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Abstract This paper proposes and analyzes a mathematical model of an infectious
disease system with a piecewise control function concerning threshold policy for dis-
ease management strategy. The proposed models extend the classic models by includ-
ing a piecewise incidence rate to represent control or precautionary measures being
triggered once the number of infected individuals exceeds a threshold level. The long-
term behaviour of the proposed non-smooth system under this strategy consists of the
so-called sliding motion—a very rapid switching between application and interrup-
tion of the control action. Model solutions ultimately approach either one of two
endemic states for two structures or the sliding equilibrium on the switching surface,
depending on the threshold level. Our findings suggest that proper combinations of
threshold densities and control intensities based on threshold policy can either pre-
clude outbreaks or lead the number of infecteds to a previously chosen level.

Keywords Threshold policy · SIR epidemic model · Outbreaks · Sliding mode

1 Introduction

Emerging infectious diseases such as the 2009 A/H1N1 influenza pandemic and the
SARS outbreak in 2003 (Cauchemez et al. 2009; Peiris et al. 2004; Skowronski et al.
2005; Tang et al. 2010) or endemic diseases such as HIV or TB in China (CMH 2009;
Lu et al. 2008; Liu et al. 2010) threaten public health, despite attempts to contain their
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world-wide spread by implementation of stringent non-pharmaceutical interventions
(NPIs). It is thus important to investigate effective control strategies that can prevent
outbreaks or minimize the impact of such outbreaks if their prevention is impossible.

Mathematical modelling can be a useful tool for designing strategies to control
rapidly spreading infectious diseases in the absence of an effective treatment, vaccine,
or diagnostic test (Anderson and May 1991). The impacts of a variety of intervention
measures for SARS (Lipsitch et al. 2003; Pourbohloul et al. 2005) and, more re-
cently, for pandemic influenza outbreaks (Ferguson et al. 2006; Germann et al. 2006;
Tang et al. 2010) have been studied. Although such studies provide vital information
for public health officials, they do not consider situations when multiple outbreaks
are possible. Other studies (Feng and Thieme 1995; Hethcote 2000; Xiao et al. 2011;
Liu et al. 2007; Sun et al. 2011) have examined variation of the basic reproduction
number or long-term dynamics on control measures to assess the efficacy of different
strategies. However, these studies did not consider whether or not the interventions
affect the initial epidemic nor the timing for triggering intervention measures. This
study addresses questions that arise if disease elimination is not possible in a short
time. These include how to reduce disease severity to buy time to, for instance, pro-
duce and deploy vaccines, how to control outbreaks when resources are limited, or
alternatively, how to keep the number of infecteds at a desired low level for a long
time.

Control strategies for the transmission dynamics of infectious diseases have been
modelled as control parameters which may either be constant or variable during
disease progression in a dynamic system (Feng and Thieme 1995; Hethcote 2000;
Xiao and Tang 2010; Xiao et al. 2011; Wang 2006; Wang et al. 2012). However,
all such models assume, explicitly or implicitly that interventions have been imple-
mented throughout the disease progression, disregarding the case numbers and the
timing of implementation.

However, intervention measures are usually implemented by the government only
when the case number reaches a critical level. Usually, when the case number is rel-
atively high, the public may be encouraged to take precautionary measures against
the disease, probably in response to media reporting, which may reduce the fre-
quency of potentially infecting contacts and lower the probability of disease trans-
mission among the well-informed population (Cui et al. 2008; Liu et al. 2007;
Sun et al. 2011). Note that during spreading of emergent infectious disease the gen-
eral information disseminated to the public is often restricted to simply reporting
the number of infections and deaths, while government agencies for disease con-
trol and prevention may attempt to contain the disease (Tchuenche et al. 2011;
World Health Organization 2005). It follows that the case number has been used
as an index for the public or the authority to change their behaviour or to implement
control strategies. Several analyses have suggested that individuals reactively reduced
their contact rates, in response to high levels of mortality or the presence of many in-
fectious individuals, during a pandemic (Martin et al. 2007; Tang et al. 2010, 2012;
Tchuenche et al. 2011). In such cases, interventions are modelled and represented by
using a piecewise defined function which is dependent on the case number.

Very little is known about the effects of this discontinuous control function on the
dynamic behaviour of epidemic models for disease control. The main purpose of this
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paper, therefore, is to formulate a compartmental model to represent circumstances
when intervention measures are taken only when the case number reaches a certain
critical value by proposing a discontinuous incidence rate. The proposed models aim
at precluding the possibility of outbreaks or causing the infection to stabilize at a
desired level by changing individual avoidance and contact patterns in response to
the reported information of infectious cases. The overall objective is to develop a
systematic way of designing simple implementable controls that drive the dynamical
systems to a desired globally stable equilibrium.

