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Abstract In the context of pandemic influenza, the prompt and effective implemen-
tation of control measures is of great concern for public health officials around the
world. In particular, the role of vaccination should be considered as part of any pan-
demic preparedness plan. The timely production and efficient distribution of pan-
demic influenza vaccines are important factors to consider in mitigating the morbid-
ity and mortality impact of an influenza pandemic, particularly for those individuals
at highest risk of developing severe disease. In this paper, we use a mathematical
model that incorporates age-structured transmission dynamics of influenza to evalu-
ate optimal vaccination strategies in the epidemiological context of the Spring 2009
A (H1N1) pandemic in Mexico. We extend previous work on age-specific vaccina-
tion strategies to time-dependent optimal vaccination policies by solving an optimal
control problem with the aim of minimizing the number of infected individuals over
the course of a single pandemic wave. Optimal vaccination policies are computed
and analyzed under different vaccination coverages (21%–77%) and different trans-
missibility levels (R0 in the range of 1.8–3). The results suggest that the optimal
vaccination can be achieved by allocating most vaccines to young adults (20–39 yr)
followed by school age children (6–12 yr) when the vaccination coverage does not ex-
ceed 30%. For higher R0 levels (R0 >= 2.4), or a time delay in the implementation
of vaccination (>90 days), a quick and substantial decrease in the pool of suscepti-
bles would require the implementation of an intensive vaccination protocol within a
shorter period of time. Our results indicate that optimal age-specific vaccination rates
are significantly associated with R0, the amount of vaccines available and the timing
of vaccination.

Keywords Influenza pandemic · A/H1N1 pandemic · Optimal control ·
Age-specific vaccination

S. Lee (�) · M. Golinski · G. Chowell
Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social
Change, Arizona State University, Tempe, AZ 85282, USA
e-mail: mathever@gmail.com

mailto:mathever@gmail.com


Modeling Optimal Age-Specific Vaccination Strategies 959

1 Introduction

The emergence of the highly transmissible novel influenza virus A (H1N1) among
humans in Spring 2009 raised concerns about the potential morbidity and mortal-
ity impact of the pandemic virus worldwide. The development of optimal counter-
measures is critical particularly when resources to reduce the severity of the pan-
demic are limited. This is relevant given the fact that existing production technolo-
gies cannot keep pace with the vaccination needs of an entire nation at the onset
of a pandemic. The intensity of interventions required to mitigate an unfolding in-
fluenza pandemic is further complicated by substantial uncertainty levels associated
with the epidemiology of pandemic influenza (e.g., transmissibility (R0) and case
fatality rates), which calls for the development of systematic approaches for the gen-
eration of optimal control strategies. The timely and sufficient production of vaccine
supplies is challenging, due to the fact that production against an emergent A (H1N1)
influenza pandemic can only start once the pandemic virus has been identified. There-
fore, current pandemic vaccine constraints inevitably lead to limited vaccine stock-
piles that require effective prioritization schemes in the population (Oshitani et al.
2008). The implementation of national and global pandemic mitigation plans has
been evaluated using a number of models (Chowell et al. 2008; Ferguson et al. 2006;
Germann et al. 2006; Hill and Longini 2003; Lipsitch et al. 2009; Merler et al. 2009;
Nishiura et al. 2009). For example, age-structured models have been developed to
investigate the effects of optimization of vaccination allocations against pandemic in-
fluenza in terms of reducing the morbidity and mortality impact (Chowell et al. 2009;
Knipl and Rost 2011; Mylius et al. 2008; Patel et al. 2005; Tuite et al. 2010). For in-
stance, Medlock et al. (2009) determined optimal vaccine allocation for five outcome
measures: deaths, infections, years of life lost, contingent evaluation, and economic
costs. These types of studies, which are based on optimization methods, indicate that
optimal vaccine allocations differ markedly for seasonal and pandemic influenza as
they are dependent on the distribution of age and/or risk groups within a population.

The novel influenza A (H1N1) virus first generated significant impact in Mexico in
April 2009. Early epidemiological pandemic data from Mexico indicated a substantial
increase in morbidity and mortality rates among young adults compared to morbidity
and mortality rates which are concentrated among the young and old during interpan-
demic influenza years (Chowell et al. 2009). Earlier work on pandemic vaccination
strategies employed an age-structured model that was previously calibrated against
local demographic and epidemiological data from the early wave of the 2009 in-
fluenza pandemic in Mexico (Chowell et al. 2009) to evaluate the impact of adaptive
vaccination strategies. The adaptive vaccination strategies studied by Chowell et al.
(2009) were shown to outperform seasonal influenza vaccination strategies. Here, we
use the mathematical model (Chowell et al. 2009) as a basis to assess time varia-
tions in age-specific vaccination rates by incorporating time-dependent vaccination
rates as optimal control functions. We used a novel model based on optimal control
theory to determine age-specific vaccination allocation during pandemics. Our math-
ematical model was then used to answer questions germane to the effectiveness of
optimal vaccination strategies including: (1) Which age groups should be prioritized
for influenza pandemic vaccination? (2) How much vaccine should be allocated to
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each group and how do these vaccination rates vary over time? We addressed these
questions by formulating an optimal control problem with the goal of minimizing
the number of infected individuals while minimizing cost of implementing vaccina-
tion over the duration of the pandemic. We also explored the impact of optimal age-
specific vaccination strategies on the temporal dynamics of infection, hospitalization,
and death under different vaccination coverage and epidemiological scenarios.

