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Abstract A modelling approach is used for studying the effects of population vac-
cination on the epidemic dynamics of a set of n cities interconnected by a complex
transportation network. The model is based on a sophisticated mover-stayer formu-
lation of inter-city population migration, upon which is included the classical SIS
dynamics of disease transmission which operates within each city. Our analysis stud-
ies the stability properties of the Disease-Free Equilibrium (DFE) of the full n-city
system in terms of the reproductive number Ry. Should vaccination reduce Ry below
unity, the disease will be eradicated in all n-cities. We determine the precise con-
ditions for which this occurs, and show that disease eradication by vaccination de-
pend on the transportation structure of the migration network in a very direct manner.
Several concrete examples are presented and discussed, and some counter-intuitive
results found.
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1 Introduction

Understanding how to control epidemics as they spread through populations is an
issue of great concern in the present era of emerging and reemerging diseases (Ri-
ley 2007; Eames and Keeling 2002; Keeling and Eames 2005). Mathematical mod-
elling approaches have much to contribute toward this important research challenge.
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In the past, mathematical modelling studies have been the inspiration behind a num-
ber of major epidemiological principles and they are being called upon more and
more to assess and provide guidelines for public health and policy decision makers.
The mathematical formulation of a disease’s basic reproduction number Ry, for ex-
ample, is now considered one of the foundation principles in epidemiology. Whether
Ry is less or more than unity determines whether a disease can, on average, repro-
duce itself in a susceptible population. Under conditions for which Ry > 1, and thus
above threshold, a disease can be expected to invade. The threshold has in fact be-
come the basis of the now well-known herd immunity concept (Fine 1993), which
states that it is only necessary to vaccinate a certain proportion of the population (as
opposed to the entire population) to keep Rp below threshold, and thereby prevent a
disease from spreading. The herd immunity concept should be viewed as one of the
major achievements of disease modelling, and constitutes the theoretical justification
for mass immunization schemes that have been implemented across the world, saving
uncountable lives.

Over the last decade, interest has turned to understanding the dynamics of a dis-
ease spreading through a meta-population network of cities. Such modelling studies
attempt to take into account the network topology of the interconnected cities, in-
cluding the structure and intensity of the travel links between them (Ruan et al. 2006;
Riley 2007; Eames and Keeling 2002; Keeling and Eames 2005; Eubank et al. 2004;
Lloyd and May 2001; Pastor-Satorras and Vespignani 2001; Fine 1993; Pastor-
Satorras and Vespignani 2001, 2002; Brockmann et al. 2006). Here, we focus on
modelling vaccination as a method of disease control using a multi-city model that
treats the travel of individuals between cities in a very general way. There are three
layers to the model. The first is a “mover-stayer” mobility model which describes
how individuals travel through a network of cities. This incorporates detailed travel
patterns and allows a subset individuals to always stay in their cities of residence
while others are free to travel around the network eventually to return to their city of
origin. The second layer is a set of epidemic models that characterise the disease dy-
namics providing equations that describe the numbers of susceptible and infected
individuals present in each city at any given time. Finally, the third layer adds a
vaccination scheme, and keeps track of the number of vaccinated individuals to be
found in any city. Although some previous studies have analysed mobility-epidemic
models, this is the first attempt that we are aware of with a vaccination scheme that
retains the full details of the city-network. We would suppose the same model may
have applications for studying antivirus dynamics in computer networks. The epi-
demic model is of the SIS type, where the susceptible individual (S) becomes in-
fected after contact with infected individuals (7). Upon recovery from the disease,
infected individuals return again to the susceptible pool, thus closing the SIS loop.
The SIS framework has been widely used for studying disease dynamics both for
meta-population networks based on mobility models (Sattenspiel and Dietz 1995;
Arino and van den Driessche 2003, 2004; Ruan et al. 2006), and also for sim-
ple vaccination models (Hadeler and Castillo-Chavez 1995, 1997; Brauer 2008;
Kribs-Zaleta and Velasco-Hernandez 2000; Kribs-Zaleta and Martcheva 2002). The
SIS with vaccination model has in the past been considered a useful tool for study-
ing pertussis, tuberculosis (Pastor-Satorras and Vespignani 2001), hepatitis B (Kribs-
Zaleta and Martcheva 2002), and gonorrhea (Hethcote and Yorke 1984). The paper is
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structured as follows. We first describe earlier models that deal with intercity travel,
including both the mobility model (Sect. 1), and the epidemic model (Sect. 2) (Sat-
tenspiel and Dietz 1995; Arino and van den Driessche 2003, 2004; van den Driessche
and Watmough 2002). In Sect. 3, we formulate the vaccination model for the case
of multiple cities connected in an arbitrary network. In the fourth section, we anal-
yse the model, determine its disease free equilibrium (DFE), find the system’s “next
generation matrix”, and derive an expression for the reproductive number Ry. In the
fifth section, three examples are given with the aim of demonstrating the interplay
between the transmission coefficients in the vaccination model and the stability of
the DFE via determination of Rg. The examples show different applications of the
theoretical ideas developed, sometimes with non-intuitive outcomes.

