simulations of the CTMC model.

4 SDE Model

After an outbreak has occurred, the population size and the number of infectious in-
dividuals are large. When the values of the state variables are large, simulation of
the discrete-valued Markov chain process becomes computationally intensive. In this
case, a system of stochastic differential equations (SDEs), with continuous-valued
random variables, is often used to approximate the discrete-valued process. There-
fore, to assess the variability, the role of demographic stochasticity, after an outbreak
has occurred, we apply a system of SDEs.

A system of Itô SDEs with continuous-valued random variables is derived by ap-
plying the transition rates in Table 1 and letting the time step �t approach zero (Allen
2007; Allen 2010; Allen and Allen 2008). The resulting SDE model is often referred
to as the diffusion approximation by Kurtz (1978) or the chemical Langevin equa-
tion by Gillespie (2000). The random vector 
X(t) = (S1(t), I1(t), . . . , Sn(t), In(t))

T

is a vector of continuous random variables with state space Sj (t), Ij (t) ∈ [0,N(0)],
j ∈ Ω , t ∈ [0,∞), where N(0) is the initial total population size. Again, for simplic-
ity, we use the same notation for the susceptible and infectious random variables in
the SDE model that were used for the ODE and CTMC models.

Given the transitions and rates in Table 1, the corresponding SDE model has the
form

d 
X(t) = 
f ( 
X(t)
)
dt + G

( 
X(t)
)
d 
W(t). (21)

To order �t , 
f ( 
X(t))�t = E(� 
X(t)), where 
f is the drift vector and GGT �t =
Σ�t = E(� 
X(t)(� 
X(t))T ), where matrix G( 
X(t)) is a diffusion matrix. Vector

W(t) consists of m independent Wiener processes,


W(t) = (
W1(t), . . . ,Wm(t)

)T
,

where m is the total number of events of the process. A more detailed discussion of
Wiener processes and SDEs can be found in Allen (2007), Allen (2010), Øksendal
(2003).
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The drift vector for the two-patch SIS model has the same form as the ODE model


f ( 
X(t)
) =

⎡

⎢⎢⎢⎢⎢⎣

−β1
S1
N1

I1 + γ1I1 − ds
12S1 + ds

21S2

β1
S1
N1

I1 − (γ1 + α1)I1 − di
12I1 + di

21I2

−β2
S2
N2

I2 + γ2I2 + ds
12S1 − ds

21S2

β2
S2
N2

I2 − (γ2 + α2)I2 + di
12I1 − di

21I2

⎤

⎥⎥⎥⎥⎥⎦
.

The diffusion matrix is a 4 × 10 matrix given by

G =
[
G11 O G13
O G22 G23

]
,

where

Gjj =
⎡

⎢⎣
−

√
βj

Sj

Nj
Ij

√
γj Ij 0

√
βj

Sj

Nj
Ij −√

γj Ij −√
αj Ij

⎤

⎥⎦ ,

G13 =
⎡

⎣
−√

ds
12S1

√
ds

21S2 0 0

0 0 −
√

di
12I1

√
di

21I2

⎤

⎦ ,

G23 =
⎡

⎣

√
ds

12S1 −√
ds

21S2 0 0

0 0
√

di
12I1 −

√
di

21I2

⎤

⎦ .

The ten column entries in matrix G account for the ten different events outlined in
Table 1. For two patches, infection, recovery, or death in each patch represent 6 events
and dispersal of either susceptible or infectious individuals from patch 1 to 2 or 2 to
1 represent for 4 additional events. The explicit form of the system of Itô SDEs for
two patches is

dS1 =
(

−β1
S1

N1
I1 + γ1I1 − ds

12S1 + ds
21S2

)
dt −

√

β1
S1

N1
I1dW1

+ √
γ1I1dW2 −

√
ds

12S1dW7 +
√

ds
21S2dW8,

dI1 =
(

β1
S1

N1
I1 − γ1I1 − α1I1 − di

12I1 + di
21I2

)
dt +

√

β1
S1

N1
I1dW1

− √
γ1I1dW2 − √

α1I1dW3 −
√

di
12I1dW9 +

√
di

21I2dW10,

dS2 =
(

−β2
S2

N2
I2 + γ2I2 + ds

12S1 − ds
21S2

)
dt −

√

β2
S2

N2
I2dW4

+ √
γ2I2dW5 +

√
ds

12S1dW7 −
√

ds
21S2dW8,
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dI2 =
(

β2
S2

N2
I2 − γ2I2 − α2I2 + di

12I1 − di
21I2

)
dt +

√

β2
S2

N2
I2dW4

− √
γ2I2dW5 − √

α2I2dW6 +
√

di
12I1dW9 −

√
di

21I2dW10.

