Skip to main content
Log in

A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction–Diffusion Plant-Surface Water Model System in an Arid Flat Environment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The development of spontaneous stationary vegetative patterns in an arid flat environment is investigated by means of a weakly nonlinear diffusive instability analysis applied to the appropriate model system for this phenomenon. In particular, that process can be modeled by a partial differential interaction–diffusion equation system for the plant biomass density and the surface water content defined on an unbounded flat spatial domain. The main results of this analysis can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From these plots, regions corresponding to bare ground and vegetative patterns consisting of parallel stripes, labyrinth-like mazes, hexagonal arrays of gaps, irregular mosaics, and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then those theoretical predictions are compared with both relevant observational evidence involving tiger and pearled bush patterns and existing numerical simulations of similar model systems as well as placed in the context of the results from some recent nonlinear vegetative pattern formation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boonkorkuea, N., Lenbury, Y., Alvarado, F. J., & Wollkind, D. J. (2010). Nonlinear stability analyses of vegetative pattern formation in an arid environment. Journal of Biological Dynamics, 4, 346–380.

    Article  MathSciNet  Google Scholar 

  • Borckmans, P., Dewel, G., De Wit, A., & Walgaef, D. (1995). Turing bifurcation and pattern selection. In R. Kapral & K. Showalter (Eds.), Chemical waves and patterns (pp. 323–363). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Clos-Arceduc, M. (1964). Estude sur photographies aériennes d’une formation végétale sahéleinne: la brousse tigrée. Bulletin de L’Institut Francais D’Afrique Noire. Serie A, 18, 677–684.

    Google Scholar 

  • Couteron, P., Mahamane, A., Ouedraogo, P., & Seghieri, J. (2000). Differences between banded thickets (tiger bush) at two sites in West Africa. Journal of Vegetation Science, 11, 321–328.

    Article  Google Scholar 

  • Dionne, B., Silber, M., & Skelton, A. C. (1997). Stability results for steady, spatially periodic planforms. Nonlinearity, 10, 321–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Edelstein-Keshet, L. (1988). Mathematical models in biology. New York: Random House.

    MATH  Google Scholar 

  • Golovin, A. A., Matkowski, B. J., & Volpert, V. A. (2008). Turing pattern formation in the Brusselator model with superdiffusion. SIAM Journal on Applied Mathematics, 69, 251–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Graham, M. D., Kevrekidis, I. G., Asakura, K., Lauterbach, J., Krishner, K., Rotermund, H.-H., & Ertl, G. (1994). Effects of boundaries on pattern formation: Catalytic oxidation of CO on platinum. Science, 264, 80–82.

    Article  Google Scholar 

  • Judd, S. L., & Silber, M. (2000). Simple and superlattice Turing patterns in reaction–diffusion systems: bifurcation, bistability, and parameter collapse. Physica D, 136, 45–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Kealy, B. J. (2011). A nonlinear stability analysis of vegetative Turing pattern formation for an interaction–diffusion plant-surface water model system in an arid flat environment. Ph.D. thesis. Washington State Univ.

  • Klausmeier, C. A. (1999). Regular and irregular patterns in semiarid vegetation. Science, 284, 1826–1828.

    Article  Google Scholar 

  • Kondo, S., & Miura, T. (2010). Reaction–diffusion model as a framework for understanding biological pattern formation. Science, 329, 1616–1620.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuske, R., & Matkowsky, B. J. (1994). On roll, square, and hexagonal cellular flames. European Journal of Applied Mathematics, 5, 65–93.

    Article  MATH  Google Scholar 

  • Lefever, R., & Lejeune, O. (1997). On the origin of tiger bush. Bulletin of Mathematical Biology, 59, 263–294.

    Article  MATH  Google Scholar 

  • Lejeune, O., Tildi, M., & Lefever, R. (2004). Vegetation spots and stripes in arid landscapes. International Journal of Quantum Chemistry, 98, 261–271.

    Article  Google Scholar 

  • Macfaydyen, W. A. (1950). Soil and vegetation in British somaliland. Nature, 165, 121.

    Article  Google Scholar 

  • Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., & Zarmi, Y. (2004). Vegetation patterns along a rainfall gradient. Chaos, Solitons and Fractals, 19, 367–376.

    Article  MATH  Google Scholar 

  • Murray, J. D. (2003). Mathematical biology II. New York: Springer.

    Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives. New York: Springer.

    Google Scholar 

  • Rietkerk, M., Boerlijst, M. C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Kumar, L., Prins, H. H. T., & de Roos, A. M. (2002). Self-organization of vegetation in arid ecosystems. American Naturalist, 160, 524–530.

    Article  Google Scholar 

  • Rietkerk, M., Decker, S. C., de Ruiter, P. C., & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shift in ecosystems. Science, 305, 1926–1929.

    Article  Google Scholar 

  • Rovinsky, A. B., & Menzinger, M. (1992). Chemical instability induced by a differential flow. Physical Review Letters, 69, 1193–1196.

    Article  Google Scholar 

  • Segel, L. A. (1965). The nonlinear interaction of a finite number of disturbances in a layer of fluid heated from below. Journal of Fluid Mechanics, 21, 359–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Segel, L. A., & Levin, S. A. (1976). Applications of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. In R. A. Piccirelli (Ed.), Topics in statistical mechanics and biophysics: A memorial to Julius J. Jackson (pp. 123–152). New York: Amer. Inst. Phys.

    Google Scholar 

  • Sherratt, J. A. (2005). An analysis of vegetative stripe formation in semi-arid landscape. Journal of Mathematical Biology, 51, 183–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt, J. A., & Lord, G. J. (2007). Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theoretical Population Biology, 71, 1–11.

    Article  MATH  Google Scholar 

  • Stuart, J. T. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behavior of plane Poiseuille flow. Journal of Fluid Mechanics, 9, 353–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London B, 237, 37–72.

    Article  Google Scholar 

  • Ursino, N. (2005). The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments. Advances in Water Resources, 28, 956–963.

    Article  Google Scholar 

  • Von Hardenberg, J., Meron, E., Shachak, M., & Zarmi, Y. (2001). Diversity of vegetation patterns and desertification. Physical Review Letters, 87, 198101.

    Article  Google Scholar 

  • Walgraef, D. (1997). Spatio-temporal pattern formation. New York: Springer.

    Book  Google Scholar 

  • Wang, R.-H., Liu, Q.-X., Sun, G.-Q., Jin, A., & van de Koppel, J. (2009). Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. Journal of the Royal Society Interface, 6, 705–718.

    Google Scholar 

  • Watson, J. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable flows. Part 2: The development of a solution for plane Poiseuille flow and for plane Couette flow. Journal of Fluid Mechanics, 9, 371–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Wollkind, D. J., Manoranjan, V. S., & Zhang, L. (1994). Weakly nonlinear stability analyses of prototype reaction–diffusion model equations. SIAM Review, 36, 176–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Wollkind, D. J., & Stephenson, L. E. (2000). Chemical Turing pattern formation analyses: Comparison of theory with experiment. SIAM Journal on Applied Mathematics, 61, 387–431.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Wollkind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kealy, B.J., Wollkind, D.J. A Nonlinear Stability Analysis of Vegetative Turing Pattern Formation for an Interaction–Diffusion Plant-Surface Water Model System in an Arid Flat Environment. Bull Math Biol 74, 803–833 (2012). https://doi.org/10.1007/s11538-011-9688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9688-7

Keywords

Navigation