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                    Abstract
Perturbations are relatively large shocks to state variables that can drive transitions between stable states, while drift in parameter values gradually alters equilibrium magnitudes. This latter effect can lead to equilibrium bifurcation, the generation, or annihilation of equilibria. Equilibrium annihilations reduce the number of equilibria and so are associated with catastrophic population collapse. We study the combination of perturbations and parameter drift, using a two-species intraguild predation (IGP) model. For example, we use bifurcation analysis to understand how parameter drift affects equilibrium number, showing that both competition and predation rates in this model are bifurcating parameters. We then introduce a stochastic process to model the effects of population perturbations. We demonstrate how to evaluate the joint effects of perturbations and drift using the common currency of mean first passage time to transitions between stable states. Our methods and results are quite general, and for example, can relate to issues in both pest control and sustainable harvest. Our results show that parameter drift (1) does not importantly change the expected time to reach target points within a basin of attraction, but (2) can dramatically change the expected time to shift between basins of attraction, through its effects on equilibrium resilience.
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                                    1 Introduction
Much recent work has focused on identifying ecological regime shifts before they occur (Andersen et al. 2008; deYoung et al. 2008; Biggs et al. 2009), because such shifts usually transform systems from desirable to undesirable states. Regime shifts, identified by the appearance of radically different ecosystem characteristics (Carpenter 2001; Cury and Shannon 2004), either follow perturbations to state variables or changes to system drivers (Collie et al. 2004) (e.g., species interactions). The former occur because the state of the system gets “pushed” across a threshold and into the basin of attraction of an alternative equilibrium state. For example, over-harvesting can deplete a species below a threshold so that it equilibrates to a lower value (Daskalov et al. 2007). The latter occurs because changes to parameters can generate bifurcations, or so-called “cusp catastrophes” (Poston and Stewart 1978), during which a stable and an unstable equilibrium collide and vanish, thus increasing the regions of attraction for remaining equilibria. Reductions in forage quality such that herbivore populations collapse provides a classic example (Ludwig et al. 1978). To promote understanding of the individual roles of these dual mechanisms, we combine analytic solutions of a stochastic perturbation process with bifurcation analysis of a deterministic dynamical system to quantify the relative effects of perturbations and parameter drift in initiating regime shifts.
The methods we present can be used to understand how likely regime shifts are in multiple ways. For example, with estimates of parameters, a dynamical system represented as a system of ordinary differential equations can provide estimates of thresholds between regimes. We refer to models that include estimates of parameters as “parameterized models.” Such estimates can be combined with estimates of population densities to evaluate the state of the system in relation to the threshold. Using our approach, one could then estimate the frequency and magnitude of shocks to those state variables necessary to push the state of the system across the threshold. Additionally, bifurcation analysis partitions parameter space into regions defined by equilibrium number. Thus, estimates of parameter values can reveal how close a system state may be to the potential for alternate states or to a catastrophic shift as that potential disappears.
Approaches like these could be used either to prevent or initiate regime shifts. Because so much literature focuses on the former, our worked example focuses on the latter, because not all regime shifts are undesirable. For example, there is compelling evidence that some pest outbreaks correspond to the outbreak state of a bistable system (Ludwig et al. 1978) and in such cases population collapse is desirable. Nevertheless, whether the desired outcome is preventing or initiating population collapse, our approach requires quantifying relationships between state variables in terms of internal feedbacks, such as density dependence (i.e., formulating the differential equation model). It is then possible to take advantage of particular emergent properties of the model that originate in such feedbacks. For example, the magnitudes of species interaction rates define both the potential for bistability, and the threshold between stable states when they exist, though not in obvious ways. Thus, the threshold between stable equilibria is an emergent property that arises as a function of interaction rates. We first quantify those thresholds in terms of system parameters that represent species interactions, then analyze those parameters in terms of contributions to the potential for bistability. We then show how to calculate another emergent property of bistable systems; for a given frequency and magnitude of stochastic perturbations of a state variable, the mean first passage time (MFPT) to thresholds between equilibria. The MFPT is the expected time required for the state of the system to cross the threshold, which depends on the perturbation schedule and the threshold value, which in turn depends on system parameters. The novelty of our approach lies in combining these analyses and allowing a priori calculation of changes to MFPTs as interaction rates or perturbation schedules are varied.
To demonstrate our approach, we model an aquatic ecosystem in which predators compete with their prey, a common species interaction known as intraguild predation (IGP) (Dorn and Mittelbach 1999), which is known to generate the potential for bistability (reviewed in Mylius et al. 2001). The state variables are population densities, our system parameters are species interaction rates, and the stable states correspond to desirable and undesirable equilibria of the system, also known as “regimes.” Our model describes a well-studied aquatic system involving the rusty crayfish (Orconectes rusticus), an invasive species in North American lakes (Wilson et al. 2004; Rosenthal et al. 2006) and one of its major predators, the ecologically and recreationally important smallmouth bass (Micropterus dolomieu). IGP is an apt description of interactions between these species (Dorn and Mittelbach 1999), and is a common interaction in both terrestrial and aquatic systems (reviewed in Bampfylde and Lewis 2007), making our results quite general.
We first review the analysis of the model that identifies equilibria and their stability (Drury and Lodge 2008), and then extend that analysis to identify bifurcation parameters amenable to manipulation in practice. This bifurcation analysis reveals which parameters generate bifurcations to and from bistability, an important step, because the dynamics underlying regime shifts in multispecies assemblages are of significant interest (deYoung et al. 2008). We then describe our stochastic perturbation process and how we combine it with strategies for the natural system that generate drift in the bifurcation parameters of the model. Our approach facilitates comparing the relative effects of gradual parameter drift and direct, large-scale population manipulation using the common currency of mean first passage time to population threshold levels. We demonstrate the procedure for an arbitrary threshold within a basin of attraction, as well as for the ecologically significant threshold between basins of attraction.