2 Model Development
2.1 The Mobility Model

The first layer of the multi-city epidemic model analysed here is based on the mo-
bility model of Sattenspiel and Dietz (1995). The latter considers the transportation
of individuals between n-cities, whereby each city has a component of its population
that remains stationary, while the remainder is free to move to other cities across the
city network. As such, it is referred to as a mover-stayer model. We follow Arino
and van den Driessche (2003) who extended the basic mobility model of Sattenspiel
and Dietz (1995). Consider a network of n-cities. The number of residents of city-i,
N/ () at time ¢, are all those individuals who were born and who normally live in
city-i. Of these, N;;(¢) are the number of residents that are actually present in city-i
at time ¢, while N;;(¢) is the number of travellers from city-i who are visiting city- j
at time 7. We can thus write the resident population of city-i as

n
NI =Y Njj. (0
j=1

Similarly, the number of individuals (residents and travelers) who are physically
present in city i at time ¢, is given by

n
NP =3"Nji. )
j=l

Following Sattenspiel and Dietz (1995), suppose that the per capita rate per unit
time of residents of city i that leave the city is given by the outward bound trans-
portation coefficient g; > 0, and the fraction m j; > 0 of outgoing individuals travel
to city j. Note that m;; = 0 and Z’}=1m ji = 1. The outgoing mobility matrix
M = [g;m ;] specifies the rate of outgoing travellers from city-i to city-j. It also
necessary to take into account r;; > 0, the per capita rate of residents of city-i that
are in city-j who return back to city i. In this scheme, an individual from city-i who
travels to city-j must return to city-i before he can move on to city-k.
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The Arino and van den Driessche (2003) model also takes into account the birth
and death process. The per capita rate of births in each home city is given by d > 0,
while it is assumed that individuals travelling outside their home city do not give
birth. The per capita death rate for all individuals anywhere is also d. Putting all this
together, yields the ordinary differential equations that describe the dynamics of the
population, first in terms of residents of city-i who are present in city-i only (Arino
and van den Driessche 2003):

dNj;
dt

n
=d(N] —N,‘l')+ZrijNij — &iNii (3)
j=1

Similarly, the dynamics of residents from city-i who travelled to city-j (i # j) is
given by
dNj;
dt

It is possible to show from manipulating the above equations that the resident pop-
ulation N/ = Z';: 1 Nij = ¢, a constant, which is a property that is used shortly. In

=gmjiNii —rijNij — dNi; “

contrast N l.p is a variable quantity.
For d > 0, subject to the initial values N;; > 0 at t = 0 with fixed Nl.’ > 0, it is not
hard to show that the above model has the following unique equilibrium:

A 1
N;jj = — | N/ 5
" (H‘giCz‘) ' ©)
and for j #1i
~ mi: 1
Nij=gi—2~ N! 6
Y gld‘l'rij(l"'gici) ' ©
where Ci=Zzzlﬂ—’;';kfori:1,...,n.Arino and van den Driessche (2003) proved

that the equilibrium is globally stable.
2.2 The Epidemic Model

We now describe the standard SIS epidemic framework for the network of n-cities
with an underlying mobility model. Define S;; and I;; as the number of susceptible
and infective residents from city i, who are now present in city-j at time-¢, respec-
tively.