2 The SIR Model with Threshold Policy

To illustrate our ideas, we begin with a simple compartment SIR model (Anderson
and May 1991; Diekmann and Heesterbeek 2000). The reported number of infectious
individuals has profound psychological impact on behaviour that seems to reduce the
effective contact of susceptible people with infectious individuals (Cui et al. 2008;
Liu et al. 2007). At the initial stages of an epidemic, the general population and the
public authority are unaware of the disease, and hence the former do not change be-
haviour and the latter do not implement a control strategy, allowing the disease to
spread. When the number of infecteds reaches a critical level Ic, people are suffi-
ciently aware of the infection to change their behaviour and some control measures
are implemented, resulting in the reduction (f ) in transmission. We here include the
demographic process to explore the longer-term persistence and endemic dynamics
since population movement is an important factor for infectious diseases to spread
geographically over time (Khan et al. 2009; Tang et al. 2010, 2012). Let Λ be the
(constant) recruitment rate and d be the natural death rate of the population. We
consider the dynamics of susceptibles S, infecteds I , and recovereds R. The model
equations are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= Λ − β(1 − f ε)SI − dS,

dI (t)

dt
= β(1 − f ε)SI − (d + γ )I,

dR(t)

dt
= γ I − dR,

(1)

with

ε =
{

0, σ (I ) = I − Ic < 0,

1, σ (I ) = I − Ic > 0
(2)

where β is the transmission coefficient, and γ is the recovery rate from infection.
Model (1) with (2) is a description of the threshold policy (hereafter named TP),
which is referred to as an on-off control or as a special and simple case of vari-
able structure control in the control literature (Edwards and Spurgeon 1998; Filippov
1988; Utkin 1978, 1992). A TP leads to a variable structure system with two dis-
tinct structures with their own equilibrium points, separated by the threshold level
(Utkin 1978). A sliding mode (Utkin 1992) along Ic may ensue, if in its vicinity the
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vector fields of both structures are directed toward each other. The detailed mathemat-
ical structure of the proposed threshold policy is laid out in Appendix A. Initially, we
only consider the first two equations of model (1) with (2), and denote the structure
without intervention (ε = 0) by free system (S1) and the structure with intervention
(ε = 1) by control system (S2). It is not difficult to prove that solutions of the system
model (1) are ultimately uniformly bounded by Λ/d , then the attraction region for
the system (1) without considering dynamics of the recovered individuals is

D = {
(S, I ) ∈ R2+ : S(t) + I (t) ≤ Λ/d

}
. (3)

We examine all the possible equilibria and their stability for this system (1)
with (2). There are two types of equilibria: those that belong to the sliding domain Ω

and those that do not. The former is referred to as the sliding equilibrium, whereas
the latter is called the natural equilibrium which includes two classes: real equilibria
and virtual equilibria. If the equilibrium points are located in their opposite regions,
they are named virtual equilibrium points. Otherwise, they are called real equilibrium
points (see details in Appendix A or Costa et al. 2000). It is worth mentioning that if
the locally stable equilibrium points are virtual, they will never be attained since the
dynamics change as soon as the trajectories cross the threshold Ic.

For the control system (S2), we can also easily define the basic reproduction num-
ber

R02 = Λβ(1 − f )

d(d + γ )
.

It is easy to obtain that the disease-free equilibrium (Λ
d
,0) is globally asymptoti-

cally stable if R02 ≤ 1; the endemic state E2 = (
d+γ

β(1−f )
,

Λβ(1−f )−d(d+γ )
β(1−f )(d+γ )

) is globally

asymptotically stable if R02 > 1. In particular, E2 could either be a stable spiral if
� < 0; or be a stable node if � ≥ 0, where

� =
(

β(1 − f )Λ

d + γ

)2

− 4
(
β(1 − f )Λ − d(d + γ )

)
.

Similarly, for the free system (S1), the basic reproduction number is given by R01 =
Λβ

d(d+γ )
. Moreover, the endemic state E1 = (

d+γ
β

,
Λβ−d(d+γ )

β(d+γ )
) is globally asymptoti-

cally stable if R01 > 1.
Denote

H1 = A

d + γ
− d

β(1 − f )
, H2 = A

d + γ
− d

β
. (4)

It is easy to verify that when Ic < H1 (i.e., region Υ1 in Fig. 1) the endemic state of
the free system is a virtual equilibrium, denoted by E1

V , and the endemic state of the
control system is a regular equilibrium, denoted by E2

R , whereas we have the regular
equilibium E1

R and the virtual equilibium E2
V for Ic > H2 (i.e., region Υ4 ∪Υ5 ∪Υ6).

The endemic states for both the free system and the controlled system are virtual
equilibria for H1 < Ic < H2 (i.e., region Υ2 ∪ Υ3, see details in Fig. 1). Note that
Fig. 1 shows the bifurcation set for the model (1) with (2) to exhibit the influence
of the important parameters (control intensity f and the threshold level Ic to trigger
control measures) on possible equilibria.



Sliding Mode Control of Outbreaks of Emerging Infectious Diseases 2407

Fig. 1 Bifurcation set for the model (1) with (2) with respect to the control intensity f and threshold level
Ic . Let Υ1 be the domain bounded by the curve Ic = H1 (solid curve), the boundaries Ic = 0 and f = 0; Υ2
be the domain bounded by the curves Ic = H1, Ic = H2 (dash-dotted curve), and Ic = H3 (dash curve);
Υ3 be the domain bounded by the curves Ic = H2, Ic = H3, Ic = 0, and the boundary f = 1; Υ4 be the
domain bounded by the curves Ic = H2, Ic = H3, and the boundary f = 0; Υ5 be the domain bounded by
the curves Ic = H2, Ic = H3, Ic = H4 (dotted line), and the boundary f = 1; Υ6 be the domain bounded
by the line Ic = H4 and the boundaries f = 0, f = 1 and Ic = Λ/d . Parameter values are a = 0.6, β = 1,
d = 0.2, γ = 0.2

2.1 The Sliding Mode Dynamics

We initially examine the existence of the sliding mode. The manifold Σ is defined as

Σ = {
(S, I ) ∈ R2+ : σ(I) = 0

}
(5)

which is a discontinuity surface between the two different structures of the system.
A ‘sliding mode’ exists if there are regions in the vicinity of manifold Σ where the
vectors for the two different structures of the system (1) are directed toward each
other. Mathematically, there are two basic methods to determine sufficient conditions
for a sliding mode to occur on the surface of a discontinuity (see details in Bernardo
et al. 2008; Utkin 1978). We can simply verify that the sliding mode exists since there
exists a nonempty set

Ω =
{

(S, I ) ∈ R2,
d + γ

β
≤ S ≤ d + γ

β(1 − f )
, I = Ic

}

, (6)

where the two adjacent vector fields point toward the manifold. Then the set Ω is
called the sliding domain. Denote the end points of the sliding domain Ω by point A

and B . Let point P and Q be the intersection points between the manifold Σ with
line S(t) = 0 and line S + I = Λ/d , respectively.