If we assume that Sj ≈ Nj = constant, then applying properties of the Wiener
process, it follows that the differential equations for the expectations of the infectious
classes are linear. In this case, the differential equations for the expectations agree
with the linearized ODE model, Eq. (7):

dE(Ij )

dt
≈

[
βj − γj − αj −

∑

k∈Ω

di
jk

]
E(Ij ) +

∑

k∈Ω

di
kjE(Ik). (22)

In general, the expectations for the infectious classes in the SDE model are nonlinear;
the expectation of Ij in (22) should have the term βjE(Sj Ij /Nj ). Moment closure
methods and application of Itô’s formula can be used to write a closed system of
differential equations for the expectations of the nonlinear SDEs. We do not apply
these methods, instead we numerically solve the system of SDEs using the Euler–
Maruyama numerical method, and compare the simulation results of the CTMC
model with the SDE model when the probability of disease extinction is small.

5 Comparison of Stochastic and Deterministic Models

The dynamics of the multi-patch ODE, CTMC, and SDE models are illustrated in
several numerical examples. In the first two sets of examples, we consider two- and
three-patch SIS models without disease-related mortality. We apply branching pro-
cess theory to derive the probability of disease extinction and illustrate the signifi-
cance of the location of the outbreak, risk of infection, and movement rates on dis-
ease extinction. In the third set of examples, we include disease-related mortality and
illustrate finite-time population extinction in the CTMC and SDE models and their
close agreement when there is an outbreak.

5.1 Outbreak Location and Risk of Infection

5.1.1 Two-Patch CTMC Model

Consider a two-patch SIS model without disease-related mortality. The total popu-
lation size is constant, N(0) = N . Movement of susceptible individuals between the
two patches leads to a unique disease-free equilibrium for the ODE model given by

(S̄1,0, S̄2,0) =
(

ds
21N

ds
12 + ds

21
,0,

ds
12N

ds
12 + ds

21
,0

)
. (23)

The next-generation matrix is

FV −1 = 1

γ1γ2 + γ1d
i
21 + γ2d

i
12

[
β1(γ2 + di

21) β1d
i
21

β2d
i
12 β2(γ1 + di

12)

]
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Fig. 1 Comparison of the ODE solution and one sample path of the CTMC model for two patches
with no disease-related mortality illustrating an outbreak and disease persistence in both patches with
a higher prevalence of infection in the high-risk patch. Parameter values are β1 = 0.5, γ1 = 0.1, β2 = 0.2,
γ2 = 0.4, and ds

jk
= di

jk
= 0.1, j, k = 1,2, with initial conditions S1(0) = 199, I1(0) = 2, S2(0) = 200,

and I2(0) = 0. The patch reproduction numbers are R01 = 5 and R02 = 0.5 and basic reproduction num-
ber is R0 = 2.83. Probability of disease extinction is P0 = 0.116 (see Table 2). The locally stable endemic
equilibrium for the ODE model is (Ŝ1, Î1, Ŝ2, Î2) ≈ (68,132,161,39)

and the basic reproduction number R0 can be explicitly calculated as

β1(γ2 + di
21) + β2(γ1 + di

12) +
√

[β1(γ2 + di
21) − β2(γ1 + di

12)]2 + 4β1β2d
i
12d

i
21

2(γ1γ2 + γ1d
i
21 + γ2d

i
12)

.

If R0 < 1, solutions of the ODE model approach the stable disease-free equilib-
rium, and in the CTMC model the number of infectious individuals hits zero in finite
time. In particular, if all patches are low-risk, R0j < 1, then R0 < 1. However, in
a spatially heterogeneous environment, if there is a mixture of low- and high-risk
patches and R0 > 1, then the two models differ. The solution of the ODE model ap-
proaches an endemic equilibrium with persistence of the infection while in the CTMC
model, there are two outcomes. Either there is disease extinction with only a few in-
fectious cases or the infection persists for a long time, similar to the ODE model. To
predict the probability of disease extinction, we apply the branching process approx-
imation near the disease-free equilibrium.