We restrict our attention to susceptibles originating from city-i and travelling to
city- j. These susceptibles increase the new infectives in city-j by a rate:

n

S,'jlk,'
> kB Lyt @
k=1 N

J

Here, the disease transmission rate B;x; > 0 is the proportion of contacts that meet in
city-j, between susceptibles originating from city-i and infectives that originate from
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city-k that actually result in transmission of the disease. The total number of contacts
in city j per day is set as x; > 0. The disease recovery rate is the same for all cities
and is set as y > 0, which means that the average infection time is 1/y days.

We can now write down the various equations. The dynamics of the susceptibles

and infectives originating from and residing in city-i (withi =1, ..., n), can be mod-
elled by:
dSi _+ . Sii L r
I = Zriksik — &iSii — ZKi,BikiW +d(N] — Sii) +vlii (®)
k=1 k=1 !
dl:: n n Sii Iii
d;l = rukin— gilii + ZKiﬁiki% — (v +d)lii &)
k=1 k=1 !

Similar equations can be constructed that describe the dynamics of the variables S;;
and [;;. For j #1i,

dSij . S I
d_;]=gimjiSii—”ijSij—Z’Cjﬂikj%—dsij‘i‘ylij (10
k=1 j

dl:; n Siilii
d—;]=gimji1ii—rijlij+l;Kjﬂikj%;,]—(V +d)I;; (1D

Note that referring back to Eqs. (3) and (4) of the mobility model corroborates that
Nij = Sij + Ij.

and thus the epidemic model is fully consistent with the mobility model. The epi-
demic model just described always has a Disease Free Equilibrium (DFE) whereby
1;; =0and S7; = ]\A/i.,' and the disease is eradicated in each city. We seek to find con-
ditions for which the DFE is locally stable. Various properties of the equilibria of the
above model may be described in terms of the connected components of the trans-
portation network (i.e., the outgoing mobility matrix M). A connected component is
a set of cities connected in a fashion such that it is possible to reach any city from any
other city. If the entire outgoing mobility matrix M is irreducible then all cities in the
network can reach every city. Arino and van den Driessche (2003) showed rigorously
that for any connected component, it is not possible to have an equilibrium in which
one city is maintained without any disease while other connected cities remain with
endemic disease. Thus, a disease that persists in a single city will continuously infect
every other city in the connected component.

3 The Epidemic Model with Vaccination

We extend the above SIS network model to include vaccination of individuals in man-
ner similar to Kribs-Zaleta and Velasco-Hernandez (2000). This requires dividing the
population of each city now into three classes—S;;—susceptibles, I;;—infectives,
V;j—vaccinated, respectively. Residents from city i who are now in city j at time ¢
are thus
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Nij = Sij + lij + Vij

fori,j=1,...,n

It is assumed that vaccinated individuals are still capable of being infected if the
vaccine is not completely effective. We thus let o represent the effectivity of the vac-
cine; o = 0 implies the vaccine is completely effective in preventing infection,while
o = 1 means that the vaccine is completely ineffective. To include this new source
of infections arising from inefficient vaccination, the rate of new infections in Eq. (9)
and Eq. (11) needs to be modified to

(S; +av Vg
}:a&@ SARALL (12)

Two other parameters are required to characterize this vaccination scheme: ¢—
defines the rate at which the newborn or infant population is vaccinated. ¢ = 1 implies
all newborn susceptibles are vaccinated, while ¢ = 0 implies the absence of vaccina-
tion altogether. The parameter & models the rate at which the vaccination wears off
or wanes, and controls the number of individuals reentering the susceptible class.