Following the method developed by Utkin (1992), we use a formal procedure to
obtain equations describing sliding mode dynamics along the manifold Σ for system
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(1) with (2) (see details in Appendix A). By means of algebraic manipulations, we
can eliminate the control ε. Note that σ ′ = I ′ = β(1 −f ε)SI − (d + γ )I , and letting
σ ′ = 0 gives

ε = 1

f

(

1 − d + γ

βS

)

.

Substituting the control ε given above and I = Ic into the first equation of (1) gives
the system dynamics on the switching line

S′ = Λ − (d + γ )Ic − dS. (7)

Obviously, Eq. (7) has a unique equilibrium S∗ = Λ−(d+γ )Ic

d
which is locally asymp-

totically stable on the switching surface, and then system (1) with (2) has a sliding
equilibrium (S∗, Ic), denoted by ES . It is easy to show that the sliding equilibrium
point ES belongs to the sliding domain if (d + γ )/β < S∗ < (d + γ )/(β(1 − f )),
that is

H1 < Ic < H2. (8)

To investigate its global stability and the long-term dynamics of the system (1) with
(2), we initially explore the relationship between the sliding domain Ω given in (6)
and the attraction region D given in (3). Simple calculations indicate that the sliding
domain is included in the attraction region D if

d + γ

β(1 − f )
≤ Λ

d
− Ic ⇐⇒ Ic ≤ Λ

d
− d + γ

β(1 − f )


= H3, (9)

whilst the sliding domain is excluded within the attraction region D if

d + γ

β
>

Λ

d
− Ic ⇐⇒ Ic >

Λ

d
− d + γ

β


= H4. (10)

Note that when H3 < Ic < H4 (i.e., region Υ3 ∪ Υ5 in Fig. 1) the sliding domain is
partly within the attraction region D. Note that H3 ≤ H4, H1 ≤ H2 for f ≥ 0, and
H2 < H4 for R01 > 1. We mention that we do not consider the case of R01 ≤ 1 since
in such a case the disease will die out for the free system and the control strategy
may not be necessary to consider. Notice that the condition (8) describes whether
the sliding equilibrium is in the sliding domain or not, and conditions (9) and (10)
determine the relationship between the sliding domain and the attraction region (see
details in Fig. 1).

Figure 2(a) and (b) illustrate the regular/virtual equilibria (red dots), sliding equi-
librium (black dots), sliding mode (grey lines) and the attraction region D. It follows
from Fig. 2(a) that the sliding domain is totally, partly, and exclusively in the attrac-
tion region for relatively low, middle, and high levels of threshold Ic, respectively.
It indicates that for middle values of the threshold the sliding equilibrium is feasible
and the endemic states for free/control system are virtual. Whereas for the low or
high level of thresholds, one of two equilibria is regular, and hence the sliding equi-
librium does not exist. Comparing Fig. 2(a) and (b) shows that as control intensity f

is strengthened the sliding domain is enlarged.
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Fig. 2 Evolution of null-isoclines, sliding modes (grey), and sliding equilibria (black dots), the regu-
lar/virtual equilibria (red dots), of system (1) with (2) with respect to the control intensity f and thresh-
old level Ic . The boundary of the attraction region D is bounded by S + I ≤ Λ/d , (dashed line). The

horizontal and vertical isoclinic curves for the free system S1 are {(S, I ) ∈ R2+ : S = d+γ
β , I < Ic}

and {(S, I ) ∈ R2+ : Λ − βSI − dS = 0, I < Ic}, denoted by g1
S1

and g2
S1

, respectively. The horizon-

tal and vertical isoclinic curves for the control system S2 are {(S, I ) ∈ R2+ : S = d+γ
β(1−f )

, I > Ic} and

{(S, I ) ∈ R2+ : Λ − β(1 − f )SI − dS = 0, I > Ic}, denoted by g1
S2

and g2
S2

, respectively. Parameter
values are a = 0.6, β = 1, d = 0.2, γ = 0.2 (Color figure online)

2.2 Global Behaviour

We now consider the asymptotical behaviour of the system (1) with (2). In order to
get the richness of the possible dynamics that the system can exhibit, all possible
combinations of the control intensity f and the threshold level Ic were chosen to
build phase diagrams. Note that we only consider the case of R02 > 1. That is because
the control system itself will stabilize to its disease-free equilibrium for R02 ≤ 1,
consequently solution for the system (1) with (2) will definitely hit the switching
surface, and finally converge to the endemic state E1 of the free system. We initially
consider the region Υ1 to show the asymptotical properties of solutions.

Theorem 1 The equilibrium E2
R is globally asymptotically stable if Ic < H1.

