
        
    
        
            
            
                
            

            
        
    

        
    
        
            
            
                
            

            
        
    


        
    




        

        
    Skip to main content

    

    
    
        
            
                
                    
                        [image: SpringerLink]
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    




    
        
    
        
            
                
                    
    
        
            	
                        Home




	
                        Bulletin of Mathematical Biology

	
                        Article

Effect of Periodic Disinfection on Persisters in a One-Dimensional Biofilm Model


                    	Original Article
	
                            Published: 08 January 2013
                        


                    	
                            Volume 75, pages 94–123, (2013)
                        
	
                            Cite this article
                        



                    
                        
                        
                    

                
                
                    
                        
                            
                            
                                
                                [image: ]
                            
                            Bulletin of Mathematical Biology
                        
                        
                            
                                Aims and scope
                                
                            
                        
                        
                            
                                Submit manuscript
                                
                            
                        
                    
                

            
        
    


        
            
                

                

                
                    
                        	N. G. Cogan1, 
	Barbara Szomolay2 & 
	Martin Dindos3 


                        
    

                        
                            	
            
                
            568 Accesses

        
	
            
                
            19 Citations

        
	
            Explore all metrics 
                
            

        


                        

                        
    
    

    
    


                        
                    
                


                
                    Abstract
It is well known that disinfection methods that successfully kill suspended bacterial populations often fail to eliminate bacterial biofilms. Recent efforts to understand biofilm survival have focused on the existence of small, but very tolerant, subsets of the bacterial population termed persisters. In this investigation, we analyze a mathematical model of disinfection that consists of a susceptible-persister population system embedded within a growing domain. This system is coupled to a reaction-diffusion system governing the antibiotic and nutrient.
We analyze the effect of periodic and continuous dosing protocols on persisters in a one-dimensional biofilm model, using both analytic and numerical method. We provide sufficient conditions for the existence of steady-state solutions and show that these solutions may not be unique. Our results also indicate that the dosing ratio (the ratio of dosing time to period) plays an important role. For long periods, large dosing ratios are more effective than similar ratios for short periods. We also compare periodic to continuous dosing and find that the results also depend on the method of distributing the antibiotic within the dosing cycle.
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Appendix
Appendix

                  Proof of Theorem 1

                  We have to overcome the issue that C solves a second-order equation on [0,L] and depends on B
                    
                      p
                    , hence we cannot solve it as easily as the equation for A whose solution is A(x)=u
                    0cosh(ϕ
                    
                      a
                    
                    x)/cosh(ϕ
                    
                      a
                    
                    L). We deal with this issue by considering the ODE system (35) [0,L] with initial conditions (36).

                  Here, the initial condition for the nutrient, C
                    0 (which will be chosen later), is any number from the interval (0,K] and (b
                    
                      s
                    ,b
                    
                      p
                    ) is the nontrivial equilibrium given by (28). We want to show that there is a value C
                    0 such that C(L)=K, for that value of C
                    0 the solution of the ODE system (35) is also a steady state solution of (5)–(11) satisfying boundary conditions (12).

                  The solvability of the system (35) with initial conditions (36) follows from standard ODE theory provided v>0 (to avoid the case 1/v being undefined). This unfortunately is the case at x=0. To deal with this, let us write B
                    
                      s
                    (x) and B
                    
                      p
                    (x) near x=0 as 

$$ B_s(x)=b_s+O(x),\qquad B_p(x)=b_p+O(x). $$

                    (42)
                

 If follows that v(x)=g(C
                    0)b
                    
                      s
                    
                    x+o(x), hence if g is positive for nonzero values of C
                    0 we see that v(x)=O(x). Now writing 

$$ g(C)B_s(1-k_d A - k_l - B_s) + k_r(A)B_p=O(x), $$

                    (43)
                

 due to cancellations as (b
                    
                      s
                    ,b
                    
                      p
                    ) is the equilibrium. Hence, 

$$\frac{ d B_s}{ d x } = \frac{1}{v} \bigl[g(C)B_s(1-k_d A - k_l - B_s) + k_r(A)B_p \bigr]=O(1), $$

 with similar statement holding for \(\frac { d B_{p}}{ d x }\) near x=0. This implies that the ODE system (35) is regular even at x=0, hence the standard solvability theory applies on the whole interval [0,L]. From this, we get that the system (35) with initial conditions (36) has a unique solution on [0,L] for any C
                    0>0.