2 The Model System
Threshold values are rarely known with certainty and so those generated by parameterized dynamical models provide valuable estimates. Many studies have employed this approach to evaluate the effects of large shocks to system equilibria (e.g., Drury and Lodge 2008). Similarly, many studies have evaluated the effects of gradual changes to system drivers (Biggs et al. 2009). Here, we combine these two effects in a single semidiscrete dynamical systems modeling framework (e.g., Mailleret and Lemesle 2009) and evaluate their relative effects using the common currency of MFPT. Semidiscrete models consist of continuous deterministic dynamics punctuated by stochastic shocks. We begin by introducing the deterministic skeleton on which we base our analysis and later introduce the stochastic process.
The system we model shares broad features with many other ecological systems, including Holling’s type III functional response (Sponberg and Lodge 2005) and intraguild predation (IGP, i.e., competition for a shared resource among predator and prey). Interactions between the IGP prey x and predator y can be expressed in nondimensional form as 
[image: ]

                    (1)
                


                [image: ]

                    (2)
                

 where \(\dot{x}\) and \(\dot{y}\) describe changes in the prey (crayfish) and predator (bass) populations, respectively (see Drury and Lodge 2008, for the nondimensionalization process). The forms of the interaction terms in Eqs. (1)–(2) are based on previous accounts of the natural history of these species (Drury and Lodge 2008). The first terms in each equation describe intra and interspecific competition (α and β) and the last terms describe predation, with δ as the maximal feeding rate and κ as the half-saturation constant of the Holling type III functional response, which can be generalized from the type II functional response, which is itself derived via the Holling disk equation (Real 1977). Note that our methods of analysis are quite general, however, and are not restricted to this model (see, e.g., Drury et al. 2007; Drury 2007). Nevertheless, the presence of alternate stable states is both model- and parameter-dependent. To increase generality, we therefore demonstrate how to use our approach in both bistable systems and systems in which only one equilibrium is relevant.
Both species are present in both regimes, although with very different equilibrium densities (Table 1), and we focus on these coexistence equilibria, represented graphically by intersections of predator and prey isoclines, generated by setting F(x,y)=G(x,y)=0 in Eqs. (1)–(2) (Fig. 1). When one species is valued more than the other, as smallmouth bass generally are compared with rusty crayfish, these coexistence equilibria represent desirable and undesirable stable system states. For example, the stable equilibrium (x
                ∗,y
                ∗)1 describes a system with abundant predators and few prey. In contrast, the stable equilibrium at (x
                ∗,y
                ∗)2 describes a system with abundant prey and few predators. Because rusty crayfish are invasive pests and smallmouth bass are therefore their biocontrol predator, and to be consistent with related single-species analysis (Drury 2007), we refer to the undesirable equilibrium as the “outbreak” state and the desirable equilibrium as the “biologically-controlled” state. Figure 2 is a conceptual diagram of how practical strategies can move a system with a pest outbreak into the biologically controlled state. 
Fig. 1[image: figure 1]
Isoclines, vector field, and equilibria of model (1)–(2). x-axis: prey (crayfish) density, y-axis: predator (smallmouth bass) density. Point a: stable predator-dominated (biologically-controlled) equilibrium, b: unstable equilibrium, c: stable prey-dominated (outbreak) equilibrium


Full size image


                Fig. 2[image: figure 2]
Conceptual diagram of the effects of management on our model system. When IGP prey are in the outbreak state, predators are held to low densities through competition and reciprical predation (on predator eggs). After management reduces prey density and alters predation parameters by, for example, changing the size distribution of predators, the densities reverse. This biologically-controlled high predator density, low prey density is also stable


Full size image


                Table 1 Numerical approximations to coexistence equilibria and eigenvalues. Parameter values: α=0.7, δ=0.075, κ=0.1, r=1.5, β=0.9, ϵ
                        
                          y
                        =0.01Full size table


              The vector field (arrows in Fig. 1) qualitatively indicates that the middle equilibrium through which the dashed separatrix passes, divides the state space into basins of attraction for the stable equilibria. Formally, the separatrix is defined as the stable manifold of the unstable equilibrium point. Initial conditions that lie left of the separatrix lie in the basin of attraction of (x
                ∗,y
                ∗)1 and will move to that desirable state over time. In contrast, initial conditions in the other basin of attraction move to the undesirable equilibrium. Below, we use bifurcation analysis to explore how changes to species interaction rates in Eqs. (1)–(2) generate changes in the relative magnitude of these basins of attraction, and how those changes in turn interact with relatively large, stochastic reductions of the pest population to generate transitions from the outbreak state, to the biologically controlled state.
2.1 Bifurcation Analysis
To study how the species interactions of IGP affect the resilience of equilibria (i.e., the relative area of the basins of attraction), we hold predator density constant at \(\bar{y}\) and perform bifurcation analyses (Strogatz 1994) on several parameters in turn.
Setting predator density \(y(t)=\bar{y}\), a constant, and \(\dot{x}=0\) in (1) to solve for equilibrium yields 
$$ 1-x= \bar{y} \biggl(\alpha+\frac{\delta x}{\kappa^2+x^2} \biggr), $$