2 Influenza Pandemic Model with Time-Dependent Vaccination

Optimal control theory (Fleming and Rishel 1975; Pontryagin et al. 1962) has been
used by a number of biological and epidemiological models (Blayneh et al. 2009;
Jung et al. 2002; Lenhart and Workman 2007; Rowthorn et al. 2009). Recently, SIR
models have incorporated vaccination, quarantine, and isolation controls (Behncke
2000; Hansen and Day 2010; Lee et al. 2011; Lenhart and Workman 2007; Rowthorn
et al. 2009) to study the impact of optimal control on the spread of disease. For
example, optimal antiviral treatment and isolation strategies have been evaluated in
the context of the 1918 influenza pandemic (Lee et al. 2010). A constrained optimal
control problem was solved to discuss optimal vaccination strategies for the 1918 in-
fluenza pandemic when vaccine supply is limited (Lee et al. 2011). In this paper, we
formulated an optimal control problem in the context of the transmission dynamics
of the 2009 influenza pandemic in Mexico that captures age-specific characteristics
of the population (Chowell et al. 2009). The baseline model (Chowell et al. 2009) is
modified through the incorporation of time-dependent (six age-specific) control func-
tions ui(t), where i = 1, . . . ,6. We employed time-dependent (age-specific) control
functions to measure the effectiveness of age-specific vaccination policies aimed at
minimizing the number of infected individuals during the pandemic. The dynamic
model with age-specific controls is described by the following system of nonlinear
differential equations:

Ṡi (t) = −ui(t)Si(t) −
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
Si(t)

V̇i(t) = εiui(t)Si(t) − ηVi(t) −
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
Vi(t)

Ḟi(t) = (1 − εi)ui(t)Si(t) −
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
Fi(t)

Ṗi(t) = ηVi(t)

Ėi(t) =
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)

(
Si(t) + Vi(t) + Fi(t)

) − kEi(t)

İi (t) = kEi(t) − (αi + γ1)Ii(t)

J̇i(t) = αiIi(t) − (γ2 + δi)Ji(t)

Ṙi(t) = γ1Ii(t) + γ2Ji(t)

Ḋi(t) = δiJi(t)

(1)
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The model classifies individuals as susceptible (Si ), effectively vaccinated but not
yet protected (Vi ), ineffectively vaccinated (Fi ), protected by vaccination (Pi ), la-
tent (Ei ), infectious in the population (Ii ), hospitalized (Ji ), recovered (Ri ), and
dead (Di ) for i = 1, . . . ,6 (six age groups: 0–5 yr, 6–12 yr, 13–19 yr, 20–39 yr,
40–59 yr, >= 60 yr). Susceptible individuals in age group i are exposed to the in-
fluenza virus at the force of infection

∑6
i=1 βij (Ij (t) + Jj (t))/N(t) where βij is

the transmission rate between age groups i and j . The total population size is given
by N(t) = ∑6

i=1 Si(t) + Vi(t) + Fi(t) + Pi(t) + Ei(t) + Ii(t) + Ji(t) + Ri(t). The
transmission rates βij are given by qcij where q is the transmission probability per
contact (fraction of contacts that leads to infection), which is assumed to be constant
across age groups and is adjusted to achieve the desired R0. The contact rate ma-
trix, cij represents the mixing rates between age groups i and j with higher rates
within each age group (when i = j ) than between age groups when i �= j (see Fig. 1
and (9) in Appendix and more details are in Wallinga et al. 2006). Latent individu-
als Ei progress to the infectious class Ii at the rate k (where 1/k is the mean latent
period). Infectious individuals are hospitalized at the age-specific mean rates αi and
recover at the mean rate γ1. Hospitalized individuals either recover at the constant
rate γ2 or die from influenza at the age-specific rate δi . Age-specific rates for hos-
pitalization and mortality are given in Fig. 1 and Table 2 (see also Chowell et al.
2009). Recovered individuals are assumed to remain protected for the duration of the
pandemic. The control functions ui(t) determine the age-specific vaccination rates
of susceptible individuals (Si ) per unit of time for each age group i. We assume that
Vi(t) achieve maximal per-capita vaccination rates εiui(t) with age-specific vaccine
efficacy εi (Fig. 1 and Table 2). Vaccinated individuals are assumed to progress to
the protected class Pi at the rate η (with mean 1/η = 10 days) while the ineffectively
vaccinated class Fi remain susceptible to infection. In addition, the vaccinated but
not yet protected classes Vi are susceptible to infection.

The goal is to minimize the number of infectious individuals at a minimal cost via
vaccination during the course of a single influenza pandemic outbreak [0, T ]. The
objective functional F to be minimized is given by the expression:

F
(
U(t)

) =
∫ T

0

6∑

i=1

[
Ii(t) + Wi

2
ui

2(t)

]
dt (2)

with U(t) = (u1(t), . . . , u6(t)) and X(t) = (Si,Vi,Fi,Pi,Ei, Ii, Ji,Ri,Di). The
age-dependent optimal vaccination strategies can be obtained by finding an optimal
pair of solutions (U∗(t),X∗(t)) such that

F
(
U∗(t)

) = min
Ω

F
(
U(t)

