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Abstract Protein interaction networks comprise thousands of individual binary links
between distinct proteins. Whilst these data have attracted considerable attention and
been the focus of many different studies, the networks, their structure, function, and
how they change over time are still not fully known. More importantly, there is still
considerable uncertainty regarding their size, and the quality of the available data
continues to be questioned. Here, we employ statistical models of the experimental
sampling process, in particular capture–recapture methods, in order to assess the false
discovery rate and size of protein interaction networks. We uses these methods to
gauge the ability of different experimental systems to find the true binary interactome.
Our model allows us to obtain estimates for the size and false-discovery rate from
simple considerations regarding the number of repeatedly interactions, and provides
suggestions as to how we can exploit this information in order to reduce the effects
of noise in such data. In particular our approach does not require a reference dataset.
We estimate that approximately more than half of the true physical interactome has
now been sampled in yeast.
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1 Introduction

The biological structure and function of organisms at the cellular level are the result
of interactions between proteins, their various isoforms and other molecules. The
resulting networks of biological interactions found in an organism have been studied
using concepts from graph theory, and the quantitative analysis of biological networks
has become important aspect of the description of biological systems (Alm and Arkin
2003; de Silva and Stumpf 2005; Schlitt and Brazma 2005; Heo et al. 2011). Here,
an interaction between two proteins A and B is represented by an undirected edge in
the interaction graph.

There have been numerous reports over the last decade highlighting the use of
protein–protein interaction (PPI) network data, including how these can be used to
understand molecular processes, disease phenotypes, and evolutionary properties of
biological systems (e.g. Brun et al. 2003; Drees et al. 2005; Thorne et al. 2011). But
PPI data have also been found to suffer from either abundant noise or potential ex-
perimental bias as a consequence of prior biological knowledge (Bader et al. 2004;
de Silva et al. 2006), as well as being incomplete (Stumpf et al. 2005; Yang et al.
2008). Furthermore, PPIs are observed under a variety of experimental conditions
and using different experimental methods. These data are then used to construct the
protein interaction networks (PIN) of a species. The PIN forms the collection of the
possible physical protein–protein interactions that can occur within the system. The
experimental techniques employed to test for interactions will undoubtedly present
differing amounts of noise and vary in which parts of the interactome they can map.
There is thus a continuing need to reassess the reliability of PIN data as more interac-
tion studies are published (von Mering et al. 2002). Previously, studies have estimated
the false-discovery rate (FDR), other error rates, and interactome size of S. cerevisiae
using similar methods. For instance, D’haeseleer and Church (2004) presented an
overlap method (see Fig. 1 for an illustration of this approach) for estimating error
rates in PIN data sets and the size of the S. cerevisiae PPI interactome. The FDR is
estimated from three data sets: a reference set (taken from a “reliable” reference PPI
source) along with two other large experimental sets. Using the overlaps between the
sets, and assuming that these overlaps are error free (both as a consequence of the
validation and also the assumption that the reference is highly accurate) and unbiased
the ratio that should occur if the other sets are error free can be found.

The coverage of each experiment is of vital importance when considering error
rates. Each experimental technique may be associated with different types of error or
noise. Methods are also only applicable to a restricted subspace of the protein pairs in
a given system, or may only be able to test a small proportion of the possible proteins
that may interact with one another. Experimental noise and bias in which protein pairs
are being assessed have been considered in the literature in order to produce FDR
and interactome size estimates (Chiang et al. 2007; Huang et al. 2007; Gentleman
and Huber 2007). Different false-positive rates and differences in the ability to test
certain protein pairs, may not be identical across experiments and this will influence
the error estimates obtained by overlap methods.

Grigoriev (2003) also assessed the size of the S. cerevisiae PIN, and estimated
that each protein has somewhere between 3 and 5 distinct interactions. Hart et al.
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Fig. 1 Overlap method. The overlap found between three different interaction datasets, two of which are
being compared against a reference set, can be used to estimate error rates. The FDR is estimated using
the ratios of the number of interactions, I–VI, found for the 3 datasets. A and B are two experimental
datasets whilst REFERENCE is a set of true interactions and assumed to be completely free of false–positive
interactions. The area separated by the dashed line represents potential noise in the interaction data: not
all reported interactions are true interactions, and this needs to be incorporated into the analysis. Even
interactions found in several datasets, cf. interactions in VI, may be false–positive, although this is less
likely the more often an interactions has been reported

(2006) found that earlier studies systematically underestimated the interactome size
as each dataset probed different sets of protein pairs. Using estimated error rates and
intersection of datasets they proceeded to infer which protein pairs had been tested.
The estimated size is then scaled to take account of this coverage; based on this
the S. cerevisiae PIN was predicted to have 38,000–76,000 interactions. Stumpf et al.
(2008) assessed the size of S. cerevisiae and other interactomes. The authors assessed
the overall size of the interactome by modelling the effect of sub-sampling from
the complete true network and how this would affect the overlap between pairs of
datasets. For the S. cerevisiae interactome, they obtained estimates of approximately
24,000–26,000 interactions.