                    (3)
                

 which confines all predator effects to the right-hand side (rhs). The conditions for a saddle-node bifurcation are that Eq. (3) be satisfied and that the line represented by the lhs of Eq. (3) tangentially intersects the curve represented by the rhs, which occurs when 
$$ \frac{d}{dx} [1-x ]=\frac{d}{dx} \biggl[ \bar{y} \biggl(\alpha+\frac{\delta x}{\kappa^2+x^2} \biggr) \biggr]. $$

                    (4)
                

 Differentiating Eq. (4) yields 
$$ -1= \bar{y} \biggl(\frac{\delta}{\kappa^2+x^2}-\frac{2\delta x^2}{ (\kappa^2+x^2 )^2} \biggr), $$

                    (5)
                

 which when solved for δ, yields a function of x, 
$$ \delta(x)=\frac{ (\kappa^2+x^2 )^2}{ \bar{y} (x^2-\kappa^2 )}. $$

                    (6)
                

 The maximal feeding rate is constrained such that δ(x)>0, which constrains x in Eq. (6) such that x>κ. In ecological terms, this constraint simply means that prey density must exceed the half-saturation constant. Substituting this value of δ into Eq. (3) and solving for α yields 
$$ \alpha(x)=\frac{2x^3-x^2+\kappa^2}{ \bar{y} (\kappa^2-x^2 )}, $$

                    (7)
                

 which to be positive requires the numerator <0, because the constraint on δ in Eq. (6) makes the denominator <0.
Equations (6)–(7) thus describe the bifurcation curves in the (α(x)−δ(x))-plane shown in Fig. 3a. As this figure makes apparent, low-valued pairs of these parameters generate pest outbreak dynamics, because the competitive and predatory effects of the biocontrol predator are insufficient to control the pest. As one or both parameter value increases, however, the potential for bistability arises. This can be seen in Fig. 3b as two equilibrium pest values x
                  ∗ for a range of values of the predator competition coefficient α, with maximal feeding rate δ held constant. Thus, for parameter pairs in this range, the state of the system could either be in the outbreak or biologically controlled regime. Movement between the regimes in this region of parameter space requires perturbations to state variables, such as those that we describe later in Sect. 3. Continuing in this way, and increasing α and δ further causes a bifurcation (an equilibrium collision) that annihilates the outbreak equilibrium so that the potential for bistability disappears and the only remaining equilibrium is that of the biologically controlled regime. This stands to reason, because the effects of the predator on the pest are severe in this region of parameter space. In the system we have modeled, one way to effect such changes to these parameters is through manipulation of the size structure of the fishery. 
Fig. 3[image: figure 3]
Parametric bifurcation curves showing different stability regions. (a) Interspecific competitive effect of predators on prey α(x) vs maximal predator feeding rate δ(x). (b) Stable prey equilibria with predators held constant, maximal feeding rate δ held constant, and competitive effect of predators on prey α varied


Full size image


                Changing the size distribution of a fishery is a multiyear endeavor and what (Biggs et al. 2009) call a “slow driver.” In contrast, simply elevating predator numbers by, for example, stocking fish is what they call a “fast driver.” Thus, another way to increase the effects of predators is to artificially maintain them at high density. For a particular per capita competitive or predatory effect, therefore, the population-level effect can be amplified by predator stocking, which we represent with μ. Predator stocking is a common strategy in integrated pest management, and smallmouth bass density is easily manipulated through either harvest restrictions or stocking. Thus, we also explore the effects of predator population manipulation—a fast driver—by defining μ<1 as constant predator density \(\bar {y}<y^{*}\) and μ>1 as stocking above y
                  ∗, where y
                  ∗ is the predator density at the prey outbreak equilibrium.
Inserting μ into Eq. (3), 
$$ 1-x=\mu\bar{y} \biggl(\alpha+\frac{\delta x}{(\kappa^2+x^2)} \biggr) $$

                    (8)
                

 and following an analogous bifurcation analysis for μ(x) yields 
$$ \mu(x)=\frac{ (\kappa^2+x^2 )^2}{\delta\bar{y} (x^2-\kappa^2 )}, $$

                    (9)
                

 which for μ>0 requires x>κ and using this value to solve for α(x) yields 
$$ \alpha(x)=-\frac{\delta (2x^3-x^2+\kappa^2 )}{ (\kappa^2+x^2 )^2}, $$

                    (10)
                

 which for α>0 requires 2x
                  3−x
                  2+κ
                  2<0. Equations (9)–(10) define the bifurcation curves in the (α(x)−μ(x))-plane in Fig. 4a, while Fig. 4b depicts the bifurcation of prey population equilibria as α is varied, for fixed μ. 
Fig. 4[image: figure 4]
(a) Interspecific competitive effect of predators on prey α(x) vs predator stocking rate μ(x). (b) Prey equilibrium values as the competitive effect of predators on IGP prey is varied, with predator stocking level held constant at 3 times the value at the outbreak equilibrium