)
(3)

where Ω = {U(t) ∈ L2(0, T )6‖a ≤ ui(t) ≤ b, i = 1, . . . ,6, t ∈ [0, T ]} subject to
the state equations given by (1). We assume that the control efforts are nonlinear
(quadratic) to the objective functional and this can be generalized by using a combi-
nation of linear and quadratic functions of controls (but we only consider quadratic
control functions in this work). Also, we assume that each age-specific control func-
tion ui(t) (age-specific vaccination rate) is bounded by the same constant a and b.
The age-specific weight constants Wi ≥ 0 represent the desired balancing constants
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Fig. 1 The model consists of 6 age groups (1 = 0–5 yr, 2 = 6–12 yr, 3 = 13–19 yr, 4 = 20–39 yr,
5 = 40–59 yr, 6 = >60 yr). Age-dependent parameters (calibrated for the 2009 A (H1N1) outbreak in
Mexico) are shown; population sizes, vaccine efficacies, hospitalization rates, and mortality rates (A)–(D).
The age-specific contact rate matrix cij between age groups i and j per week is illustrated in the bot-
tom panel. The contact rate among the 6–12 yr age group is the highest while it is lowest among seniors
(=>60 yr)
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which measure the relative cost of vaccination over a finite time period; for simplicity,
that age-specific weight constants are assumed to be invariant across age groups as a
baseline. This assumption can be further complicated by the relative costs among dif-
ferent age groups. Here, we adjust these relative costs for corresponding vaccination
controls to limit a prespecified vaccination coverage indirectly. For example, a larger
value of the weight constant lead to a smaller value of control (or vaccine) functions
and this results in smaller vaccine coverage. Pontryagin’s Maximum Principle (Lee
et al. 2010; Lenhart and Workman 2007) is used to solve this optimal control problem
and its optimality system is given in the Appendix.

3 Simulation Results

We present simulation results generated by the numerical implementation of optimal
age-specific vaccination strategies as described in Sect. 2. First, we explore a base-
line pandemic scenario in the context of the 2009 A (H1N1) outbreak in Mexico in
the absence of vaccination. We evaluate the impact of optimal vaccination strategies
on the dynamics of influenza pandemics under different vaccination coverages and
different transmissibility levels. The estimated range of R0 for the 2009 influenza
pandemic is around 1.6–3.0 (Chowell et al. 2009).

In our optimal control formulation, there are two critical parameter values (weight
constants and a control upper bound), which associate with vaccination coverage and
the maximum daily vaccination rate, respectively. In general, vaccination coverage
for a pandemic influenza is much lower than 100% due to a lack of a vaccine at
the onset of pandemic influenza. Especially, for 2009 H1N1 pandemic influenza, de-
veloped countries like the US or Canada achieved 30–40% vaccine coverage (Pub-
lic Health Agency of Canada; CDC; Health Industry Distributors Association 2009;
Macroepidemiology of Influenza Vaccination Study Group 2005; Oliver Wyman
Group and Program for Appropriate Technology 2007) while developed countries in-
cluding Mexico did not exceed 10–20% (Herrera-Valdez et al. 2011; Libenson 2009;
Valadez 2010). Therefore, the weight constant has to be determined so that the to-
tal vaccination coverage lies in a realistic range. First, we varied weight constants
in the [1–1015] range, which is chosen due to a large difference between the two
terms in the objective functional (approximately 106–1010 between the number of
infected individuals and the values of control functions). Then we explored the im-
pact of the weight constants on the vaccination coverage. Extensive numerical ex-
periments indicated weight constants in the range of [1–106] resulting in a vaccine
coverage of more than 80% of the total population, which is beyond realistic vaccina-
tion coverage levels. Finally, the weight constants are chosen in the range of 109–1015

(Wi ∈ [109,1015] for i = 1, . . . ,6).
The second major control parameter value is the control upper bound, which rep-

resents the maximum daily vaccination rate or the maximum daily rate of vaccine
administration. There has been work to estimate the daily rate of vaccine administra-
tion and it is below 2% of the total population (Aaby et al. 2006; Centers For Disease
Control and Prevention 2009; Cho et al. 2011; Peterborough County-City Health Unit
Pandemic Influenza Plan 2010; Phillips and Williamson 2005; Tennenbaum 2008;
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Table 1 Parameter definitions and baseline values (and their corresponding sources) used in numerical
simulations. Parameter values were based on Chowell et al. 2009.

Parameter Description Value

k Rate of progression from latent to infectious (days−1) 1/1.9

γ1 Recovery rate (days−1) for infectious class (days−1) 1/1.5

γ2 Recovery rate for hospitalized class (days−1) 1/1.5

η Rate of progression from vaccinated to protected (days−1) 1/10

αi Age-specific diagnostic rate (days−1) 0.12–0.7

δi Age-specific mortality rate (days−1) 0.03–0.14

εi Age-specific efficacy of vaccinations (%) 35–77

Ii (0) The initial values (i = 2, 3) 1,5

T The simulated duration (days) 300

b The upper bound of control (vaccination rates, days−1) 0.02

Wi Weight constants on controls 109–1015

Washington 2009). Since this is the estimation for developed countries, it is reason-
able to assume 2% of the total population to be the maximum daily vaccination rate
for developing countries like Mexico. Therefore, based on these findings, we must
take this bound for control (b = 0.02 in (3)) to be realistic.

For model (1), the key parameters which determine the dynamics of the influenza
pandemic include the age distribution of the population as well as age-specific vac-
cine efficacy, hospitalization rates, mortality rates, and contact rates (see Fig. 1 and
Table 2). Vaccine efficacy is assumed to be 77.5% for individuals less than 60 and
35% for seniors over 60 (Goodwin et al. 2006). Hospitalization rates among se-
niors are highest followed by individuals in the 20–59 yr age group, and are low-
est for individuals in the 6–19 yr age group. Mortality rates are highest among the
20–59 yr age group, followed by the 6–19 yr age group, and are lowest among se-
niors (60 yr and older). The age-specific contact rate matrix cij between age groups
i and j is illustrated in the bottom panel of Fig. 1 and (9) in Appendix. The con-
tact rate among individuals in the 6–12 yr age group is highest while the contact
rate among the senior group is lowest (Edmunds et al. 1997; Mossong et al. 2008;
Wallinga et al. 2006). All age-specific results are presented in terms of proportions
of each age group, i.e., the number of individuals in each age group divided by the
corresponding population size of each age group. The default values for the initial
conditions and model parameters are given in Tables 1 and 2. Units are per day for
all rates and baseline values are used throughout the manuscript unless otherwise
indicated.