Consider the case where individuals move between a high-risk patch 1 and a low-
risk patch 2 as described by the parameter values β1 = 0.5, γ1 = 0.1, β2 = 0.2, γ2 =
0.4, ds

jk = di
jk = 0.1 for j, k = 1,2, and N = 400. For these parameter values, the

patch reproduction numbers are R01 = 5, R02 = 0.5, the basic reproduction number
is R0 = 2.83, and the spectral radius of the expectation matrix is ρ(M) = 1.45. For
this case, the ODE solution and one sample path of the CTMC model illustrating an
outbreak are graphed in Fig. 1 with I1(0) = 1 and I2(0) = 0. A high prevalence of
infection can be seen in the high-risk patch as compared to the low-risk patch.
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Table 2 Probability of disease extinction P0 calculated from the branching process and numerical approx-
imation (approx.) based on 10,000 sample paths of the two-patch CTMC model with no disease-related
mortality. Patch 1 is high-risk and patch 2 is low-risk. Parameter values are β1 = 0.5, γ1 = 0.1, β2 = 0.2,
γ2 = 0.4, and ds

jk
= 0.1, j, k = 1,2 (except results given in parentheses for cases (b) and (c)) with initial

conditions Ij (0) = ij and Sj (0) = 200 − ij , j = 1,2. The patch reproduction numbers are R01 = 5 and
R02 = 0.5 and the basic reproduction number in (a) R0 = 2.83, (b) R0 = 4.21, and (c) R0 = 1.85

Initial
conditions

(a) (b) (c)

di
12 = 0.1

di
21 = 0.1

di
12 = 0.04

di
21 = 0.4

di
12 = 0.2

di
21 = 0.05

i1 i2 P0 Approx. P0 Approx.a P0 Approx.a

1 0 0.341 0.341 0.234 0.241 (0.236) 0.525 0.538 (0.539)

0 1 0.806 0.806 0.555 0.559 (0.558) 0.911 0.914 (0.917)

1 1 0.275 0.277 0.130 0.130 (0.129) 0.479 0.480 (0.485)

2 0 0.116 0.117 0.055 0.058 (0.053) 0.276 0.276 (0.297)

0 2 0.649 0.650 0.308 0.308 (0.306) 0.831 0.832 (0.836)

aResults in parentheses for cases (b) and (c) assume ds
jk

= di
jk

The probability of disease extinction, P0, is computed from the branching process
approximation and summarized in Table 2. The value of P0 is a good estimate of the
probability of disease extinction for the nonlinear CTMC model, as computed from
the proportion of sample paths (out of 10,000) for which the sum I1(t) + I2(t) hits
zero prior to time t = 150. In fact, there is a significantly higher probability of disease
extinction if infectious individuals are introduced into the low-risk patch versus the
high-risk patch. There are also differences in P0 that depend on the rate of movement
between the two patches. If movement of infectious individuals is increased in the
direction of the high-risk patch, the probability of disease extinction decreases (Ta-
ble 2 case (b)), but if movement is increased in the direction of the low-risk patch,
then the probability of disease extinction increases (Table 2 case (c)). As noted ear-
lier, the probability of disease extinction does not depend on the movement rate of
the susceptible individuals and may not depend on whether the susceptible popula-
tion is at the disease-free equilibrium (Table 2 cases (b) and (c)). These results show
for the multipatch SIS model that directing movement of susceptible individuals is
not an effective control strategy while directing the movement of infectious individ-
uals toward the low-risk patch can significantly lower the probability of an outbreak
(Table 2).