The dynamics of the vaccinated people originating from and residing in city-i are
thus given by

n
o Viily;
= Zrzkvzk —giVii +¢iSii — ZKIIBZI(I ]\l]l l — O +ad)V;;

k=1 i

dVii
dt

Taking this further, it is possible to write the full equations for the epidemic-
mobility model with vaccination. We take advantage of the fact that the number of
equations can be reduced by rewriting

Sij = Nij — Lij = Vij.

Since N;; is known from the mobility model, the equations describing the susceptible
dynamics are redundant and may be eliminated. Now the full model becomes

n

dl:; —1Iii + Vii(o — 1)
L Zrzkllk — gilii +2Klﬂlkl Nii i - ki
k=1

dt N’
—(y +d) i (13)
dVii - n o Vii I
= = ZrikVik —&Vii + ¢i(Nii — 1ii — Vi) — ZKiﬂiki o
dt N;
k=1 k=1 i
— (6; +d)Vii (14)
for j #£1,
dl;; " Nij — Lij + Vij(o — 1)
—L = gimjilij —rijIL;j +ZKj,3ikj 2 Van Iij
dt P N;
—(y +d)l;; (15)
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dV:; n o Viily;
d_;jzgimjivii—rijvij_zkjﬂikj ]\l,]p L— (0 +d)Vi
k=1 J
+¢i (Nij — 1ij — Vij). (16)

The analysis that follows relates to the reduced equations (13)—(16).

4 Analysis

We first show that system (13)—(16) has a disease-free equilibrium. Setting /* =0 in
Egs. (14) and (16) gives
n
D rikVik = Vii(gi + i +6; +d) + ¢iNii =0 (17
k=1
gimjiVis = Virij +6i+d+ )+ ¢iNij =0, j=1,....nj#i. (18)

Since the coefficients of V;; form an M matrix (Berman and Plemmons 1979), then
Egs. (17)~(18) must admit a unique positive solution V;* = (V3,..., V). Thus, in

the same notation
n’"n

Po= (Vi 05, ..., Vi I,

where I =0, and we have arrived at the disease-free equilibrium.

It is now possible to use the methods of van den Driessche and Watmough (2002)
to calculate the reproductive number Rg. Set will- =(y+d+gi) and wl-lj =(y+d+
rij) for i # j and also ordering the infective variables as

L, oo, i, Iy Iy oo Dy o g

This gives the diagonal block matrix V = diag(V;;), where fori =1, ...,n, V;; is the
n X n matrix:

1
Wi 0 e —8imy; 0 0
1
0 W5 ... —giMmyi 0 0
V”_ “ee e o e “ee
- 1
—ri1 —ri2 wil. —TIii+1 ... —Fip
I
0 0 ee. —giMy; 0w,

The matrix V¥ characterizes the loss of infected individuals from city-i in the 7 cities
and the travel by infected individuals of city-i among the n-cities.

Let F be the block matrix with n2 blocks, where each block F; ij is n x n diagonal
and has the form F;; = diag(f;;,) where

]\fiq + V;q(a - 1)

)4
q

fijg = KqBijq 19)

forg=1,...,n.
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Recall that for o = 1, the vaccination has no effect, and would represent the multi-
city epidemic model without vaccination, as studied in Arino and van den Driessche
(2003). Since V! is block diagonal, F V~! can be written in block form, where
the i, j block is Fj; VJ;I. FV~—1 is the “next generation” matrix of the full model
(Diekmann et al. 1990; Diekmann and Heesterbeek 2000; van den Driessche and
Watmough 2002) and its spectral radius gives the basic reproduction number for the

system (13)—(16), namely
Ro=p(FV'). (20)

The above formula allows evaluation of Ry, and thus is the key to determining local
stability of the DFE for the full system under vaccination.