3.1 Optimal Age-Specific Vaccination Strategy

We evaluate the impact of optimal age-specific vaccination rates over the course of
the influenza pandemic for R0 = 1.8 and a 30% vaccination coverage. Figure 2 com-
pares a baseline situation (without vaccine) with an optimal vaccination strategy. To-
tal vaccination coverage for this optimal vaccination strategy is 30% using the weight
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Fig. 2 (Color online) Age-specific incidence curves of infected, hospitalization and death proportions
are displayed when R0 = 1.8. We compare a baseline situation where no vaccine is used (A)–(C) with
results implementing optimal vaccination strategies (D)–(F). The time series of age-specific vaccinated
proportion is shown for each age group (bottom panel)

constant of Wi = 1015 for all i. Age-specific incidence curves of infected, hospital-
ized and dead proportions are shown in the absence of vaccine (Fig. 2A, B, C) and
under vaccination (Fig. 2D, E, F). In the absence of vaccine, peak incidence (Fig. 2A)
is reached near day 100 and the pandemic ends around day 150. In contrast, under
the vaccination strategy, peak incidence is reached around day 120 and the pandemic
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Fig. 3 Age-specific fractions of total vaccines and cumulative proportions of vaccinated are illustrated
in (A) and (B), respectively, when R0 = 1.8. The percent age-specific reductions in infected classes are
shown in (C) relative to the baseline (no vaccine) situation

ends around day 200 (Fig. 2D). The implementation of an optimal age-specific vac-
cination strategy yields reductions of approximately 50% in the peak size of infec-
tions, hospitalizations and deaths (Fig. 2D, E, F). Our results indicate that vaccination
strategies generate longer pandemic durations while significantly reducing the pan-
demic peak size.

Time series of age-specific proportion of vaccinated individuals are displayed in
the bottom panel of Fig. 2. All vaccination control functions are monotonically de-
creasing in time with the majority of control effort used during the first three months.
The number of vaccinated individuals substantially decrease after 150 days (after
5 months when the incidence curves of infected start to decrease) for all age groups.
Figure 2 (bottom panel) demonstrates that the proportions of vaccinated groups is
largest in both the 20–39 yr age group and the 6–12 yr age group, while the senior
age group obtains the smallest fraction of vaccinated individuals.

We explore the effectiveness of optimal age-specific vaccination on the cumulative
number of infected individuals relative to the number of infected individuals in the
absence of vaccination. Figure 3 shows the total fraction of vaccines allocated and
the vaccination coverage by age group. The total fraction of vaccines represents the
number of vaccinated individuals in each age group divided by the total number of
vaccinated individuals (Fig. 3A). The results suggest that a substantially large fraction
of the vaccine stockpile (about 43% of total vaccines) must be allocated to young
adults (20–39 yr) while seniors should receive the smallest fraction of vaccines (about
5% of total vaccines available). Figure 3B shows the cumulative vaccination coverage
by age group. Results suggest that the highest vaccination coverage (about 40%) must
be achieved among the 20–39 yr age group.

The effectiveness of optimal age-specific vaccinations is also assessed by the re-
duction (%) in the cumulative number of infected individuals relative to the scenario
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without interventions. The impact of optimal vaccinations in terms of reductions of
infected individuals is shown in Fig. 3C. The reductions are almost uniform in all
age groups (between 30 and 35%), with the exception of the 20–39 yr age group
(around 43%). The implementation of optimal age-specific vaccinations yielded re-
ductions of 36, 37, and 38% in the cumulative number of infected, hospitalized and
dead individuals, respectively.

In this study, we considered the cost of vaccination to be the same regardless of the
age group (Weight constant 1: Wi are the same for all i). However, the same vaccina-
tion coverage (30%) can be achieved by using different combinations of age-specific
weight constants. We carried out a second case with different weight constants incor-
porating the cost of infection involving different risk levels such as age-specific mor-
tality and hospitalization rates (Chowell et al. 2011). Therefore, smaller age-specific
weight constants are used for the age groups 1, 5, and 6 due to a higher risk of infec-
tion (Weight constant 2: W1, W5, W6 smaller than W2, W3, W4). For this simulation,
R0 = 1.8 and vaccination coverage (VC) = 30% are used. Age-specific vaccinated
proportions are increased in the age groups 1, 5, and 6, which reflects higher risk
groups need to be more vaccinated. However, the results indicate that using Weight
constant 2 yields very similar incidence curves and percent reductions in infected as
when using Weight constant 1. The overall percent reduction among infected (36%)
is essentially equal to the one using Weight constant 1.

3.2 Optimal Age-Specific Vaccination Strategies Under Different Vaccination
Coverages

We study the effects of optimal vaccination strategies on the dynamics of influenza
pandemics under different vaccination coverage levels when R0 = 1.8. Constraints
on the availability of vaccine supplies were obtained by changing the effects of differ-
ent weight constants on the controls. First, age-specific optimal vaccination controls
under three different weight constants are compared in Fig. 4 using Wi = 109, 1012,
and 1015. Under these weight constants, the overall vaccination coverages are 77%,
67%, and 30%, respectively. In the context of this study, larger values of Wi mean that
the cost associated with vaccination is expensive; hence, less control is applied for
larger Wi . For instance, a higher vaccination coverage (77%) is achieved using a rel-
atively less expensive weight constant, Wi = 109, while a lower vaccination coverage
(30%) is achieved by using a relatively more expensive weight constant Wi = 1015. It
is observed that the general shapes of control curves are similar (monotonic decreas-
ing in time) with changes in magnitude for all age groups.