Suppose movement rates for infectious individuals between the two patches are
equal, that is, di

jk = d . If we let d → ∞, the two patches become homogeneously
mixed, the basic reproduction number approaches a limiting value (Allen et al. 2007):

lim
d→∞ R0(d) = β1 + β2

γ1 + γ2
,

and the extinction probabilities q1 and q2 converge to a single value: limd→∞[q1(d)−
q2(d)] = 0. In Fig. 2, the values of R0, q1, and q2 are plotted as functions of d . The
limiting values for this example are R0(∞) = 1.4 and qi(∞) = 1/1.4 which agree
with the classic result of Whittle for a single-patch SIR model (Whittle 1955).
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Fig. 2 Illustration of the limiting behavior of the basic reproduction number, R0, and extinction probabil-
ities, q1 and q2, for two patches as a function of movement, d , and no disease-related mortality. Parameter
values are β1 = 0.5, γ1 = 0.1, β2 = 0.2, and γ2 = 0.4 with di

jk
= d for j, k = 1,2. The limiting values of

R0(d) and qi (d) as d → ∞ are R0(∞) = 1.4 and qi (∞) = 1/R0(∞) = 1/1.4, i = 1,2

5.1.2 Three-Patch CTMC Model

Next, consider a three-patch model without disease-related mortality and suppose
that the patches are arranged in a strip so that there is no direct movement between
patches one and three. Suppose patch 1 is high-risk and patches 2 and 3 are low-
risk as described by the parameter values β1 = 0.5, γ1 = 0.1, β2 = 0.2, γ2 = 0.4,
β3 = 0.1, γ3 = 0.4, ds

jk = di
jk = 0.1 for j, k 	= (1,3), (3,1), ds

jk = di
jk = 0 for j, k =

(1,3), (3,1), and N = 450. For these parameter values, R01 = 5, R02 = 0.5, R03 =
0.25, R0 = 2.77, and ρ(M) = 1.43.

The solution of the ODE model and one sample path of the CTMC model for
which an outbreak occurs are graphed in Fig. 3. The solutions show a higher preva-
lence of infection in high-risk patch 1.

The results in Table 3 illustrate how disease extinction is determined by the loca-
tion of an outbreak, risk of infection, and dispersal of infectives. The probability of
disease extinction is significantly higher if initially infectious individuals are located
in a low-risk patch and if dispersal is greater out of high-risk and into low-risk patches
than the reverse direction (Table 3 cases (b) and (c)). Other numerical examples were
simulated with a mixture of high- and low-risk patches with different spatial con-
nectivities that gave similar results with respect to risk of infection and location of
outbreak.

5.2 Finite-Time Extinction

It is well known that stochastic models exhibit finite-time extinction while this is
not the case for deterministic models, where the number of infectious individuals
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Fig. 3 Comparison of the three-patch ODE solution and one sample path of the CTMC model with no dis-
ease-related mortality illustrating an outbreak and disease persistence in each patch with the highest preva-
lence of infection in the high-risk patch 1. Parameter values are β1 = 0.5, γ1 = 0.1, β2 = 0.2, γ2 = 0.4,
β3 = 0.1, γ3 = 0.4, and ds

jk
= di

jk
= 0.1 for j, k 	= (1,3), (3,1), and ds

jk
= ds

jk
= 0, j, k = (1,3), (3,1)

with initial conditions S1(0) = 149, I1(0) = 1, S2(0) = 150, I2(0) = 0, S3(0) = 150, and I3(0) = 0. The
patch reproduction numbers are R01 = 5, R02 = 0.5, and R03 = 0.25 and basic reproduction number
is R0 = 2.77. Probability of disease extinction is P0 = 0.351 (see Table 3). The locally stable endemic
equilibrium is (S̄1, Ī1, S̄2, Ī2, S̄3, Ī3) ≈ (53,97,126,24,144,6)

Table 3 Comparison of the probability of disease extinction P0 computed from the branching process
and numerical approximation (approx.) based on 10,000 sample paths of the three-patch CTMC model
with no disease-related mortality. Patch 1 is high-risk and patches 2 and 3 are low-risk. Parameter values
are β1 = 0.5, γ1 = 0.1, β2 = 0.2, γ2 = 0.4, β3 = 0.1, γ3 = 0.4, ds

jk
= 0.1, j, k 	= (1,3), (3,1) (except

results given in parentheses for case (b)), and di
jk

= ds
jk

= 0, j, k = (1,3), (3,1) with initial conditions
Ij (0) = ij and Sj (0) = 150 − ij , j = 1,2,3. The patch reproduction numbers are R01 = 5, R02 = 0.5,
and R03 = 0.25 and basic reproduction number in (a) R0 = 2.77 and (b) R0 = 1.81