Full size image


                These curves for the stocking multiplier μ and competition coefficient α reveal that in the current model, this mechanism can only yield biological control of the pest at predator levels larger than the predator carrying capacity (Fig. 4). Thus, as has been noted in other studies (De Roos and Persson 2002; Kean et al. 2003), the system parameters most easy to manipulate are often not the most effective for initiating change.
The prey density at which the predator attack rate is half-maximal, also called the “half-saturation constant,” is also amenable to bifurcation analysis. For example, solving Eq. (4) for κ
                  2 yields 
$$ \kappa^2(x) = \frac{1}{2} \bigl(\sqrt{\delta \bar{y}}\sqrt {8x^2+\delta\bar{y}}-2x^2-\delta\bar{y} \bigr). $$

                    (11)
                


                This value of κ
                  2(x) can similarly be substituted into Eq. (3), which can then be solved for α(x) so that the pair can be analyzed jointly as before (i.e., with varying x and fixed δ and \(\bar{y}\)). Specifically, 
$$ \alpha(x)=\frac{4x(x-1)+\delta\bar{y}+\sqrt{\delta\bar{y}}\sqrt {8x^2+\delta\bar{y}}}{4x\bar{y}}. $$

                    (12)
                

 Plotting Eqs. (11)–(12) in the (κ
                  2(x)−α(x)) plane generates Fig. 5a, and the associated bifurcated prey equilibria for constant κ
                  2 in Fig. 5b. 
Fig. 5[image: figure 5]
(a) Interspecific competitive effect of predators on prey α(x) vs prey level at which predator attack rate is half-maximal κ(x). (b) Prey equilibrium values as the competitive effect of predators on IGP prey is varied, with κ=0.05 constant


Full size image


                Such analyses can be used to evaluate the state of a system in relation to the potential for outbreaks and biological control. Thus, when remaining parameters can be estimated, Eqs. (1)–(2) can be used to determine the state of a system in relation to bifurcations. For example, δ and κ can both be estimated from basic predator behavior (Gotelli 1995). Specifically, the maximum feeding rate δ can be expressed as 
$$ \delta=\frac{1}{h}, $$

                    (13)
                

 where h is the time required to search for and handle one prey item from start to finish (but see Kooijman and Grasman 2007, for a treatment that deals with searching and handling separately). Smallmouth bass handling time of crayfish has been experimentally established (Stein 1977). Similarly, the half-saturation constant, κ can be estimated as 
$$ \kappa= \frac{1}{\delta h}, $$

                    (14)
                

 where δ is the rate at which predators attack prey. Then, letting \(\hat{\alpha}\) signify an estimate and using the fact that at equilibrium Eq. (1) can be rearranged to yield 
$$ \hat{\alpha}=y^{-1} - x \biggl[ \frac{\delta}{\kappa^2 + x^2} + y^{-1} \biggr], $$

                    (15)
                

 we arrive at an explicit expression for the competitive effect of predators on prey. Thus, in conjunction with a bifurcation analysis, estimates of \(\hat{\alpha}\) and \(\hat{\delta}\), from Eqs. (13) and (15) for example, allow one to assess the state of a system in terms of the potential for bistability.
The dynamic effects of such manipulations can be seen by moving rightward along the δ-axis in Fig. 3a. Figure 6a further demonstrates this by showing that increases in δ and κ
                  2 shift the system from a single outbreak equilibrium for small δ and κ
                  2, to bistability for intermediate levels and finally to a biologically controlled equilibrium at high levels. An additional challenge for using such gradual parameter change to reverse regime shifts is illustrated by Fig. 6b, which we generated by fixing κ
                  2 and finding all prey equilibria as δ varies using a technique called equilibrium continuation (Perko 1991). The solid lines indicate stable equilibria, while the dotted line signifies the unstable equilibrium. For B>δ>D, in the absence of large perturbations to the prey population x, attack rates must be moved to a point δ>B in order to achieve biocontrol goals. The distance between B and D in this parameter space quantifies the hysteresis in the system, or the difference in the magnitude of δ required for the forward and backward transitions. Thus, in practice, one is likely to combine such gradual mechanisms with perturbations which we describe below, to hasten collapse. 
Fig. 6[image: figure 6]
(a) Numerical solutions of Eq. (3) with \(\bar{y}=0.5\), α=0.05 and with δ and κ
                          2 varied as indicated in the figure legend. Dash-dot line: low feeding rate and low half-saturation constant generate single equilibrium (a) in outbreak region. Dotted line: increasing feeding rate and half-saturation constant lead to bifurcation with stable equilibria in either the outbreak (b) or biologically controlled (c) regions, separated by an unstable equilibrium (d). Dashed line: high feeding rate and half-saturation constant permit only the biologically controlled equilibrium (e). (b) Variation in number and type of equilibria x
                          ∗ as maximal feeding rate δ is varied. Solid lines: stable equilibria, dotted line: unstable. Other parameters are \(\bar{y}=0.5\), α=0.05 and κ
                          2=0.04. At low feeding rates, only the outbreak equilibrium exists (point A). As feeding rate is increased to B, a saddle-node bifurcation occurs followed by prey population collapse to C. Between C and D, in the absence of perturbations that increase prey x above the dotted line, prey will remain at the biologically controlled equilibrium until feeding rate is decreased below the level at D, after which prey increase to the outbreak level again


Full size image


                