                  Consider now a map \(F:C_{0}\mapsto C_{C_{0}}(L)\) where \(C_{C_{0}}(x)\) is the solution of (35)–(36) where \(C_{C_{0}}(0)=C_{0}\). We claim that due to continuous dependence of solvability of (35) on initial conditions F is continuous. Also, note that if C
                    0→0+ then F(C
                    0)→0+ (see Eq. (5) and the assumption that f(0)=0). Finally, F(C
                    0)≥C
                    0 as C″≥0 and C′(0)=0. Hence, by the intermediate value theorem, there is at least one value C
                    0∈(0,K] such that F(C
                    0)=K. For this value, the system (35)–(36) is the nonzero steady-state solution of (5)–(11) satisfying boundary conditions (12).

                  For the converse, if (B
                    
                      s
                    ,B
                    
                      p
                    ,C,v) is a continuous nonzero steady-state solution of the system (5)–(11), then it must satisfy (35) on the interval (0,L]. Also obviously in the boundary conditions (12) we have that v(0)=0, C′(0)=0 and C(0)∈(0,K]. We only have to establish that (B
                    
                      s
                    (0),B
                    
                      p
                    (0)) must equal to (b
                    
                      s
                    ,b
                    
                      p
                    ) given by (28).

                  To see this, we recall the reparametrization s:(−∞,0]→(0,L] introduced above that turns Eqs. (35) for B
                    
                      s
                     and B
                    
                      p
                     into the nonautonomous system (24)–(25) where b
                    
                      s
                    (t):=B
                    
                      s
                    (s(t)), b
                    
                      p
                    (t):=B
                    
                      p
                    (s(t)). We want to understand the behavior of (b
                    
                      s
                    (t),b
                    
                      p
                    (t)) as t→−∞. Recall that α-limit set of a solution is the set of all accumulations points of the solution as t→−∞. As (b
                    
                      s
                    (t),b
                    
                      p
                    (t))∈Δ, the α-limit set of this solution is a nonempty subset of Δ. Notice also that as t→−∞ the system (24)–(25) approaches the autonomous system (26)–(27). Thus, the α-limit set of the solution (b
                    
                      s
                    (t),b
                    
                      p
                    (t)) is either an equilibrium or a limit cycle of the autonomous system (26)–(27). However, we have shown that (26)–(27) has no limit cycle and only two equilibria: (0,0) and (b
                    
                      s
                    ,b
                    
                      p
                    ) given by (28). Thus, either 

$$B_s(0)=\lim_{t\to-\infty}b_s(t)=0,\qquad B_p(0)=\lim_{t\to-\infty}b_p(t)=0, $$

 or 

$$B_s(0)=b_s,\qquad B_p(0)=b_p. $$

 To finish our proof, we have to show the first option does not happen. We will prove this by contradiction, let us assume that indeed lim
                      t→−∞
                    b
                    
                      s
                    (t)=lim
                      t→−∞
                    b
                    
                      p
                    (t)=0. Recall also that \(\frac{ds}{dt}=v(s(t))\), hence 

$$L=L-0=s(0)-s(-\infty)=\int_{-\infty}^0 v\bigl(s(t) \bigr)\,dt. $$

 Since v is monotone nondecreasing, it follows that w(t)=v(s(t))→0 as t→−∞. Hence, by the ODE v satisfies, we see that 

$$\frac{dw}{dt}=\frac{dv}{ds}\frac {ds}{dt}=g\bigl(C\bigl(s(t)\bigr) \bigr)B_s\bigl(s(t)\bigr)v\bigl(s(t)\bigr)=g\bigl(C\bigl(s(t)\bigr) \bigr)b_s(t)w(t). $$

 Hence, 

$$\frac{d}{dt}(\ln w)=\frac{1}{w}\frac{dw}{dt}=g\bigl(C\bigl(s(t)\bigr) \bigr)b_s(t)\le g(K)b_s(t), $$

 since g is a monotone function. It follows that 

$$\ln w(0)-\ln w(-T)\le g(K)\int_{-T}^0b_s(t) \,dt, $$

 for all T>0. Since w(0)=v(L) and w(−T)→0 as T→∞, we get that 

$$\int_{-\infty}^0b_s(t)\,dt=\infty. $$

 Recall that we do know how solutions b
                    
                      s
                    (t) will look near 0. The equilibrium at (0,0) has one positive eigenvalue λ>0, hence we get that near this point 

$$\frac{db_s}{dt}=\lambda b_s + o(b_s), $$

 i.e., \(\frac{d}{dt}(\ln b_{s})=\lambda+o(1)\), hence 

$$b_s(-T)=b_s(0)\exp\bigl[-\bigl(\lambda+o(1)\bigr) T \bigr],\quad\mbox{as}\ T\to\infty. $$