Figure 5 shows the impact of varying the weight constants in terms of the inci-
dence of infected and vaccinated individuals. As weight constants are increased, cost
of vaccination increases, resulting in an increase in the overall number of infected
individuals and reductions in vaccination rates. This is due to the fact that large cov-
erages of optimal age-specific vaccinations yield increased reductions in the overall
number of infected individuals (Fig. 5G, H, I). A significant difference is observed
in the magnitude of incidence curves for three classes (see the scale of the y-axis
in Fig. 5G, H, I). From these results, it is observed that the use of early and suffi-
cient implementation of vaccines (more than 67% vaccination coverage) contain an
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Fig. 4 (Color online) The impact of weight constants on age-specific vaccination rates are compared in
(A)–(F) when R0 = 1.8 under three different weight constants W = 109, W = 1012, and W = 1015.
Using these weight constants result in the range of vaccine coverages, 77, 67, 30%, respectively

influenza pandemic. In addition, our findings show shifts in the age-specific vaccina-
tion rates as the vaccination coverage decreases. For example, as the vaccine coverage
decreases (with increase in weight constants, Fig. 5J, K, L), the proportion of vacci-
nated individuals among the 6–12 yr age group decreases while the proportion of the
vaccinated individuals among the 20–39 yr age group increases. This result under-
scores a relationship between the age-prioritized vaccination strategies and vaccina-
tion coverage.

3.3 Optimal Age-Specific Vaccination Strategies Under Different Transmissibility
Levels

The effects of optimal vaccination strategies as a function of R0 is presented in Fig. 6.
For these simulations, the weight constant Wi = 1015 is chosen to reflect realistic
vaccination scenarios (i.e., when vaccine supplies are limited, less than 30%). The
resulting vaccination coverages are 30%, 26%, and 21% for R0 = 1.8, R0 = 2.4,
R0 = 3.0, respectively. Incidence curves of infected proportions for three different
values of R0 are compared in Fig. 6(A)–(C). It can be observed that a larger R0
results in earlier pandemic peaks with larger pandemic sizes due to rapid spread of
the pandemic. For instance, the pandemic peak at R0 = 2.4 (Fig. 6B) is twice the
size of the pandemic peak for R = 1.8 (Fig. 6A), while the pandemic peak for R0 =
3.0 (Fig. 6C) is twice the size of the pandemic peak for R0 = 2.4 (Fig. 6B). The
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Fig. 5 (Color online) The impact of weight constants on age-specific incidence of infected and vaccinated
proportions are explored when R0 = 1.8 under three different weight constants W = 109, W = 1012,
and W = 1015. The corresponding age-specific incidence curves of infected proportions are illustrated in
(G)–(I). Age-specific vaccinated proportions are displayed in (J)–(L). Overall vaccination coverages are
77%, 67% and 30% for W = 109, W = 1012, and W = 1015, respectively

pandemic ends around day 200, 120, and 100 for R = 1.8, R0 = 2.4, R0 = 3.0,
respectively. The time schedule of optimal vaccinated proportion is shown for each
age group in Fig. 6 (D, E, F). Higher values of R0 (>= 2.4) generates outbreaks that
require the rapid implementation of optimal control policies with high vaccination
coverage. As a result, high vaccination rates must be maintained for a short period
of time since large R0’s quickly deplete the susceptible population (Fig. 6F). For the
case when R0 = 1.8 (moderate level) and vaccination coverage is 30%, an optimal
vaccination policy manages to reduce the magnitude of the influenza pandemic peak
over a broader time window (Fig. 6D).

3.4 Cumulative Proportion of Vaccinated Individuals as Functions of Vaccination
Coverage and R0

We also analyze the effects of different vaccination coverage levels and R0 on the cu-
mulative number of vaccinated individuals. The cumulative proportion of vaccinated
individuals for each age group is computed by determining the number of vaccinated
individuals divided by the population size of each age group. Figure 7A presents the
cumulative proportions of each age group under three different vaccination cover-
ages, and denoted by VC = 77% (Wi = 109), VC = 67% (Wi = 1012), and VC =
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Fig. 6 (Color online) Age-specific incidence curves of infected proportions are plotted under three dif-
ferent R0 values: R0 = 1.8, R0 = 2.4, and R0 = 3.0 (A)–(C). Age-specific vaccinated proportions are
plotted in the bottom panel (D)–(F). Total vaccination coverages are 30%, 26% and 21% for R0 = 1.8,
R0 = 2.4, R0 = 3.0, respectively

Table 2 Age-specific baseline values used in numerical simulations

Age group Population size Hospitalization rates Mortality rates Vaccine efficacies

(days−1) (days−1) (%)

0–5 yr 12933813 0.2135 0.0526 77.5

6–12 yr 15483929 0.1482 0.1491 77.5

13–19 yr 14253368 0.1482 0.1491 77.5

20–39 yr 31402356 0.2233 0.1704 77.5

40-59 yr 15735426 0.2233 0.1704 77.5

60>= yr 7277808 0.5165 0.0426 35

30% (Wi = 1015) when R0 = 1.8. Overall profiles of age-specific proportions are
similar as vaccine coverages decrease (or costs of vaccination increase). Not surpris-
ingly, as the total vaccination coverage decreases, the overall cumulative proportion
of vaccinated individuals decreases (Fig. 7A). Age groups with higher contact rates,
namely, the 6–12 yr age group, require higher vaccination coverage when the total
vaccine coverage is 77%. However, the 20–39 yr age group receives the highest vac-
cination coverage when the total vaccine coverage is less than 30%. The effectiveness
of the optimal vaccination strategy is also assessed by comparing the reduction in the
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Fig. 7 (Color online) Cumulative proportions of vaccinated are compared under three different vaccina-
tion coverage levels when R0 = 1.8 in (A) (Wi = 109: VC = 77%, Wi = 1012: VC = 67%, Wi = 1015:
VC = 30%). Cumulative proportions of vaccinated are displayed under three different R0 values in (B)
(R0 = 1.8, R0 = 2.4, R0 = 3.0)