3 Shot-Noise Perturbations
We model stochastic perturbations as instantaneous reductions in prey species abundance, illustrated by the horizontal lines to the open circles in Fig. 7. Note that perturbations to points within the outbreak basin of attraction are destined to return to the outbreak equilibrium. This can be seen in Fig. 7 as the parabola-like response to each perturbation. In practice, we would not allow the state of the system to return all the way to the outbreak equilibrium in between perturbations. Instead, we would perturb the system again as it reaches the line \(\dot{y}=0\), at which time the predator release from prey competition is maximal. Obviously, much higher harvest levels, such as to a point on the left side of the dashed separatrix are necessary for shifting the system to the biologically-controlled equilibrium in a single step. Instantaneous harvests this large are usually not practical, however, and so numerous smaller efforts may be required as depicted by the multistep path between the open circles that eventually crosses the threshold in Fig. 7. In what follows, we therefore evaluate how a series of population perturbations interacts with the gradual parameter change of the previous section, which alters equilibrium resilience (i.e., the size of basins of attraction), and hence can make such goals more practical. Note that this approach could similarly be used with the opposite goal of increasing the basin of attraction to reduce the chance of threshold crossing. For clarity, we focus on the first goal. 
Fig. 7[image: figure 7]
Regime shift by several small perturbations


Full size image


              To study how perturbations combine with parameter drift to influence regime shifts, we use a doubly stochastic process. The two random quantities are interarrival time (i.e., the frequency of events) and perturbation size (i.e., the magnitudes of the events). To arrive at an adequate stochastic model, we begin by combining these in a single stochastic process known as a compound Poisson process. The compound Poisson process is represented by 
$$ X(t) = \sum_{n=1}^{N(t)} Y_n, $$

                    (16)
                

 where X(t) is the accumulation of N(t) events, each of random magnitude Y
                
                  n
                . Thus, N(t) is a random variable that represents the number of events that have occurred by time t and Y
                
                  n
                 is the stochastic magnitude of the nth event. To see that the distribution of the N(t) is Poisson, we can determine the probability that exactly K events occur during an interval of length τ, i.e., P(K,τ) (e.g., Davenport and Root 1958, p. 115). It is reasonable to assume that the probability of an event during an interval of interest is independent of the number of events occurring previously (i.e., the process is Markovian) and that this probability varies with the length of the (short) interval. That is, 
$$ \lim_{\varDelta \tau\to0}P(1,\varDelta \tau) = a \varDelta \tau, $$

                    (17)
                

 where a is a constant to be determined. Furthermore, we assume that the time interval is short enough that the probability of more than one event in Δτ is negligible, i.e., 
$$ P(0,\varDelta \tau) + P(1,\varDelta \tau) = 1. $$

                    (18)
                


              To specify the probability that no events occur in an interval τ+Δτ, we split the interval into its two parts, i.e., one of length τ and the other of length Δτ. Then, since events are independent in the two time intervals we have 
$$ P(0,\tau+\varDelta \tau) = P(0,\tau)P(0,\varDelta \tau), $$

                    (19)
                

 and using Eqs. (17)–(18) we have 
[image: ]

                    (20)
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                    (21)
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                    (22)
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                    (23)
                

 which, as Δτ→0 becomes 
$$ \frac{dP(0,\tau)}{d\tau} = -aP(0,\tau), $$

                    (24)
                

 with solution, 
$$ P(0,\tau) = e^{-a\tau}, $$

                    (25)
                

 and boundary condition, 
$$ P(0,0) = \lim_{\varDelta \tau\to0}P(0,\varDelta \tau) = 1. $$

                    (26)
                


              Following similar logic, we can determine the probability of K events by time τ+Δτ by breaking the interval into its two parts and considering Δτ small enough so that there are only two possibilities: either one event occurs in the interval or else none do. Thus, for small Δτ we have 
$$ P(K,\tau+ \varDelta \tau) = P(K-1,\tau)P(1,\varDelta \tau) + P(K,\tau )P(0,\varDelta \tau). $$

                    (27)
                


              But, we have expressions for P(1,Δτ) and P(0,Δτ) and so upon substituting these into the above equation, and rearranging, we arrive at 
$$ \frac{ P(K,\tau+\varDelta \tau) -P(K,\tau)}{\varDelta \tau} + aP(K,\tau ) = aP(K-1,\tau), $$

                    (28)
                

 or, as Δτ→0, 
$$ \frac{dP(K,\tau)}{d\tau} + aP(K,\tau) = aP(K-1,\tau), $$

                    (29)
                

 which is a recursion equation relating P(K,τ) to P(K−1,τ). Since P(K,0)=0, the solution of this differential equation for P(K,τ) is 
$$ P(K,\tau) = ae^{-a\tau} \int_0^{\tau}e^{at}P(K-1,t)\,dt. $$

                    (30)
                


              Letting K=1, we can use our previous result for P(0,τ) to compute P(1,τ), 
[image: ]

                    (31)
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                    (32)
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                    (33)
                


              Similarly, P(2,τ) can be computed from P(1,τ) as 
[image: ]

                    (34)
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                    (35)
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                    (36)
                

 and in general, 
$$ P(K,\tau) = \frac{(a\tau)^K e^{-a\tau}}{K!}, \quad K = 0,1,2,\ldots. $$

                    (37)
                