Proof In the region Υ1 where Ic < H1 the two endemic equilibria for two structures
belong on the same sides of the switching surface (i.e., the region where I > Ic).
So, we have the virtual equilibrium E1

V and the regular equilibrium E2
R (shown in

Fig. 3(a)). Although the sliding mode which is included in the attraction region does
exist, no sliding equilibrium exists in the sliding domain. In fact, analyzing the Ja-
cobian matrix yields that E2

R is stable in the region of I > Ic due to our assumption
that R02 > 1. The virtual equilibrium E1

V is also asymptotically stable, and trajec-
tories initiating from the region where I < Ic tend to it before hitting the switching
surface. In the sliding domain Ω given in (6) (here the segment AB in Fig. 3(a)),
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Fig. 3 Phase plane S–I for SIR model with demography (1) with (2), showing the sliding domain (AB)
and asymptotical equilibrium including regular equilibrium (small blue circles: E1

R
or E2

R
), virtual equi-

librium (small blue circles: E1
V

or E2
V

) or sliding equilibrium (small red circle: ES ) for different parameter

sets. The horizontal isoclinic line (black) g1
S1

(g1
S2

) and the vertical isoclinic curve (green) g2
S1

(g2
S2

) are
plotted for the free (control) system S1 (S2). The blue curves represent the orbits in the phase plane in-
dicating the asymptotical equilibrium. Parameters values are a = 0.6, β = 1, d = 0.2, γ = 0.2, and other
parameters are chosen such that dynamics in all region Υi (i = 1, . . . ,6) shown in Fig. 1 are exhibited.
(a) Ic = 0.5, f = 0.65 for region Υ1; (b) Ic = 1.15, f = 0.65 for region Υ2; (c) Ic = 1.2, f = 0.85 for re-
gion Υ3; (d) Ic = 1.6, f = 0.65 for region Υ4; (e) Ic = 2.1, f = 0.65 for region Υ5; (f) Ic = 2.7, f = 0.65
for region Υ6 (Color figure online)
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we have

S′ = Λ − (d + γ )Ic − dS

> Λ − (d + γ )

(
A

d + γ
− d

β(1 − f )

)

− dS

= d(d + γ )

β(1 − f )
− dS

>
d(d + γ )

β(1 − f )
− d

d + γ

β(1 − f )
= 0 (11)

Therefore, when trajectories hit the sliding domain Ω the state vector starts to move
to the right end point of the sliding domain (point B) along the sliding domain (shown
in Fig. 3(a)). Then we have the following two claims.

Claim 1 The trajectory initiating from the point B(
d+γ

β(1−f )
, Ic) will not hit the sliding

domain again.

In fact, in the region I > Ic shown in Fig. 3(a), the segment BB1 can be a non-
tangent segment for the control system S2, where point B1 is the middle point of the

segment BE2
R , since the line S = d+γ

β(1−f )
is an isoclinic line along which I ′ = 0. We

note that the trajectory starting from point B either tends to the stable equilibrium E2
R

directly or spirally since E2
R could be a stable node or a focus in the region I > Ic. If

the latter happens, all intersection points of the orbit and the segment BB1 are placed
in order in the segment BB1, and are above the point B . Hence, a trajectory starting
at B cannot hit the sliding domain AB or the segment PA. So, we conclude that
trajectory starting at B cannot form a cycle.

Claim 2 No limit cycle surrounds the regular equilibrium E2
R and the sliding

mode AB .

Denote the right-hand sides of the first two equations of model (1) by f1 and f2.
For I < Ic, we choose function D = 1

SI
as a Dulac function and calculate

∂(Df1)

∂S
+ ∂(Df2)

∂I
= − Λ

S2I
< 0.

For I > Ic, we still choose the function D = 1
SI

and perform the same calculation as
above. By using the Lemma for the non-smooth system given in Appendix B, we can
preclude the existence of a limit cycle which surrounds the regular equilibrium E2

R

and the sliding domain AB .
Hence, the combination of Claim 1, Claim 2, and local stability of E2

R implies that
it is globally asymptotically stable. The proof is complete. �

Theorem 2 The sliding equilibrium ES is globally stable if H1 < Ic < H2.

Proof According to the above argument in Sect. 2.1, we know that in this case the
sliding equilibrium ES exists and is stable in the sliding domain. If the sliding domain
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is totally within the attraction region D (shown in Fig. 3(b)), we can prove that no
limit cycle surrounds the sliding domain AB by using a similar method to Claim 2 in
Theorem 1. If the sliding domain exceeds the attraction region D (shown in Fig. 3(c)),
then on the one hand, all the trajectories initiating from the region I > Ic will either
hit the sliding domain and tend to the sliding equilibrium, or enter into the region
I < Ic by crossing through the segment PA. On the other hand, all the trajectories
initiating from the region I < Ic ultimately hit the sliding domain due to its stable
equilibrium lying in the region where I > Ic , and hence tend to the sliding equilib-
rium ES . So, ES is globally asymptotically stable. The proof is complete. �

Theorem 3 The equilibrium E1
R is globally stable if Ic > H2.