Table 3 Comparison of percent
reductions in infected,
hospitalized, and dead relative to
the baseline scenario (no
vaccine) under three different
vaccine coverages when
R0 = 1.8

VC 77% VC 67% VC 30%

Infected 99% 97% 36%

Hospitalizations 99% 97% 37%

Deaths 99% 97% 38%

cumulative number of infected, hospitalized, and dead individuals relative to the ones
in the absence of interventions. Table 3 shows relative reductions (%) under three dif-
ferent vaccination coverages. It shows higher reductions for higher vaccination cov-
erages in all classes of infected, hospitalized, and dead. The use of VC = 77 or 67%
generates significant reductions (99 or 97% in all classes of infected, hospitalized,
and dead).

The impact of optimal vaccination strategies in terms of the cumulative propor-
tion of vaccinated individuals as a function of R0 is presented in Fig. 7B, which
compares the cumulative proportion of vaccinated individuals for three different val-
ues of R0 (R0 = 1.8, R0 = 2.4, and R0 = 3). For these simulations, the weight
constant Wi = 1015 is fixed, and the resulting vaccination coverages are 30%, 26%,
and 21% for R0 = 1.8, R0 = 2.4, and R0 = 3.0, respectively. The overall proportion
of vaccinated individuals decreases as R0 increases. Table 4 illustrates the reduction
(%) as a function of R0. It shows high reductions for low R0 regardless of all classes
(infected, hospitalized, and dead). All three classes show reductions of 35% or more
when R0 = 1.8, however, as R0 increases, benefits decrease in all three classes.
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Table 4 Comparison of percent reductions in infected, hospitalized, and dead with the baseline scenario
(no vaccine) under three different R0

R0 = 1.8 (VC 30%) R0 = 2.4 (VC 26%) R0 = 3.0 (VC 21%)

Infected 36% 24% 17%

Hospitalizations 37% 24% 16%

Deaths 38% 26% 18%

3.5 Optimal Age-Specific Vaccination Strategies Under a Time Delay
of Vaccination

The timing of vaccine delivery or availability is always a critical issue in a pandemic
vaccination plan. In the previous simulations, our model was based on an ideal setting
(the vaccine is available at the beginning of a pandemic). There are several rationales
behind this ideal setting: first, we assume that a universal vaccine will be available,
which can be distributed at the onset of the pandemic. Second, a pandemic influenza
always displays multiple waves (Miller et al. 2009). Under these scenarios, it is pos-
sible to achieve optimal vaccinations at the beginning of the second or third wave.
Vaccination with the pandemic vaccine did not start until December 2009 in Mexico
(Herrera-Valdez et al. 2011). That is, pandemic vaccination started 8 months after the
onset of the novel virus. Therefore, we incorporated the time delay in our model by
varying the time of the start of vaccination. The optimal control for each time delay
case is recalculated under three different vaccination starting times; 30, 60, 90 days
after the pandemic onset. The time delay effect is evaluated in terms of age-specific
incidence curves of infected, age-specific vaccinated proportions, and the percent re-
ductions of infected individuals relative to the baseline scenario. For all simulations,
R0 = 1.8 and vaccination coverage (VC) = 30% are used.

Figure 8 displays the age-specific incidence curves of infected and time series
of vaccinated proportion under three different vaccination starting times. Delay of
implementation of vaccination time leads to significant increases in the number of
infected individuals for all age groups (left to right in top three Fig. 8). Also, a longer
period of time delay, more intensive vaccination must be implemented in a shorter
period of time (bottom three in Fig. 8). For all delay cases, the main targeted vac-
cinated group is the young adult group (20–39 yr). As the time delay increases, the
proportion of vaccinated individuals among senior decreases dramatically while the
proportion of the vaccinated individuals among the 0–5 yr age group increases. The
implementation of delays of 30, 60, and 90 days yields the overall percent reductions
of infected 35%, 27%, and 12%, respectively. Optimal vaccination strategy is still
effective when they are applied at 30 days of the start of vaccination (35% reduction
of infected). For the 90 days delay case, even though 30% vaccination coverage is put
in place during the first month, only 12% percent reduction is obtained in the overall
infected (Fig. 9).
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Fig. 8 (Color online) Age-specific incidence curves of infected are displayed under three different time
of the start of vaccination (30, 60 and 90 days). The time series of age-specific vaccinated proportion is
shown for each age group (bottom panel)

4 Discussion

The potential for a devastating influenza pandemic with high mortality and morbidity
poses a serious challenge to public health systems around the world. As the 2009
H1N1 influenza pandemic has shown us, the lack of an “universal” influenza vac-
cine means that the availability of vaccines will be limited at best during early pan-
demic stages. In the absence of pharmaceutical tools, mitigation of disease spread
relies on nonpharmaceutical interventions such as facial masks, social distancing,
travel advisories, and isolation of infected individuals. The implementation of non-
pharmaceutical measures could allow time for mass production of antiviral drugs
and vaccines, enough to meet the needs of a large population (Ferguson et al. 2006;
Gani et al. 2005; Fedson 2003; Germann et al. 2006; Lee et al. 2010; Nuno et al. 2007;
Tracht et al. 2010). In addition to the mitigation of disease spread through non-
pharmaceutical means, policy must also account for pharmacological measures to
mitigate the effects of pandemic influenza. Under such global health emergencies
posed by influenza pandemics, efficient prioritization of vaccine supplies or an-
tivirals must be carefully assessed to mitigate the impact of severe pandemic out-
breaks by considering various factors (e.g., population demographics, background
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Fig. 9 Age-specific fractions of total vaccines and cumulative proportions of vaccinated are illustrated
when the vaccine is delayed 90 days. The percent age-specific reductions in infected classes are shown
relative to the baseline (no vaccine) situation

immunity levels, and resource availability Gostin and Berkman 2007; Kotalik 2005;
Ulmer and Liu 2002).