              Thus, the number of events K during the time interval τ is Poisson(aτ), and hence has exponentially distributed waiting times between events.
In the present case, if Y
                
                  n
                 represents the magnitude of the nth event, then it represents the size of the nth harvest event of the pest population. As we have seen, however, perturbations to the pest population that do not move population abundance into the alternative basin of attraction are destined to return to the outbreak equilibrium. Thus, what is missing from Eq. (16) is interevent dynamics, in this case, pest population regrowth.
Given the opposing effects of perturbations and population regrowth, and given initial densities at the pest outbreak equilibrium, we would like to calculate the expected time it takes for relatively large population reductions to decrease the pest population to the threshold ξ between the basins of attraction. To describe this process mathematically, we use the so-called “shot-noise process,” which is essentially a modification of Eq. (16) to include exponential decay in the interarrival dynamics (Cox 1965) yielding 
$$ X(t) = \sum_{T_n<t}Y_ne^{-\zeta(t-T_n)}. $$

                    (38)
                


              Here, the T
                
                  n
                 form a Poisson process of events with rate, say a, and the {Y
                
                  n
                } are a sequence of independent and identically distributed perturbations with probability density f
                
                  Y
                 (Cox and Isham 1980). In words, the shot-noise process includes exponential decay of the effects of event Y
                
                  n
                , each decaying since the point of its exponentially distributed arrival time. In what follows, we take f
                
                  Y
                 to be 
$$ f_Y = \gamma e^{-\gamma Y}, $$

                    (39)
                

 i.e., the perturbation magnitudes are exponentially distributed.
Such shot-noise processes have traditionally been used to model the accumulation of current in an anode as electrons are emitted from a heated diode (see, for example, Davenport and Root 1958, Chap. 7). The model is quite general, however, and can be used to model any quantities of random magnitude, that arrive at random times, and that have effects that change with time according to some response function after arriving (Parzen 1962), including insurance claim intensity (Dassios and Jang 2003), financial asset returns (Chobanov 1999), and streamflow (Cowpertwait and O’Connell 1992). It is the response function that differentiates shot-noise processes from compound Poisson processes such as Eq. (16), but which makes them more suited to population dynamical processes (see, Drury et al. 2007, for an application to biological invasions). Of course, in the context of pest management, we are modeling losses to population abundance and it is the accumulation of these losses that can lead to crossing the threshold between basins of attraction.
The final element that we require in order to apply the shot-noise process is for perturbations to decay exponentially back to equilibrium. This is the standard behavior of small perturbations to stable equilibria, but we need to be assured that it is a reasonable approximation to the behavior of the system after arbitrary perturbations. In Drury and Lodge (2008), we showed that this is indeed the case for perturbations up to 30 % of the distance between equilibrium and the threshold in the present model. We discuss how we model larger perturbations later.
Note that because the process Eq. (38) decays exponentially between events at rate ζ>0, the potential exists for the perturbations and regrowth to come to equilibrium. Indeed, Cox and Isham (1980) show that, because of the additive nature of Eq. (38), the equilibrium can be determined by the moment generating function, 
$$ E\bigl(e^{-sX}\bigr) = f_X^*(s) = \exp \biggl[a \int _0^{\infty}{f_Y^*\bigl(se^{-\zeta t} \bigr)-1}\,dt \biggr]. $$

                    (40)
                


              Obviously, sustainable harvest has the goal of establishing such an equilibrium, within the desirable basin of attraction, but pest control does not. Instead, pest control strives to perturb the system at a higher rate than the rate of return to equilibrium so that the state of the system moves ever closer to the separatrix and eventually crosses it. This can be achieved by choosing combinations of frequency and magnitude of perturbation that exceed the return rate ζ.
Thus, the shot-noise process provides the required connection between perturbation frequency and size, and interperturbation system dynamics (Parzen 1962). In the present case, the quantities we are interested in are prey harvest frequency and harvest magnitude, interperturbation population dynamics, and how this process creates the potential for threshold crossings. The threshold of particular interest is the separatrix ξ between basins of attraction and the MFPT of interest is thus E[T
                
                  ξ
                ], the expected time to cross ξ. The threshold ξ is the stable manifold of the saddle point (i.e., the middle, unstable equilibrium) and locally is the eigenvector corresponding to the negative eigenvalue of the linearized system. Thus, the stable manifold of the saddle is the set of all points in the (prey–predator) plane that tend toward the saddle as time goes to infinity, and forms a natural boundary in the state space. To demonstrate the generality of the procedure, however, in addition to this natural threshold ξ, we also explore an arbitrary prey density threshold within the outbreak basin of attraction. This threshold could correspond to a less ambitious management goal, for example, and also demonstrates how the approach applies to systems with single, stable coexistence states.
3.1 Mean First Passage Times
There has been much recent research into deriving explicit formulae for MFPT and (Laio et al. 2001) derived a formula for directly calculating E[T
                  
                    ξ
                  ] for systems subject to white shot noise and with exponentially distributed jump heights (i.e., perturbations). Letting p=p(t) be the perturbation from equilibrium, ρ(p) be the deterministic system response rate describing how returns to equilibrium vary with perturbation size, and S(t) be the Poisson sequence of harvesting events (i.e., the shots of the shot-noise process), the dynamical evolution of perturbations to the system can be described by Laio et al. (2001), 
$$ \frac{dp}{dt}=-\rho(p)+S(t), $$