5 Applications

We now discuss three examples that make use of the vaccination model and Eq. (20)
for evaluating R( to demonstrate potential applications.

5.1 The Effect of Travel

Before examining the effects of incorporating transportation between two cities, we
first consider a single isolated city as a reference. Rewriting Eqs. (13) and (14) (taking
i=1,j=1,andr; =0, g =0, I;; =0 and zeroing inter-city transmission terms),
we obtain

di Nu—-In+Vi( -1

L I — d)l
T K1Bi111 N7 n—+din

dvi

TS =¢;(N11 — i1 — Vi) — (61 +d) V1.

Setting 111 =0, V= 0,0 =¢1,0 =01,8=P111, N11 = Nlp, then at the infection
free equilibrium, and after some rearrangement, the reproduction number of a single
city is found to be
0+d
Ry— kB +d+o¢ 21
y+d ¢+0+d

The same result is also found in Kribs-Zaleta and Velasco-Hernandez (2000).

Consider now transportation between two such cities. Using the notation of the
previous section, we proceed to calculate the reproduction number of the full system
by determining V and F from Eq. (19) and Eq. (20), namely

g1+y+d —ri2 0 0
V= —81 r2+y+d 0 0
0 0 rni+y+d —&2

0 0 —r g+y+d
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Fig. 1 Two isolated cities with Number of Infected Example
absence of transportation 1500 ! H T " i ’
(81=282=0,r1p=rp; =0. ,,,E:g;
City-2 is given a higher rate of
vaccination than city-1 and also
has a lower transmission rate ‘ : : : : :
with ¢; =0.01, ¢ =0.1, V1] T TTTITots SCCURTIIR SOSCELE PP SSSCOOIEN USRS
B1 =0.059, B =0.048. For : : : : 5 :
these parameters, R(l) =1.1059, =
R} =0.6541 so that the DFEis
unstable
I‘I\. . H
n N A i i i i I
o 500 1000 1500 2000 2500 3000 3500 4000
t[sec]
and,
KB N+ V1@ —1)) 0 kBN 1+ V11 —=D) 0
Nlp Nlp
0 KBy (Np+V12(0—1)) 0 KBy (Np+V12(c—1))
F= 2p N2p
k1B (N2 +V21(0 1)) 0 k1B1(N21+V21(0 =) 0
Nip Nip
0 KBy (Npp+V22(0—1)) 0 k2P (Npp+V22(0—1))

N2p N2p

Hence,
—1
Ro=p(FV7').

We follow both Arino and van den Driessche (2003), McCluskey et al. (2003) and
Hethcote and Yorke (1984) (the latter in a study of gonorrhea vaccination) who used
the following parameter values: o = 0.5 (vaccine is 50 % effective), k1 = k2 =1,
01 =6, =0.01 (average vaccine waning time 10 years), y = 1/25 (average infectious
period 25 days), d = 1/(75 % 365) (average lifespan 75 years), N1, = Na, = 1500,
miy =my1 = 1, rip =rp1 =0.05. City 2 is given a higher rate of vaccination than
city 1 and also has a lower transmission rate with ¢; = 0.01, ¢ = 0.1 (daily vaccina-
tion rates), 1 = 0.059, B2 = 0.048 (transmission rates) (Arino and van den Driessche
2003; McCluskey et al. 2003).

For these parameters, in the absence of transportation, g; = g = 0, the two cities
have reproduction numbers Ré = 1.1059, R(2) = 0.6541 as obtained from Eq. (21).
Thus, the disease persists in the first city, which has the lower vaccination rate, but
goes extinct in the second city, as shown in the model simulations of Fig. 1. The full
system thus fails to converge to the DFE.