Proof When Ic < H3, it follows from (9) that the sliding domain is totally included
in the attraction region (shown in Fig. 3(d)). In region Υ4 shown in Fig. 1, we have
the regular equilibrium E1

R and the virtual equilibrium E2
V which lie in the region

I < Ic. We can prove that the equilibrium E1
R is globally asymptotically stable by

using a similar method to that for Theorem 1.
When H3 < Ic < H4 (the region Υ5 shown in Fig. 1), then the sliding domain

exceeds the attraction region D (shown in Fig. 3(e)). In such a case, all the trajectories
initiating from the region I < Ic either tend to equilibrium E1

R or hit the sliding
domain, and hence move to the left end point (point A) of the sliding domain along
the sliding domain. Using a similar method to Claim 1 of Theorem 1, we can prove
that the trajectory initiating from the point A will not hit the sliding domain again but
converge to the equilibrium E1

R . Then the equilibrium E1
R is globally asymptotically

stable.
When Ic > H4 (the region Υ6 shown in Fig. 1), then the sliding mode is precluded

in the attraction region D (shown in Fig. 3(f)). Obviously, trajectories initiating from
outside of the attraction region will eventually enter into the attraction region no mat-
ter whether they hit the sliding domain or not. Also, trajectories initiating from the
region I > Ic will ultimately enter into the region I < Ic since its stable equilibrium
E2

V is in the region I < Ic. Further, E1
R is an unique stable equilibrium in the re-

gion I < Ic, hence it is globally stable. Therefore, the equilibrium E1
R is globally

asymptotically stable for Ic > H2. The proof is complete. �

In summary, when we consider demographic processes the solutions of the non-
smooth system ultimately converge to either one of two endemic states for two struc-
tures or the sliding equilibrium in the sliding domain on the switching surface, de-
pending on the threshold level. This result could suggest a possible control strategy
should elimination of the emerging infectious disease be impossible. That is, it fol-
lows from Theorem 2 that the proper combinations of threshold level and control
intensities based on threshold policy can lead the number of infecteds to a previously
chosen level.

2.3 The Special Case: SIR Model without Demography

In this subsection, we are interested in the dynamics of system (1) with (2) without
demography (i.e., A = 0, and d = 0) and examine how the epidemic size (i.e., N −
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S∞) changes with this variable structure control. Then total population size N is
constant here and we have S(t) + I (t) ≤ N for all t . Using a similar method to that
in Sect. 2.1, we obtain the sliding domain

Ω = {
(S, I ) ∈ R2 : ρ ≤ S ≤ ρ1, I = Ic

}
, (12)

where ρ = γ /β,ρ1 = γ /(β(1 − f )). It indicates that the sliding mode does not exist
for Ic > N − ρ. The system dynamics on the switching line are described by the
following equation:

S′ = −γ Ic, (13)

which implies that the sliding mode has no equilibrium. Moreover, it means that
when trajectories hit the sliding domain Ω the state vector starts to move along the
switching surface asymptotically converging to the point A (the left end point of the
sliding domain) in the phase plane (as shown in Fig. 5). According to the relationship
between threshold level Ic and control intensity f , there are three cases to consider.
In the following, we choose N = 1 to illustrate the trend of trajectories in the phase
plane.

Case (1): Suppose Ic < 1 − ρ1. Then the sliding mode exists and its domain
Ω is given by (12). Let V1 be the region bounded by the integral curve B̃E and
the segments BQ and EQ, V2 be the region bounded by the integral curves ÃD,
B̃E and the segments AB and ED (as shown in Fig. 5(a)). Note that any trajectory
initiating from V2 hits the sliding domain Ω directly, while trajectories initiating
from V1 will cause an outbreak in the sense that the number of infecteds initially
exceeds Ic, then decreases and finally hits the sliding domain. In the sliding domain,
there is a rapid alternation of intervention with intervention free, resulting in shorter
periods of both modalities. To inhibit occurrence of an outbreak, we could strengthen
intervention measures by increasing control intensity f such that the value of ρ1
increases and reaches 1 − Ic, that is, the sliding domain is prolonged to the right such
that its right end point B coincides with point Q (as shown in Fig. 5(b)). Therefore,
any trajectory initiating from the region I < Ic cannot cause an outbreak in the sense
that the number of infecteds exceeds the given threshold level Ic.

Case (2): Suppose 1 − ρ1 ≤ Ic < 1 − ρ. The calculation shows that the sliding
mode exists and its domain becomes

Ωm = {
(S, I ) ∈ R2 : ρ ≤ S ≤ 1 − Ic, I = Ic

}
. (14)

Let M1 be the domain bounded by the integral curves ÃC, ÃD, and the segment
CD. As in Fig. 5(b), any trajectory initiating from M1 in Fig. 6(a) will hit the sliding
domain Ω and slide to its left end point A (ρ, Ic), and finally tend to (S∞

1 ,0) with
S∞

1 satisfying

S∞
l − ρ ln

(
S∞

l

) = ρ + Ic − ρ lnρ. (15)

Trajectories initiating from other regions never behave either like those with no in-
terventions, or like those with interventions before hitting the segment PA of the
switching surface, then switch to follow the free system and finally fall down to the
S-axes (as shown in Fig. 6(a)).
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Fig. 4 Phase plane S–I for SIR model, showing the switching surface (I = Ic), the sliding domain (AB)
and the diagram of Γ1 and Γ2 split from the limit cycle by the switching surface

Fig. 5 Phase plane S–I for SIR model without demography, showing the switching line (PQ), sliding
domain (AB) and the typical orbits (pink curves) for Case (1). Parameter values are γ = 0.3; β = 1.1;
Ic = 0.4. (a) f = 0.4; (b) f = 0.55. Curve ÃC (pink) is the integral curve passing the point A in the

region I > Ic , and curves ˜DAF (pink), B̃E (pink) are integral curves passing the point A and B in the
region I < Ic , respectively. The thin blue curves represent the general orbits in the phase plane (Color
figure online)