Initial conditions (a) (b)

di
12 = di

21 = 0.1

di
23 = di

32 = 0.1

di
12 = 0.2, di

21 = 0.05

di
23 = di

32 = 0.1

i1 i2 i3 P0 Approx. P0 Approx.a

1 0 0 0.351 0.359 0.541 0.540 (0.555)

0 1 0 0.841 0.842 0.932 0.931 (0.936)

0 0 1 0.961 0.963 0.983 0.986 (0.985)

1 1 1 0.283 0.290 0.496 0.506 (0.512)

aResults in parentheses for case (b) assume ds
jk

= di
jk

asymptotically approaches zero (Mollison 1991). These differences are illustrated in
the next set of examples for multipatch models with disease-related mortality.

Consider a two-patch model with a relatively high rate of disease-related mortality
compared to the rate of recovery. Suppose that patch 1 is high-risk and patch 2 is
low-risk as described by the parameter values β1 = 1.8, γ1 = 0.1, β2 = 0.3, γ2 = 0.4,
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Fig. 4 Comparison of the two-patch ODE solution and one sample path of the CTMC model with mortal-
ity and the approximate probability distribution for the population size (S1(T )+S2(T )) and time of disease
extinction T for the CTMC model when infectious individuals are introduced into the low-risk patch 2.
Probability of disease extinction is P0 = 0.640 (see Table 4). Initial conditions are S1(0) = 200, I1(0) = 0,
S2(0) = 195, and I2(0) = 5. Parameter values are β1 = 1.8, γ1 = 0.1, β2 = 0.3, γ2 = 0.4, α1 = α2 = 0.5,
ds
jk

= di
jk

= 0.1, j, k = 1,2. The patch reproduction numbers are R01 = 3 and R02 = 0.33 and the basic
reproduction number is R0 = 2.61. Mean values of S1 and S2 at the time of disease extinction T are
S̄1(T ) = 127 and S̄2(T ) = 130 with mean disease extinction time T̄ = 15.5. Calculations are based on
10,000 sample paths

α1 = α2 = 0.5, ds
jk = di

jk = 0.1 for j, k = 1,2, and initial population size N(0) =
400. Then the basic reproduction numbers are R01 = 3, R02 = 0.33, and R0 = 2.61,
while ρ(M) = 1.44.

In this example, solutions of the ODE model illustrate an outbreak in the high-risk
patch prior to global population extinction as t → ∞ in both patches. Sample paths
for the CTMC model either predict rapid disease extinction or disease extinction after
an outbreak with finite extinction time. The solution of the ODE model and one sam-
ple path of the CTMC model are graphed in Figs. 4 and 5 with infectious individuals
introduced into either the low-risk patch, I2(0) = 5 (P0 = 0.640) or high-risk patch,
I1(0) = 5 (P0 = 0.008). The probability distributions for the finite extinction time, T ,
and the final population size (S1 +S2) at the time of disease extinction are graphed in
Figs. 4 and 5. Sample paths of the SDE model yield similar predictions to the CTMC
model when probability of extinction is small (compare Figs. 5 and 6).

As in the preceding section, we compute the probability of disease extinction P0
and compare the results with the CTMC model. The results, summarized in Table 4,
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Fig. 5 Comparison of the two-patch ODE solution and one sample path of the CTMC model with mor-
tality and the approximate probability distributions for the population size (S1(T ) + S2(T )) and for the
time of disease extinction T of the CTMC model when infectious individuals are introduced into the high-
risk patch 1. Probability of disease extinction is small, P0 = 0.008. Initial conditions are S1(0) = 195,
I1(0) = 5, S2(0) = 200, and I2(0) = 0. Parameter values are the same as in Fig. 4. Mean values of S1 and
S2 at the time of disease extinction T are S̄1(T ) = 5.84 and S̄2(T ) = 17.4 with mean disease extinction
time T̄ = 34.9. Calculations are based on 10,000 sample paths

show similar trends as in Tables 2 and 3 with P0 greatest when infection is initiated
in the low-risk patch and spatial connectivity to the high-risk patch is low. Neither
movement of susceptible individuals nor the arrangement of susceptible populations
in the patches impact the probability of disease extinction, provided the outbreak size
is sufficiently large. With an initial population size in each patch of 200 or 400, the
outbreak size is of sufficient magnitude so that there is good agreement between P0
and the proportion of sample paths hitting zero in the CTMC model (sum I1(t)+I2(t)

hits zero before reaching outbreak size 25); see Table 4.