 This means that the integral \(\int_{-\infty}^{0}b_{s}(t)\,dt\) is finite, which is a contradiction. □

                
                  Proof of Theorem 2

                  The argument is similar as the one given above. Assume that there is a continuous nonzero steady-state solution of the system (5)–(11). Again, consider the re-parametrization s:(−∞,0]→(0,L] introduced above that turns Eqs. (35) for B
                    
                      s
                     and B
                    
                      p
                     into the nonautonomous system (24)–(25). By same argument as given above, if we consider the α-limit set of the solution (b
                    
                      s
                    (t),b
                    
                      p
                    (t)) on (−∞,0], then this set will consist of equilibria and limit cycles of the autonomous system (26)–(27). Given the assumption m≤0, the only equilibrium is (0,0), and there is no limit cycle. Hence b
                    
                      s
                    (t),b
                    
                      u
                    (t)→0 as t→−∞. We claim that this implies that b
                    
                      s
                    (t)=b
                    
                      u
                    (t)=0 for all t≤0 (hence B
                    
                      s
                    =B
                    
                      p
                    =0 on [0,L]) from which the claim of Theorem 2 follows.

                  Indeed, assume that this is false. Then b
                    
                      s
                    (t)+b
                    
                      u
                    (t)>0 for t<0 and b
                    
                      s
                    (t),b
                    
                      u
                    (t)→0 as t→−∞. This is, however, impossible. For a fixed large nonnegative t, we have that 

$$m(t)=1-k_dA(t)<1-k_dA(0)\le0, $$

 which implies that (0,0) is an equilibrium with two negative eigenvalues. Since we are looking at the limit t→−∞, we are reversing time. In the reverse, time (0,0) is therefore totally unstable and (b
                    
                      s
                    (t),b
                    
                      u
                    (t)) cannot approach zero but has to move away from it as t→−∞. Hence, the only option is that b
                    
                      s
                    (t)=b
                    
                      u
                    (t)=0 for all t≤0. □

                
                  Proof of Theorem 3

                  We start by dealing with the nonexistence result. Let us assume first that \(u_{0}\ge\frac{\cosh(\phi_{a}g(K)/\sigma)}{k_{d}}\). By contradiction, let us assume that there is a nonzero steady-state solution of the system (5)–(11) satisfying boundary conditions (12) of positive length L>0. Then L≤L
                    max=g(K)/σ, since 

$$v(L)\le g(K)L,\quad\mbox{hence:}\ 0=v(L)-\sigma L^2\le L\bigl(g(K)- \sigma L\bigr). $$

 Clearly, for L>g(K)/σ, the right-hand side is negative so the upper bound on L must hold. It follows that 

$$A(0)=\frac{u_0}{\cosh(\phi_aL)}\ge\frac{u_0}{\cosh(\phi_aL_{\max })}=\frac{u_0}{\cosh(\phi_ag(K)/\sigma)}. $$

 Hence, 

$$m=1-k_dA(0)\le1-k_d\frac{u_0}{\cosh(\phi_ag(K)/\sigma)}\le0. $$

 From this, by Theorem 2, we have that B
                    
                      s
                    =B
                    
                      p
                    =0 on [0,L], so v(L)=0, and hence 0=v(L)−σL
                    2=−σL
                    2. From this, L=0. It follows that if we define 

[image: ]

                    (44)
                

 then 

$$u^2\le\frac{\cosh(\phi_ag(K)/\sigma)}{k_d}. $$


                  
                  Now, define 

[image: ]

                    (45)
                

 Clearly, u
                    1≤u
                    2. If we prove that for any \(u_{0}< \frac{1}{k_{d}}\), there is a nonzero steady state of positive length, then the whole claim is established.