Case (3): Suppose Ic ≥ 1 − ρ. In such case, a sliding mode does not exist. Any
trajectory starting from the region where I < Ic does not hit the switching surface,
while trajectories starting from the region where I ≥ Ic hit the switching surface first,
and then converge to the S-axes (shown in Fig. 6(b)). In such a scenario where the
critical level Ic is set to be relatively high, intervention measures are not triggered,
but an outbreak with the infection spreading sufficiently to significantly deplete the
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Fig. 6 Phase plane S–I for SIR model without demography, showing the switching line (PQ), sliding
domain (AB) and the typical orbits (pink curves). Parameter values are γ = 0.2; β = 1; f = 0.7; Ic = 0.5.
(a): Ic = 0.5 for Case (2); (b): Ic = 0.85 for Case (3). The thick pink curves in (a) are defined in the Fig. 5
and the thin blue curves represent the general orbits in the phase plane. The thick pink curve in (b) is an
integral curve passing point Q (Color figure online)

susceptible population is possible. Therefore, it is essential to determine the critical
level at which to trigger intervention measures in order to control outbreaks.

Note that trajectories of model (1) with (2) without demography hitting the slid-
ing domain, if the sliding mode exists, will slide along the Ω until leaving it, finally
approaching a fixed point. Other trajectories behave like either those that are interven-
tion free or those with interventions initially, and then switch to follow the free system
and eventually fall down to the S-axes. These results, although seemingly exhibiting
no qualitative difference when compared to the SIR model without switching from
the point of view of ultimate trends, raise particularly interesting issues during the
disease spreading process (i.e., disease evolution in its initial stage is consequently
distinct). In particular, if the threshold level is set properly (as shown in Fig. 5(b)),
this sliding mode control strategy could inhibit occurrence of outbreaks in a short
term and lead the final size (represented by 1 − S∞ here) to decline in the long term.
It then suggests an effective control measure for preventing outbreaks to combat an
emerging infectious disease.

Remark Handel et al. (2007) investigated the best control strategy to adopt for a situ-
ation when multiple outbreaks are likely to occur. They showed that the best strategy
was to apply intervention measures in such a way that the number of susceptibles
reaches exactly the threshold level. That is, their control intensity fh should be cho-
sen such that (S∞, I∞) = (ρ,0), by using the first integral of the system their control
intensity is as follows:

fh = 1 − ρ

1 − ρ
ln

(
S0

ρ

)

. (16)

On the basis of this control intensity fh and the initial data (S0, I0), the maximum
number of infecteds Imax

h gives

Imax
h = 1 − ρ

1 − fh

+ ρ

1 − fh

ln

(
ρ

S0(1 − fh)

)

. (17)
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We now try to derive the control intensity f by using our approach described
above. For a fair comparison, we choose the control intensity such that the maximum
number of infecteds is equivalent to Imax

h given in (17). To this end, we choose the
control parameter f such that the right end point B of the sliding domain coincides
with or exceeds the point Q (as shown in Fig. 6(a)), that is, ρ/(1 − f ) ≥ 1 − Ic is
satisfied. It then follows from case (2) that the number of infecteds cannot exceed
the given threshold level Ic (here the Imax

h ). So, the optimal control intensity (the
minimum) yields f1 = 1 − ρ/(1 − Ic). Using Ic = Imax

h , then the control intensity
reads

f1 = 1 − 1 − fh

1 − ln(
ρ

S0(1−fh)
)
. (18)

Further study shows that f1 is equivalent to fh at S∗
0 , where S∗

0 satisfies

S∗
0 ln

(
S∗

0

ρ

)

= 1 − ρ. (19)

And f1 is less than fh for S0 < S∗
0 , whilst f1 is greater than fh for S0 > S∗

0 . Note
that although the control intensify f1 may be greater than that obtained by Handel
et al. (2007) for a relatively large initial number of susceptibles, the duration of im-
plementation of control is quite limited and short, compared to the whole epidemic
process needed to implement control in Handel et al.’s measure. In fact, we can only
trigger a control strategy when the number of infecteds reaches the threshold level
(here Ic = Imax

h ). It is not difficult to calculate the duration of intervention measures
being implemented in our approach (see details in Appendix C).

3 Conclusion and Discussion

In this paper, we have proposed a mathematical model of infectious disease systems
with a piecewise control function concerning a threshold policy for a disease man-
agement strategy. Note that human behaviour may adapt in relation to information
on epidemic prevalence and the threat of endemic disease when such information is
relatively complete. However, in the initial stage of the emerging infectious disease
the information disseminated to the public is only the reported number of infections
and deaths (Tchuenche et al. 2011; World Health Organization 2005). Thus, our for-
mulation used the number of infections to be the threshold level for the public or
the authority to change their behaviour or to implement control strategies. Further,
given (Martin et al. 2007; Tang et al. 2010) that individuals reactively reduced their
contact rates in response to high numbers of cases or high levels of mortality, the
proposed models extend the classic models by including non-smooth incidence rates
to represent control or precautionary measures being triggered once the number of
infected individuals exceeds a threshold level. The global properties of the models
are discussed. Our findings suggest that proper combinations of threshold densities
and control intensities can either preclude outbreaks or lead the number of infecteds
to a previously chosen level.

Dynamical systems subject to a TP are also referred to as variable structure sys-
tems in control terms. A TP results in a variable structure system with two distinct
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structures. In fishery management, a so-called TP is actually intermediate between
the well-known constant escapement and constant harvest rate policies (Costa et al.
2000; Meza et al. 2005, 2002; Quinn and Deriso 2000). In current HIV therapy policy,
anti-retroviral therapy (ART) will be initiated whenever CD4 T cell counts are below
350 cells/mm3 (CMH 2009; Zhang et al. 2005). Although several studies have mod-
elled such piecewise intervention measures in epidemiological models (Tchuenche
et al. 2011), they do not investigate the long-term asymptotic behaviour for the whole
system. This study is devoted to the investigation of the long-term dynamic behaviour
of epidemic models with piecewise incidence rates, on the basis of a simple SIR-type
model with/without demography, with the aim of generating possible strategies.