In making these claims, we have assumed that the second city converges to the
disease-free equilibrium (DFE) and it is in fact the unique attractor. This may not
be the case if the model has a backward bifurcation as discussed in Kribs-Zaleta and
Velasco-Hernandez (2000). According to their work, the incorporation of vaccination
can lead to two possibilities depending on parameters: either the DFE is globally
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stable, or it competes with another locally stable endemic equilibrium. Their analysis
led to the following theorem:

Q) If(d+0+0p)? <(d+y)o(l —o)p and By < B < Po , then two endemic
equilibria exist, one of which is locally stable and competes with the locally
stable disease-free equilibrium;

(ii) otherwise, the disease-free equilibrium is the unique attractor when Ry < 1.

For our parameters values:
(d+ 6 +op)> =0.0036

and
(d+y)o(l—0)¢p=0.001

so, the inequality is clearly violated in (i) and we therefore accept the conclusion
in (ii). Thus, for our parameters, the DFE of this model of vaccination is the unique
attractor.

We now suppose the cities are connected together via transportation, g1 = g» =
0.1, which implies that about 10 % of the population leaves each city per day(we note
that g; is only an approximation of the actual fraction leaving since technically it is
a per capita rate coefficient). As calculated above from V and F, the reproduction
number for the full system is Ry = 0.8599. Since Ry < 1, the DFE is stable lead-
ing to extinction of the disease in both cities as shown in the model simulations of
Fig. 2. Thus, the transportation of vaccinated individuals from city-2 to city-1 led
to eradication of the disease that otherwise would have been present were there no
inter-city travel. It is interesting to calculate the value of the critical outward bound
transportation coefficient—g. (g = g1 = g2), the point where the two cities switch
so that they both sit at the DFE. Numerical calculations plotted in Fig. 3 show that
the critical transmission rate is g. ~ 0.0075. A simple calculation shows that this
corresponds to a reproduction number—R(y = 1, as would be expected. So one can
conclude that even a small movement of the order of 1 % of the population leaving
the city per day, bring the change in the state of system of two cities from non-DFE
state to DFE state.

5.2 Two-Group Versus a Two-City Vaccination Model

Kribs-Zaleta and Velasco-Hernandez (2000) describe an SIS model with vaccination
for two interacting groups of individuals. They assume that the two groups are fully
mixing with one another and every individual from one group can equally come into
contact with members of the other group. This is quite different from the multi-city
model outlined here, since for the mover-stayer model, some residents may never
leave their city of origin, and thus will never mix with individuals from other cities. It
is interesting to compare conclusions from the two-group mixing model as opposed
to the more realistic two-city mover-stayer model.

Kribs-Zaleta and Velasco-Hernandez (2000) determine the reproduction number
for an isolated city or single group with vaccination, and this turns out to be exactly
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Fig. 2 Active transportation Number of Infected Example
between the two cities 1500 ! ! ' J ! ! J L

: : : : : city-1
(g1=82=0.1, ; : : 5 3 : : —— city2

r12 =rp1 = 0.05). Otherwise,
parameters are the same as in
previous figure. The : :
reproduction number for the 1000 |-
system is Rg = 0.8599, thus the
two city system has a stable

M)

DFE
L
0 L i I L i
0 400 500 600 700 800 900 1000
t[sec]
Fig. 3 Plot of 171 with Mumber of Infected Example

increasing values of gq. The 20 H ! !
critical value of g is

gc ~0.0075 that gives a
reproduction number—Rg = 1.
When g1 > gcc, the whole
system is in the DFE state

. i ; . ; .
u] 0.002 0.004 0.006 0.008 0.01 0.012
9

the same as that predicted by our single-city model, as would be expected (see pre-
viously paragraph Eq. (21)). Consider again the two isolated cities example given
above with the same parameters. There the reproduction number for the first city is
R} = 1.106 and for the second city is Rg =0.654.