In this study, we used a mathematical model of the transmission dynamics of pan-
demic influenza which accounted for age heterogeneity in disease transmissibility
(R0), in addition to age-specific rates of infection, hospitalization and death (Chowell
et al. 2009). Our mathematical framework incorporated time-dependent vaccination
rates in the optimal control framework. Optimal vaccination policies were computed
and analyzed under different vaccination coverage levels and the basic reproduction
number (R0). While it is possible for mass vaccination to contain an influenza pan-
demic by bringing the susceptible population below the critical population size, under
realistic scenarios (e.g., limited vaccine supplies), the optimal vaccination coverage
for each group will differ. Our results demonstrate that the optimal age-specific vac-
cination rates vary with the total number of vaccine doses available. For example, for
an overall vaccination coverage of 70%, the highest vaccination rate is allocated to
6–12 yr olds whereas the maximum vaccination rate is allocated to 20–39 yr for a
lower vaccination coverage of 30% using a moderate value of R0 (R0 = 1.8). For
higher R0 (R0 >=2.4), we did not find qualitatively significant differences in age-
specific vaccination rates (for all age groups) when vaccination coverage is >70%.
Our analysis confirmed that high contact rates due to the high level of activity among
individuals within the school age group (6–12 yr) contributed the most to the over-
all transmissibility of influenza. Overall, the optimal vaccination strategy provided
relatively high reductions of 30, 36, 37, and 38%, respectively, in the number of in-
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fected, hospitalized and dead, respectively, when R0 = 1.8 and vaccination coverage
of 30%.

Our findings also indicate that the duration of the vaccination period depends
on R0. The earlier-maximum implementation of vaccination has always the great-
est affect on the final size of infected individuals. Under a moderate range of R0
(greater than 1 but less than 2), our results show that the duration of vaccination
should increase i.e. the duration of vaccination should be moderate over a longer
time period (e.g., 4 or 5 months). For higher R0 (R0 = 3.0), a quick and substantial
decrease in the pool of susceptibles would require the implementation of an intensive
vaccination protocol within a shorter period of time (within 2 months of the onset
of the pandemic). As transmissibility increases, we found that it is more efficient to
vaccinate a larger portion of individuals in the 20–39 yr age group. Earlier vaccina-
tion is always the best strategy for controlling a pandemic outbreak for the ranges of
R0 used in this study. For all ranges of R0, the vaccinated proportion for each age
group does not appear to change with time when vaccination coverage is in the range
of 20–30%. Under this scenario, maximal vaccination coverage occurred in the 20–
39 yr age group, followed by the 6–12 yr age group, and the 13–19 yr age group. The
vaccination coverage was lower among the 0–5 yr, 40–59 yr, and >=60 age groups.
Our results show that as the vaccination delay increases, the young adult group (20–
39 yr) and the age group (0–5 yr) must be vaccinated with substantial increases while
the senior group (>60 yr) might get the minimum vaccine. Overall, the benefit of
vaccination is significantly reduced as the time of the start of vaccination is delayed.
In fact, mitigation is not possible if the timing of vaccination is too late (>120 days
in this study).

The World Health Organization (WHO) prioritized a pandemic immunization plan
which reflects the known epidemiology of influenza viruses, morbidity and mortal-
ity data, and vaccine efficacy to minimize the number of infection, hospitalization
and dead, and to prevent the impact of negative socioeconomic effects that may re-
sult from an extreme global health scenario. Many developed countries can provide
enough vaccine supplies to immunize a substantial fraction of their populations while
the availability of vaccines to individuals in developing countries in the midst of
a pandemic outbreak remains limited. Hence, it becomes important not only to es-
tablish increased global production of these resources to many countries but also to
effectively allocate this key resource. Future studies of this type should account for
asymptomatic cases, other risk factors (e.g., high-risk subpopulations) and constraints
imposed by current vaccine technologies on delays from pandemic onset to the start
of vaccination campaigns.

Our results highlight the potential impact of pre-pandemic immunization with
pandemic-type viruses before a pandemic hits. However, more research on the vac-
cine efficacy and safety and long-term effects of this strategy on public health is
needed (Stohr 2010). The work presented here should improve our understanding
of age-specific optimal vaccination policies on reducing rates of infection, hospi-
talization and dead among different age groups with different levels of activity and
demographics. We believe that an improved understanding of optimal vaccination
protocols will provide policymakers with the information needed to plan effective
strategies for mitigating the effects of influenza pandemics in real time. In addition,
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these types of strategies will allow countries to respond to the needs of high-priority
populations, which could reduce the health and economic impact of A (H1N1). Ul-
timately, the identification of optimal vaccine distributions in different age groups
as a function of time may provide necessary information for the development and
evaluation of vaccine delivery strategies in the presence of limited resources.