Using the classic SIR-type model, Handel et al. (2007) found that the best strategy
for multiple infectious disease outbreaks was to apply intervention measures in such
a way that the number of susceptibles reaches exactly the threshold level. However,
their proposed interventions should last for the whole epidemic process, and more-
over the timing of triggering intervention measures is not determined. This threshold
policy applied to infectious disease management is realized by replacing continu-
ous incidence rates (Handel et al. 2007) with a piecewise function which depends
on the case number and the previously given threshold. Our main results obtained
in Sect. 2.2 can, on the one hand, show that outbreaks are not possible, or on the
other hand, determine the timings for switching on/off intervention measures. Fur-
ther, when considering demographic processes we show that the solutions ultimately
approach one of two endemic states for two structures or the sliding equilibrium on
the switching surface, depending on the threshold level. It is worth mentioning that
choosing an appropriate threshold level for making the decision to trigger the inter-
vention and for its suspension is crucial (Cauchemez et al. 2009; Day et al. 2006;
Tang et al. 2010, 2012).

It is important to emphasize that this policy is robust to uncertainties or intrinsic
constraints in the model parameters. In fact, real systems may possess infrequent or
inaccurate measurements of population densities. Nonetheless, if these uncertainties
(or constraints) are bounded in the vicinity of the threshold and the vector fields
maintained are directed toward each other, then the policy remains effective (Utkin
1978, 1992).

The work presented in this paper is just a first approach to the dynamics of disease
management when the threshold policy, as often applied in the control literature, is
considered, i.e. the density dependent piecewise control function is formulated. Our
results show that the dynamics can be rather stable and useful from the disease control
point of view, i.e. precluding outbreaks and resulting in the number of infecteds being
reduced to a previously given level for appropriate threshold levels.
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Appendix A: Mathematical Definition of the Threshold Policy

A threshold policy can be defined as follows: Control is suppressed when a state
variable is below a previously chosen threshold density; above the threshold, control
is applied (Utkin 1978). A TP leads to a variable structure system with two distinct
structures. In mathematical terms (choosing a plane system as an example for illus-
trative purposes), it can be written as

dZ(t)

dt
= f (Z,uτ ), (20)

where Z (Z ∈ R2) is the state vector, f ∈ C(R2,R2) is a continuous function, and
the control uτ is defined as

uτ =
{

0, τ (Z) < 0,

u1(Z, t), τ (Z) > 0,
(21)

where u1 is a continuous function, τ(Z) : R2 → R is a threshold dependent on the
state vector, and uτ is discontinuous. The ‘controlled system’ is one in which the
control uτ = u1 is applied, and the ‘free system’ is one in which no control (i.e.
uτ = 0) is applied. The manifold Σ is defined as

Σ := {
Z ∈ R2 : τ(Z) = 0

}
, (22)

then Σ is the set of points in R2. Let

G1 = {
Z ∈ R2 : τ(Z) < 0

}
, G2 = {

Z ∈ R2 : τ(Z) > 0
}
.

Definition 1 Let Z
eq

Gi be such that f i(Z
eq

Gi , ui) = 0 for some ui in (20). Then Z
eq

Gi is

called a real equilibrium if it belongs to Gi and a virtual equilibrium if it belongs to
Gj, j = i, where f i(Z,ui) corresponds to the function f (Z,uτ ) in the region Gi .

A ‘sliding mode’ exists if there are regions in the vicinity of manifold Σ where
the vectors f 1(Z,0) and f 2(Z,u1) are directed toward each other.

Equivalent Control Method Using a method developed by Utkin (1992), we de-
scribe how to obtain equations describing sliding mode dynamics along the manifold
Σ for system (20). Assume that a sliding mode exists on manifold Σ given in (22),
we now find a continuous control such that, given an initial condition of the state
vector on this manifold, it yields identical equality to zero of the time derivative of
vectors τ(Z) along trajectories of system (20):

dτ

dt
= ∂τ

∂Z
f (Z,uτ ) = 0, (23)

which implies that a motion starting in τ(Z(t0)) = 0 will proceed along the trajecto-
ries that lie on the manifold Σ .

Suppose that a solution of the system of the algebraic equation (23) with respect
to control does exist. This solution, referred to as ‘equivalent control’ ū(Z, t), is
substituted for uτ in system (20)

Ż = f
(
Z, ū(Z, t)

)
. (24)
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This equation is regarded as the ‘sliding mode dynamics’ describing the reduced-
order motion on the discontinuity surface Σ . If the sliding mode dynamics have a
stable equilibrium, then it is referred to as the sliding equilibrium or equilibrium
attained through a sliding mode. Note, however, that it is not necessary that the sliding
mode dynamics present a stable equilibrium (Boukal and Krivan 1999; Krivan 1996,
1998). The above procedure will be called the ‘equivalent control method’.

Appendix B: Non-Existence of Limit Cycle

In the case of smooth dynamical systems, the Dulac function is used to prove non-
existence of limit cycles, it could be applicable to model (1) with (2) where the vector
field is neither smooth nor continuous at the line I = Ic . Indeed, denote the right-hand
sides of the first two equations of model (1) by f1 and f2, then we have

Lemma If there is a continuous function D in intR2+ such that D is continuously
differentiable when I = Ic , and

∂(Df1)

∂S
+ ∂(Df2)

∂I
< 0, when I = Ic

then system (1) with (2) does not have a limit cycle.