6 Discussion

Spatial heterogeneity, infection risk, and movement of individuals impact the spread
of disease. We investigate these three factors by constructing stochastic models,
CTMC and SDE spatially explicit patch models that are closely related to ODE mul-
tipatch models. In addition, we use a multitype branching process approximation of
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Fig. 6 Comparison of the two-patch ODE solution and one sample path of the SDE model with mortality
and the approximate probability distributions for the population size (S1(T ) + S2(T )) and for the time
of disease extinction T of the SDE model when infectious individuals are introduced into the high-risk
patch 1. The SDE and CTMC models yield similar results when the probability of disease extinction
is small (see Fig. 5). Parameter values and initial conditions are the same as in Fig. 5. Mean values of
S1 and S2 at the time of disease extinction T are S̄1(T ) = 5.79 and S̄2(T ) = 13.6 with mean disease
extinction time T̄ = 37.9. The proportion of sample paths of the SDE model with disease extinction is
0.009. Calculations are based on 10,000 sample paths

the nonlinear CTMC model near the disease-free equilibrium to predict the probabil-
ity of disease extinction. The relations (17) between the basic reproduction number
R0 from the linearized ODE model and the spectral radius of the expectation ma-
trix ρ(M) from the branching process approximation are crucial for prediction of an
outbreak (Allen and van den Driessche 2013).

Our analytical and numerical results confirm the importance of the location of the
initial outbreak to disease spread, high-risk versus low-risk patches (Tables 2, 3, and 4
and Figs. 4 and 5). A high rate of transmission, large βj , may result in a high-risk area
due to an environment that has greater susceptibility among hosts or an environment
where there are frequent contacts between hosts. Also, abiotic environmental factors
such as land-use, temperature, or water availability have a large impact on vector-
transmitted or water-borne infectious diseases such as dengue, malaria, or cholera.
Heterogeneity in transmission was a major factor in the spread of the 2001 UK foot-
and-mouth epizootic: heterogeneity due to spatial aggregation of farms, farm sizes,
and susceptibility of host species (Keeling et al. 2001).
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Table 4 Comparison of the probability of disease extinction P0 computed from the branching process
and numerical approximation (approx.) based on 10,000 sample paths of the two-patch CTMC model
with disease-related mortality. Patch 1 is high-risk and patch 2 is low-risk. Parameter values are β1 =
1.8, γ1 = 0.1, β2 = 0.3, γ2 = 0.4, α1 = α2 = 0.5, and ds

jk
= 0.1, j, k = 1,2 (except results given in

parentheses for cases (b) and (c)) with initial conditions Ij (0) = ij and Sj (0) = N̄ −ij , j = 1,2. The patch
reproduction numbers are R01 = 3 and R02 = 0.33 and the basic reproduction number in (a) R0 = 2.61,
(b) R0 = 2.87, and (c) R0 = 1.84

Initial
conditions

(a) (b) (c)

di
12 = 0.1

di
21 = 0.1

N̄ = 200

di
12 = 0.04

di
21 = 0.4

N̄ = 200

di
12 = 0.4

di
21 = 0.04

N̄ = 400

i1 i2 P0 Approx. P0 Approx.a P0 Approx.a

1 0 0.381 0.386 0.347 0.350 (0.351) 0.542 0.540 (0.544)

0 1 0.915 0.920 0.757 0.758 (0.760) 0.972 0.971 (0.972)

1 1 0.349 0.349 0.263 0.271 (0.255) 0.527 0.535 (0.525)

5 0 0.008 0.009 0.005 0.006 (0.005) 0.047 0.053 (0.048)