Kribs-Zaleta and Velasco-Hernandez (2000) analysis finds that the reproduction
number for the system of two cities, treated as mixing groups, is given by

Ny N
R(¢) = R1(¢1)W + R2(¢2)W

where Ni and N; are the sizes of the two groups, assumed constant, and N =
N1 + N,. Based on the parameters we are using here, the above expression corre-
sponds to a reproduction number of Ry = 0.88, which would imply the system of
two mixing groups will reach the stable DFE. However, according to our two-city
mover-stayer model in Eq. (20), using a transportation coefficient g; = go = 0.1, we
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Fig. 4 The proportions ¢; are 0.92
normally distributed random Ra_,.
variables with mean ¢; = ¢ and 09 ~——Ro,
standard deviation—o . For each Ro
5 0881 min
o three values calculated—Ry),
95 % of Romax> Romin 0.86F
0.84- .
- -
2 P
082+ P .
08k -~ ]
078 ///
076
0.74

1 1 1 1 1 1 . i L]
0.m 0015 002 0025 003 0035 004 0045 005
o

obtain Ry = 1.1047 (based on 13 = 0.07, 21 = 0.05). This would imply the two city
mover-stayer system lacks a stable DFE. Thus, we reach the important finding that the
manner in which transportation routes are modelled greatly affects our conclusions
regarding vaccination effectiveness.

5.3 Comparison Between Constant Vaccination and Heterogeneous Vaccination

Examine now how heterogeneous vaccination of a set of cities might affect the epi-
demic threshold. We consider five cities and vaccinate a fraction ¢; of each popula-
tion (i =1,2,...,5). The proportions ¢; are normally distributed random variables
with mean ¢; = ¢ and standard deviation o. Thus, o controls the heterogeneity of
the vaccination, with o = 0 implying that all cities are vaccinated equally. For the
case of homogeneous vaccination, when ¢ = 0.1 and o = 0, the system has the re-
production number— Ry = 0.7728. For heterogeneous vaccination, for each value of
o > 0, we study 100,000 different random systems and calculate the average Ry. As
Fig. 4 shows, in all cases the average Ry is always greater than the Ry obtained for
homogeneous vaccination. In this sense, the heterogeneity has a tendency to boost
Ry, and thus enhances the possibility of escaping from the DFE. In Fig. 4, for each
value of ¢, we show the envelope of values for the reproductive number bounded
below by Romin and above by Romax. The latter designates the point where all but
5 % of the highest values fall below. Note that constant vaccination is always better
than the mean value, always having a smaller reproductive number Rg. In practice
results, such as those shown in Fig. 4 may help health authorities as they are not able
to provide the precise vaccination coverage as they might want. The figure shows the
repercussions of uncertainties in coverage on the epidemic threshold.

6 Discussion

We have outlined a method for analysing the effects of vaccination in a mobility-
SIS-epidemic model for multiple cities connected in a network. After formulating
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the model, we derive expressions for the “next generation matrix” and Rg. This al-
lowed us to investigate a number of scenarios as to precisely how different vaccina-
tion strategies and different network structures affect disease eradication. The role
of human mobility patterns is understood to be one of the major factors responsible
spatial disease propagation, and the last decade has witnessed a dearth of studies that
attempt to increase our understanding of these patterns (Brockmann et al. 2006). It
has become clear that the mobility model of the type proposed by Sattenspiel and Di-
etz (1995) has more realistic features than simple spatial diffusion, especially in the
manner in which they capture the limitations imposed by “stayers” who never leave
their city of origin, and thus slow down disease spread. In addition, it has become
clear that network topology plays a crucial role. Thus, scale-free type networks in
which there are a few cities that act as hubs, will tend to enhance disease persistence
as compared to random Erdos Renyi networks which have more defined threshold
dynamics. The reader is also referred to the work of Arino and van den Driessche
(2006) and Arino (2009), Arino et al. (2012) for recent applications and advances
of this methodology. The framework we have proposed should facilitate a deeper in-
vestigation into these more complex phenomena. We are currently in the process of
exploring these interesting research directions.
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