                  Once again, any such steady-state solution has to satisfy L≤L
                    max=g(K)/σ by the same argument as given above. This gives a lower bound on the value of C(0)=C
                    0 since it follows that any C that solves (5) on [0,L] has a subsolution c defined on [0,L
                    max] by 

$$\frac{ \partial^2 c}{ \partial x^2 } = \biggl(\sup_{x\in[0,K]} \frac {f(x)}{x} \biggr)c, \qquad c'(0)=0,\qquad c(L_{\max})=K. $$

 Here, the supremum of f(x)/x exists as we assume that f(0)=0 and f is Lipschitz on [0,K]. Hence, always C≥c on [0,L] so we see that we only have to consider C
                    0∈[c(0),K] (and c(0)>0 provided K>0).

                  It also follows by our assumption that 

$$A(0)=\frac{u_0}{\cosh(\phi_aL)}\le u_0< \frac{1}{k_d}, $$

 hence 

$$m=1-k_dA(0)>0 $$

 and Theorem 1 applies.

                  Consider a map F:[c(0),K]×[0,L
                    max]→ℝ2 defined as follows. For each pair (C
                    0,L), we consider the unique solution (B
                    
                      s
                    ,B
                    
                      p
                    ,C,v) of the ODE system (35) with initial conditions (36) and A given by (19) on [0,L]. Here, (b
                    
                      s
                    ,b
                    
                      p
                    ) is the nontrivial equilibrium given by (28). We define 

$$F(C_0,L)=\bigl(C(L)-K,v(L)-\sigma L^2\bigr). $$

 By continuous dependence of solutions of ODE on its initial condition we get that F is a continuous function of two variables C
                    0 and L. We now want to restrict the domain of F to a smaller box [c(0),K]×[L
                    min,L
                    max] where L
                    min>0 is chosen as follows: 

$$\begin{aligned} &F_2(C_0,L_{\min})=v(L_{\min})-\sigma L_{\min}^2\ge\varepsilon>0, \\ &\quad\mbox{for some}\ \varepsilon>0\ \mbox{and all}\ C(0)\in\bigl[c(0),K\bigr]. \end{aligned}$$

 Here, F
                    2 is the second component of the map F=(F
                    1,F
                    2). Such value L
                    min exists because 

$$\frac{\partial F_2}{\partial L}(.,0)\ge\delta>0\quad\mbox{and}\quad F_2(.,0)=0. $$


                  
                  Indeed, \(\frac{\partial F_{2}}{\partial L}(.,0)=g(C_{0})B_{s}(0)\ge g(c(0))\inf b_{s}\). Here, g(c(0))>0 and the infimum is taken over all b
                    
                      s
                     given by (28) for C(0)∈[c(0),K]. Due to our assumptions, infb
                    
                      s
                    >0.

                  The question is whether for some pair (C
                    0,L) in the domain D=[c(0),K]×[L
                    min,L
                    max] of the map F we have F(C
                    0,L)=(0,0), as for such pair the solution (B
                    
                      s
                    ,B
                    
                      p
                    ,C,v) of the ODE system (35) with initial conditions (36) is a nonzero steady-state solution of the system (5)–(11) satisfying boundary conditions (12).

                  We know that at the boundary ∂D of our domain we have: 

$$ F_2(.,L_{\min})>0,\qquad F_2(.,L_{\max}) \le0,\qquad F_1\bigl(c(0),.\bigr)\le 0,\qquad F_1(K,.) \ge0. $$

                    (46)
                

 Hence, we either have (0,0)∈F(∂D) and we are done or 

$$\deg\bigl(F,(0,0)\bigr)=-1. $$

 This can be seen from (46) as the image of the ∂D is a closed curve F(∂D) that loops once around (0,0) and has orientation reverse to ∂D. Hence, as deg(F,(0,0))≠0, it follows that (0,0)∈F(D). This establishes existence of nonzero steady-state solution for all u
                    0<1/k
                    
                      d
                    . □

                
                  Remark to Theorem 3

                  Realistically, we expect u
                    1=u
                    2, however, in order to do that we would have to establish that for all u
                    0∈[u
                    1,u
                    2) there is a nonzero steady state solution. We, however, lack the monotonicity of the map u
                    0↦C
                    0(u
                    0), where C
                    0 is the value of the function C at zero. It might happen then that for some u in this interval this map is not monotone, and hence, it might be possible to have u
                    1<u
                    2. We have not observed such situation in our simulations, but this scenario cannot be excluded.
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