Proof Suppose that there exists a limit cycle Γ (shown in Fig. 4) which surrounds the
regular equilibrium E2

R and the sliding mode AB , and crosses the manifold Σ with a
period T . Denote its part below I = Ic by Γ1 and its part above the line I = Ic by Γ2.
Denote the intersection points of the limit cycle Γ and the line I = Ic by A1 and B1,
the intersection points of Γ and the auxiliary line I = Ic − ε (I = Ic + ε) by T1 and
T2 (T3 and T4), where ε > 0 is sufficiently small. Let G1 be the region bounded by
Γ1 and the segment T1T2, G2 be the region bounded by Γ2 and the segment T3T4. We
denote the boundary of G1 and G2 by L1 and L2, respectively, with the directions
indicated in the figure. In particular, denote the right-hand side of (1) in the region of
I < Ic (or I > Ic) by f 1(x) (or f 2(x)) where f i(x) = (f i

1 (x), f i
2 (x)), i = 1,2.

Let the Dulac function be D = 1/(SI). By Green’s theorem, we have
∫∫

G1

(
∂(Df 1

1 )

∂S
+ ∂(Df 1

2 )

∂I

)

dS dI =
∮

L1

D
(
f 1

1 dI − f 1
2 dS

)

=
∫

Γ1

D
(
f 1

1 dI − f 1
2 dS

) +
∫

−−→
T2T1

D
(
f 1

1 dI − f 1
2 dS

)

= D

∫ t2

t1

(
f 1

1 f 1
2 − f 1

2 f 1
1

)
dt +

∫

−−→
T2T1

D
(
f 1

1 dI − f 1
2 dS

)

= −
∫

−−→
T2T1

Df 1
2 dS.

Note that Γ1 is part of the limit cycle Γ of system (1) with (2) in the region of I < Ic

and let t1 and t2 be the timings at which the orbit Γ1 passes the point T1 and T2 in the
phase plane S–I, respectively. Similarly, we have
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∫∫

G2

(
∂(Df 2

1 )

∂S
+ ∂(Df 2

2 )

∂I

)

dS dI =
∮

L2

D
(
f 2

1 dI − f 2
2 dS

)

= −
∫

−−→
T3T4

Df 2
2 dS.

Let G0 ⊂ G1 and ξ = ∫∫

G0
(
∂(Df 1

1 )

∂S
+ ∂(Df 1

2 )

∂I
) dS dI , then we know ξ < 0 from the

condition of the lemma, and furthermore,

0 > ξ >

∫∫

G1

(
∂(Df 1

1 )

∂S
+ ∂(Df 1

2 )

∂I

)

dS dI +
∫∫

G2

(
∂(Df 2

1 )

∂S
+ ∂(Df 2

2 )

∂I

)

dS dI,

which is

0 > ξ > −
∫

−−→
T2T1

Df 1
2 dS −

∫

−−→
T3T4

Df 2
2 dS. (25)

Suppose the abscissas of the points A1,B1, T1, T2, T3, T4 are S,S,S + h1(ε), S −
h2(ε), S + h4(ε), S − h3(ε), respectively, where hi(ε) (i = 1,2,3,4) is continuous
with respect to ε and satisfies hi(0) = 0 and limε→0 hi(ε) = 0. Thus, we get

lim
ε→0

(

−
∫

−−→
T2T1

Df 1
2 dS

)

= lim
ε→0

∫ S−h2(ε)

S+h1(ε)

(

β − d + γ

S

)

dS

= lim
ε→0

(

β
(
S − S − h2(ε) − h1(ε)

) − (d + γ ) ln

∣
∣
∣
∣
S − h2(ε)

S + h1(ε)

∣
∣
∣
∣

)

= β(S − S) − (d + γ ) ln

∣
∣
∣
∣
S

S

∣
∣
∣
∣.

Similarly, we have

lim
ε→0

(

−
∫

−−→
T3T4

Df 2
2 dS

)

= − lim
ε→0

∫ S−h3(ε)

S+h4(ε)

(

β(1 − f ) − d + γ

S

)

dS

= − lim
ε→0

(

β(1 − f )
(
S − S − h3(ε) − h4(ε)

) − (d + γ ) ln

∣
∣
∣
∣
S − h3(ε)

S + h4(ε)

∣
∣
∣
∣

)

= −β(1 − f )(S − S) + (d + γ ) ln

∣
∣
∣
∣
S

S

∣
∣
∣
∣.

Therefore,

lim
ε→0

(

−
∫

−−→
T2T1

Df 1
2 dS −

∫

−−→
T3T4

Df 2
2 dS

)

= βf (S − S) > 0,

which contradicts (25). This rules out the existence of the limit cycle Γ surrounding
the sliding mode and the regular equilibrium. �
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Appendix C: Duration of Interventions Being Implemented

It is easy to obtain the number of susceptibles S1 when the number of infecteds reach-
ing the threshold level (here Ic = Imax), where S1 satisfies

S1 + Ic − ρ lnS1 = S0 + I0 − ρ lnS0

Integrating the sliding dynamics (13) from (S1, Ic) along the sliding mode yields

S(t) = S1 − γ Ict.

When a trajectory slides from (S1, Ic) to (γ /(β(1 − f1)), Ic), the time duration gives

t = S1 − γ /(β(1 − f1))

γ Ic

,

where f1 is given in (18).
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