                    (41)
                

 where the shocks S occur at random times τ
                  
                    i
                   and have independent magnitudes h
                  
                    i
                   so that 
$$ S(t)=\sum_i h_i \varDelta (t-\tau_i), $$

                    (42)
                

 with Δ(⋅) being the Dirac delta function. Equation (41) says that the state variable, p (i.e., perturbation size) decays at the system response rate and increases with new perturbations according to the random driving process S(t), which we have derived above as being Poisson.
Under these assumptions, and when the initial perturbation is p
                  0 (Laio et al. 2001) derived the expression for MFPT to a target ξ from initial point p
                  0 as 
[image: ]

                    (43)
                

 where λ is the perturbation rate, γ is the inverse of mean perturbation size, and β describes the way that system return rates depend on perturbation size. The first term in Eq. (43), 1
                  F
                  1, is the confluent hypergeometric function of the first kind (Weisstein 2003), which is defined in general by 
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 and the other two terms, 
                    p
                  
                  F
                  
                    q
                  , are the generalized hypergeometric function, which is defined by 
$$ _{p}F_{q} = \sum_{k=1}^{\infty} \frac{ (\alpha_1)_k(\alpha_2)_k\cdots(\alpha_p)_k}{ (b_1)_k(b_2)_k\cdots(b_q)_k } \frac{x^k}{k!}, $$

                    (46)
                

 where (α)
                    k
                   and (b
                  
                    k
                  ) are rising factorials, 
$$ (\alpha)_k \equiv\alpha(\alpha+1)\cdots(\alpha+k-1). $$

                    (47)
                


                Thus, we have from Eq. (43), with p
                  0 any arbitrary initial distance from equilibrium that the first term is 
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 and the second and term is 
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 because (1)
                    k
                  ≡k!. These expressions are difficult to interpret biologically, but we can make some progress by assuming that the initial perturbation size p
                  0=0 so that the first and third terms in Eq. (43) drop out. This requirement simply means that the perturbation process starts from equilibrium. In that case, Eq. (43) simplifies to Drury et al. (2007), 
$$ E\bigl[T_{\xi}(0)\bigr]=\frac{1}{\lambda} + \varPsi\sum ^\infty_{k=0}\frac{(\gamma\xi)^k}{\varGamma (1+\frac {\lambda}{\beta}+k )(k+1)}, $$

                    (54)
                

 where Γ(⋅) is the gamma function and 
$$ \varPsi=\varGamma \biggl(1+\frac{\lambda}{\beta} \biggr) \biggl( \frac {\gamma\xi}{\lambda} \biggr). $$

                    (55)
                


                In words, letting p
                  0=0 be the initial distance from a stable equilibrium of the system (1)–(2), Eq. (54) allows us to calculate the expected time to shift the system from one stable regime to the other, given perturbation frequency at rate λ, mean perturbation size 1/γ, and an approximation β to the relationship between prey population recovery rate and perturbation size. For the process to be stationary, this latter quantity must increase linearly with perturbation size p, so that 
$$ \rho(p)=\beta p. $$

                    (56)
                


                  β can be estimated by finding the exponential decay rate, say \(\hat{r}\), of perturbations from equilibrium for a range of perturbation sizes p then estimating the straight line slope through these. Given our parameter values, up to perturbation size p=0.3x
                  ∗, where x
                  ∗ is the equilibrium, Eq. (54) is valid. Perturbations larger than this place the system in regions of state space for which the system response may cease to increase as p increases, without other species manipulations. Thus, we take advantage of this constraint to show that the methods apply in contexts other than regime shifts (which require larger cumulative perturbations in general), and use p≤0.3 to calculate MFPT to the arbitrary invader density 0.7x
                  ∗, still within the basin of attraction of the outbreak equilibrium. We next manipulate predator density, in ways consistent with integrated pest management, in order to satisfy the requirements of Eq. (56) to explore perturbation schedules that include magnitudes large enough to initiate regime shift.
The significance of Eq. (54) is that it allows us to replace numerical solutions of the stochastic version of Eqs. (1)–(2) with an analytic approximation. We have shown elsewhere (Drury and Lodge 2008) that adding stochastic harvest terms S
                  
                    x
                  (t) analogous to S in Eq. (42) to our population dynamic model, 
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 where 
$$ S_x(t)=\sum_{i=1}^{\infty} h_{i} \varDelta (t-\tau_{i}), \qquad h_i \sim\gamma e^{-\gamma x}, \qquad \tau\sim \lambda e^{-\lambda x}, $$

                    (59)
                

 yields MFPT of the boundary between equilibria comparable to those generated by Eq. (54). We take advantage of that fact here to calculate MFPT directly from Eq. (54). Thus, the only numerical work necessary is calculating how equilibrium values change as parameter values change. To estimate the values of equilibria as parameters are varied, we obtained numerical solutions of the deterministic dynamical system (1)–(2) and calculated the distance \(\bar{\xi}\) from the equilibria to the separatrix ξ.
Once values for λ, γ, β, and ξ are specified, calculating MFPT to regime shifts, is straightforward (see, e.g., Drury 2007, Appendix A). Estimates of ξ and β can be obtained directly from the dynamical system, while γ is chosen to achieve a particular goal. Choices for λ are also likely to be driven by practical considerations. We used five different values of λ, 
$$ \lambda_{4r}> \lambda_{2r}> \lambda_r> \lambda_{\frac{1}{2}}> \lambda_y. $$

                    (60)
                