0 5 0.640 0.647 0.248 0.254 (0.248) 0.867 0.867 (0.875)

aResults in parentheses for cases (b) and (c) assume ds
jk

= di
jk

Our results also confirm for the multipatch SIS model that to increase the proba-
bility of disease extinction, movement restrictions should be imposed into high-risk
areas and directed toward low-risk areas, with strategies that focus primarily on the
infectious individuals. Careful border screening of exposed and infectious individu-
als can be an effective method for prevention of disease spread such as in the case of
the 2002–2003 SARS epidemic (Ruan et al. 2006). Susceptible movement is not im-
portant at the initiation of an outbreak because the susceptible population is assumed
to be large but after the outbreak has commenced, susceptible movement should be
considered in controlling disease spread. In addition, the high mortality associated
with foot-and-mouth disease and SARS emphasizes the need for rapid and effective
control measures. If effective control measures are not implemented quickly, then
high mortality rates may result in a drastic population reduction, as demonstrated in
the 2001 foot-and-mouth outbreak (also see Figs. 5 and 6).

Although this investigation concentrated on the multipatch SIS model, the stochas-
tic models and methods discussed here apply to other more complex epidemic set-
tings, including multipatch models with births and deaths, vector-host models, and
stage-structured models (e.g., Allen and Lahodny 2012; Allen and van den Driess-
che 2013; Griffiths and Greenhalgh 2011; Lahodny 2012). The stochastic probability
of disease extinction can be used in conjunction with data to obtain a quantitative
measure to assess various control strategies.
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Appendix

Proof of Theorem 2.1 For fixed j ∈ Ω , let ij = Ij /Nj . For simplicity, we omit the
subscript j and write i = I/N and R0 = β/(γ + α). Now

di

dt
= i

[
β − γ − α − (β − α)i

]
, (24)

and

dN

dt
= −αiN. (25)

The differential equation (24) is a type of logistic growth equation, which can be
expressed as

di

dt
= i(a − bi), (26)

where a = β − γ − α and b = β − α.
If R0 > 1 and α = 0, then N = N(0) is a constant and a, b > 0. It follows from

(26) that

lim
t→∞ i(t) = 1 − 1

R0
.

Since N is a constant, the result in part (i) follows.
If R0 > 1 and α > 0, then a, b > 0. It follows from (26) that

lim
t→∞ i(t) = 1 − γ

β − α
> 0.

Thus, i(t) is bounded below by a positive constant for sufficiently large t . It follows
from (25) that

lim
t→∞N(t) = 0.

Thus, I (t) → 0 and S(t) → 0 as t → ∞.
If R0 ≤ 1 and α = 0, then N = N(0) is a constant and a ≤ 0. It follows from (26)

that

lim
t→∞ i(t) = 0.

The result in part (ii) follows.
If R0 ≤ 1 and α > 0, it follows from (26) that

lim
t→∞ i(t) = 0.

So I (t) → 0 as t → ∞. Since N(t) is decreasing, S(t) → C for some 0 ≤ C <

N(0). �
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Proof of Theorem 2.2 To verify part (i), suppose R0 < 1. For each j ∈ Ω ,

İj ≤
(

βj − γj − αj −
∑

k∈Ω

di
jk

)
Ij +

∑

k∈Ω

di
kj Ik. (27)

Then I = (I1, . . . , In)
T satisfies

İ ≤ (F − V )I, (28)

where F and V are defined by (8) and (9). Consider the initial-value problem

Ẋ = (F − V )X,

X(0) = I (0).

The solution to this differential equation is X(t) = e(F−V )t I (0). Since R0 < 1, the
eigenvalues of F − V have negative real part and since F − V has nonnegative off-
diagonal elements, the solution X(t) can be compared with the solution of (28), I (t)

(Lakshmikantham and Leela 1969). By the comparison principle, since X(t) → 0 as
t → ∞, I (t) → 0 as t → ∞ (Lakshmikantham and Leela 1969).

To verify part (ii), fix j ∈ Ω and suppose that R0j < 1 and di
jk = di

kj = 0 for
k 	= j . Then

İj = Ij

[
βj − γj − αj − βj

Nj

Ij

]
≤ Ij [βj − γj − αj ].

Similar to part (i), by the comparison principle, 0 ≤ Ij (t) ≤ X(t), where Ẋ =
X[βj − γj − αj ] and X(0) = Ij (0). Since βj < γj + αj , limt→∞ X(t) = 0 implies
limt→∞ Ij (t) = 0. �
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