Appendix

The goal is to minimize the number of infectious individuals over a finite time interval
[0, T ] at a minimal cost of vaccination efforts during the course of a single influenza
pandemic outbreak. The objective functional F is defined in (2). The optimal control
problem is to find an optimal pairs, (U∗(t),X∗(t)) such that

F
(
U∗(t)

) = min
Ω

F
(
U(t)

)
(4)

where Ω = {U(t) ∈ L2(0, T )6‖a ≤ ui(t) ≤ b, i = 1, . . . ,6, t ∈ [0, T ]} subject to the
state equations given by model (1). Given the criterion (2) and the regularity of the
system of equations (1), the existence of optimal controls is guaranteed by standard
results in control theory (Fleming and Rishel 1975). The necessary conditions of
optimal solutions are derived from Pontryagin’s Maximum Principle (Pontryagin et
al. 1962). This principle converts the system (1)–(3) into the problem of minimizing
the Hamiltonian H given by

H =
6∑

i=1

[
Ii(t) + Wi

2
u2

i (t)

]

+
6∑

i=1

λSi
(t)

{
−ui(t)Si(t) −

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
Si(t)

}

+
6∑

i=1

λVi
(t)

{
εiui(t)Si(t) − ηVi(t) −

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
Vi(t)

}

+
6∑

i=1

λFi
(t)

{
(1 − εi)ui(t)Si(t) −

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
Fi(t)

}

+
6∑

i=1

λEi
(t)

{
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)

(
Si(t) + Vi(t) + Fi(t)

) − kEi(t)

}

+
6∑

i=1

λIi
(t)

{
kEi(t) − (αi + γ1)Ii(t)

}

+
6∑

i=1

λJi
(t)

{
αiIi(t) − (γ2 + δi)Ji(t)

}
(5)

From this Hamiltonian and Pontryagin’s maximum principle (Pontryagin et al. 1962),
we obtain the following theorem.
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Theorem 1 There exist optimal controls U∗(t) and corresponding solutions X∗(t)
that minimize F (U) over Ω . In order for the above statement to be true, it is neces-
sary that there exist continuous functions Λi(t) such that

λ̇Si
(t) =

{
ui(t) +

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)

}
λSi

(t) − εiui(t)λVi
(t)

− (1 − εi)ui(t)λFi
(t) −

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
λEi

(t)

λ̇Vi
(t) =

{
η +

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)

}
λVi

(t) −
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
λEi

(t)

λ̇Fi
(t) =

6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
λFi

(t) −
6∑

i=1

βij

(Ij (t) + Jj (t))

N(t)
λEi

(t)

λ̇Ei
(t) = kλEi

(t) − kλIi
(t)

λ̇Ii
(t) = −1 +

6∑

j=1

βji

N(t)

{
Sj (t)

(
λSj

(t) − λEj
(t)

) + Vj (t)
(
λVj

(t) − λEj
(t)

)

+ Fj (t)
(
λFj

(t) − λEj
(t)

)} + (αi + γ1)λIi
(t) − αiλJi

(t),

λ̇Ji
(t) =

6∑

j=1

βji

N(t)

{
Sj (t)

(
λSj

(t) − λEj
(t)

) + Vj (t)
(
λVj

(t) − λEj
(t)

)

+ Fj (t)
(
λFj

(t) − λEj
(t)

)} + (γ2 + δi)λJi
(t),

(6)

with the transversality conditions,

Λi(T ) = 0, i = 1, . . . ,6 (7)

where Λi(t) = (λSi
, λVi

, λFi
, λEi

, λIi
, λJi

) and furthermore,

u∗
i (t) = min

{
max

{
a,

Si(t)

Wi

[
λSi

(t) − εiλVi
(t) − (1 − εi)λFi

(t)
]}

, b

}
. (8)

Proof The existence of optimal controls follows from Corollary 4.1 of Fleming and
Rishel (1975) since the integrand of F is a convex function of U(t) and the state sys-
tem satisfies the Lipschitz property with respect to the state variables. The following
can be derived from the Pontryagin’s maximum principle (Pontryagin et al. 1962):

dλSi
(t)

dt
= −∂H

∂Si

,
dλVi

(t)

dt
= − ∂H

∂Vi

,
dλFi

(t)

dt
= − ∂H

∂Fi

,

dλEi
(t)

dt
= − ∂H

∂Ei

,
dλIi

(t)

dt
= −∂H

∂Ii

,
dλJi

(t)

dt
= −∂H

∂Ji

,

with Λi(T ) = 0 for i = 1, . . . ,6 and evaluated at the optimal controls and correspond-
ing states, which results in the adjoint system (6). The Hamiltonian H is minimized
with respect to the controls, so we differentiate H with respect to ui on the set Ω ,
respectively, giving the following optimality conditions:
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∂H

∂ui

= Wiui(t) − λSi
(t)Si(t) + εiλVi

(t)Si(t) + (1 − εi)λFi
(t)Si(t) = 0

at ui(t) = u∗
i (t).

Solving for u∗
i (t), we obtain

u∗
i (t) = Si(t)

Wi

[
λSi

(t) − εiλVi
(t) − (1 − εi)λFi

(t)
]
.

By using the standard argument for bounds a ≤ ui(t) ≤ b, we have the properties (8).

(cij ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

169.14 31.47 17.76 34.50 15.83 11.47
31.47 274.51 32.31 34.86 20.61 11.50
17.76 32.31 224.25 50.75 37.52 14.96
34.50 34.86 50.75 75.66 49.45 25.08
15.83 20.61 37.52 49.45 61.26 32.99
11.47 11.50 14.96 25.08 32.99 54.23

⎞

⎟⎟⎟⎟⎟⎟⎠
(9)

The contact rate matrix, (cij ), represents the mixing rates between age groups i and
j per week with higher rates within each age group (when i = j ) than between age
groups when i �= j . �
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