                  λ
                  
                    r
                   is the relaxation rate of the dynamical system, λ
                  2r
                   and λ
                  4r
                   are twice and four times slower, respectively. \(\lambda_{\frac{1}{2}}\) is the half-life of the decay back to equilibrium, and λ
                  
                    y
                   is the time when predator density intersects the predator isocline and therefore \(\dot{y}=0\).
The log10 isobars in Fig. 8a show that for thresholds within the basin of attraction, changing attack rate has little effect on threshold crossing times, but that increasing the frequency of harvest strongly decreases MFPT. In contrast, the isobars in Fig. 8b show a stronger effect of changes in the attack rate, indicated by the less steep slope. For example, it is possible to decrease MFPT by 50 % (i.e., log MFPT from 2.3 to 2) by either increasing harvest frequency from λ
                  1/2 to λ
                  
                    y
                   or by increasing predator attack rates from 0.075 to approximately 0.095. This difference in effect strength for different goals arises because the full dynamic consequences of parameter drift, such as increasing attack rates driven by increases in mean predator size, include both a decrease in prey equilibrium and an increase in prey density-value at the threshold (i.e., convergence of the solid outbreak equilibrium line and dotted unstable equilibrium line in Fig. 6b with increasing δ). Together these effects decrease the relative magnitude of the outbreak basin of attraction, an effect that is irrelevant to goals that do not include escaping this basin of attraction. 
Fig. 8[image: figure 8]
MFPT isobars for combinations of predator attack rate and harvest frequency. (a) Threshold within the basin of attraction, (b) threshold between basins of attraction


Full size image


                

4 Discussion
Our results suggest that species manipulation can act on a system in two complementary ways that simultaneously induce population collapse. First, the cumulative effect of perturbations, such as prey harvest, occurring at a time-scale faster than the population recovery time, moves the population closer to the threshold between equilibria. Second, strategies that change species interaction rates can change bifurcation parameters and move the threshold in relation to equilibria. When such rates change enough, equilibria collide and disappear, causing catastrophic shifts in species abundance as the system equilibrates to the remaining equilibrium. As a concrete example, consider selective harvest of the predator, such as slot limits in fisheries, and how they change the age and size structure which can then change attack rates, a key bifurcation parameter in our model (the fraction of crayfish in bass diets increases with bass size). Even if attack rates cannot be increased far enough to eliminate the potential for an outbreak equilibrium altogether, any increase changes the relative sizes of the basins of attraction in favor of biological control of the prey. Such changes in resilience therefore decrease the effort required to cross the threshold with subsequent perturbations.
Parameter drift affects the size of basins of attraction, a feature of dynamical systems that has been called the resilience of the equilibrium (Holling 1973). Indeed, ideal management strategies should address such gradual changes that affect resilience, as well as efforts to control (or create) disturbances, such as perturbations (Scheffer et al. 2001). The importance of these gradual changes for sustainable fisheries has long been recognized (Ricker 1963). Population perturbations, such as harvest, combine with these changes to equilibrium stability to cause regime shifts by pushing state variables from one basin of attraction to another. Our results provide a way to understand both these effects at once, by using MFPT as a common metric. Specifically, we show a wide range of combinations of parameter change and perturbation size which yield identical MFPT.
Analysis of Eqs. (1)–(2) yields results consistent with those of previous studies in demonstrating that IGP (Mylius et al. 2001) and the type III functional response (Ludwig et al. 1978) generate the potential for alternate stable states. We further show that both interactions of intraguild predation, i.e., competitive effects and attack rates, yield bifurcation parameters. Thus, manipulation of either of these parameters can facilitate regime shifts by the gradual parameter change mechanism that results in equilibrium bifurcation. Furthermore, the level at which predators are held constant can also lead to bifurcations, but for the parameters used here only at unrealistically high stock levels. This is presumably because both competition, which must favor prey for coexistence to occur (Polis et al. 1989), and the carrying capacities, favor the invertebrate prey. For example, rusty crayfish have been documented at adult densities of ≥10 m−2 (Hill and Lodge 1999). Indeed, asymmetry in the basins of attraction in Fig. 1 is expected, because despite being primarily predatory, the rusty crayfish is an opportunistic omnivore (Covich 1977; Hill et al. 1993). Such generalists are favored in IGP interactions because consumption of nonshared resources subsidizes suppression of the shared resource (Onzo et al. 2005). Regardless of asymmetry, however, quantifying the combination of gradual parameter change and stochastic shocks provides a powerful management tool for achieving biological control of pests, or preventing the collapse of harvested natural resources.
In summary, bifurcation analysis reveals that several key parameters of Eqs. (1)–(2) create the potential for bistability. For example, both interspecific competition α, and the predator attack rate on prey δ, combine to form stability regions in the parameter space (Fig. 2a). Specifically, as the competitive effects of the intraguild predator on the prey α, and attack rates δ increase, the system loses the potential for prey outbreaks. While it is not always clear how to manipulate these 2 parameters in natural systems, it is possible for the bass and crayfish modeled here, and presumably would also be possible in other fisheries. For example, in the smallmouth bass–rusty crayfish system, predator size can be manipulated through angling regulations, changing both the attack rate δ and perhaps the half-saturation constant κ
                2 (Dunlop et al. 2005). Larger smallmouth bass eat disproportionally more crayfish than smaller bass do (affecting δ) and may therefore switch to feeding on them at lower densities (affecting κ
                2). Indeed, Biggs et al. (2009) found that altering angling regulations not only affected the potential for regime shifts, but could generate system responses quickly enough to reverse regime shifts already in progress.
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