The need to assess the coverage of each study was highlighted further by Gen-
tleman and Huber (2007). Direct comparison of interaction data fails to take into
account that not every possible protein-pair is being tested and negative results are
hardly ever reported. Accordingly, unless this is explicitly considered, the overlap
between studies will appear lower, thereby increasing the reported or apparent error
rates. Chiang et al. (2007) performed error analysis using: the number of repeated re-
ported interactions (ρ); the number of reported protein pairs for which no interaction
exists (φ); and the number of non-repeated reported interactions (ζ ). The error rates,
for a pair of datasets, were found using the following relationships,

E(ρ) = m(1 − pFN)2 + m∗p2
FP,

E(φ) = mp2
FN + m∗(1 − pFP)2, (1)

E(ξ) = 2mpFN(1 − pFN) + m∗pFP(1 − pFP),
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where m is the number of true interactions (observable interactome size) and m∗ is
the number of false interactions. If we know the protein set, V , tested against each
other then a further condition is

(|V |
2

) = m + m∗. These equation reveal the trade-
off between pFP and pFN when comparing two datasets. If a reference set is used to
determine the FDR in experimental data then careful consideration of coverage and
false–negative rates are required for accurate results.

Overall, there have been a number of FDR estimates for individual S. cerevisiae
datasets, ranging from around 0.15 to 0.90 for interaction sets (Chiang et al. 2007;
Gentleman and Huber 2007; Huang et al. 2007). As time has passed, and more data
have become available, the size estimates have tended to increase. However, the cur-
rent consensus appears to suggest that the number of distinct PPIs is between 20,000–
40,000 (Hart et al. 2006; Stumpf et al. 2008).

2 Assessing Completeness of Interactome Data

2.1 Experimental Protein Interaction Data

In order to assess the interactome size of S. cerevisiae (or any other organism for
which a sufficiently large number of studies have been performed), a collection of in-
teraction studies is required. Capture–recapture methods (Shokouhi et al. 2006) rely
on using the overlap between datasets in order to estimate the overall properties of
the sampled set. However, in our case, we are sampling truly interacting and false–
positive protein pairs from the possible set of distinct protein pairs: i.e. any reported
interaction may be the consequence of systematic or stochastic error from the ex-
perimental methods (both of which are considered here) rather than a real physical
interaction.

Here, we use the S. cerevisiae data collected in BioGRID, and the methods used
to estimate the false-discovery rate (FDR) and interactome size are assessed on the
complete set of data from this resource (version 2.0.60). The information required for
the urn model used below consists of: the number of different protein pairs observed
(mobs); the number of interactions reported (sobs); the number of distinct interactions
reported (iobs); and a list of experiment sizes ({robs

1 , robs
2 , . . . , robs

q }). Tables 1 and 2
summarize this information, which is used in order to assess the interactome size and
FDR, and to compare small scale (SSE) and high-throughput (HTP) data.

2.2 Coverage of Current Protein-Interaction Data

The majority of the PPIs are found in experiments reporting more than 1,000 interac-
tions. Accordingly, the HTP data used here are presumed to have been independently
sampled from the sets of true or false interactions. Small-scale experiments (SSEs)
make up the majority of the studies although they only produce a small proportion
of reported interactions. They have been viewed as more reliable but are difficult to
summarise from a sampling point of view; an independent sampling approach can
be considered as the mean-field approximation to non-independent and non-random
sampling processes (Stumpf et al. 2008, Supporting Information).
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Table 1 Interaction datasets. The different subsets of physical PPIs from BioGRID used to find FDR, κ ,
and interactome size. The protein data exclude proteins that have only been reported as self-interacting;
both subsets (≥ and <) compared in the study are shown

Dataset Model parameters

Size, rk Experiments All, sobs Distinct, iobs Proteins, ň

All PPI 4,900 95,595 60,068 5,435

≥5 1,878 89,688 58,518 5,367

<5 3,022 5,907 3,249 1,802

≥10 871 83,347 56,320 5,312

<10 4,029 12,248 6,349 2,409

≥100 51 65,520 48,976 5,222

<100 4,849 30,075 15,444 3,463

≥1,000 15 55,136 42,288 4,997

<1,000 4,885 40,459 22,843 4,173

Table 2 PPI experimental method datasets. The experimental techniques data totals for each methodology
in BioGRID. These are used to find the coverage, and estimated total number of putative interactions

Method All, sobs Distinct, iobs Proteins, ň Experiments

Affinity Capture Luminescence 53 25 15 2

Affinity Capture MS 43,660 27,104 3,789 297

Affinity Capture Western 22,538 16,725 3,926 1,930

Biochemical Activity 5,822 5,518 1,760 313

Co-crystal Structure 298 206 237 197

Co-fractionation 623 543 370 98

Co-localization 466 380 239 121

Co-purification 2,506 2,239 1,039 195

Far Western 68 46 36 13

FRET 163 124 80 20

PCA 2,402 2,402 794 3

Protein-peptide 231 198 117 32

Reconstituted Complex 3,396 2,335 1,419 855

Two-hybrid 13,369 9,956 3,122 824

If there are ň proteins in a study then mobs = (
ň
2

)
, protein pairs have potentially

been assessed. A scaling factor, ρ, is defined so that an estimate of the complete in-
teractome size can be found. This is necessary as each experimental technique may
only be able to probe a subset of the complete set of protein-pairs, and there is no ev-
idence regarding possible interactions between other unobserved proteins. Assuming
a uniform distribution of true interactions across the proteome, the scaling factor to
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find the complete interactome size as used in Stumpf et al. (2008) is

ρ =
(
n
2

)

(
ň
2

)

= n(n − 1)

ň(ň − 1)
, (2)

where n is the number of proteins in yeast, here taken to be 5,800 (Hirschman et al.
2006).

The false–negative rate (FNR) and the false discovery rate (FDR) are defined as

FDR = #FP

#FP + #TP
,

(3)
FNR = #FN

#FN + #TN
,

where FP is the set of false–positive interactions, TP the true–positives, FN the false–
negatives, and TN the set of true–negatives found in the data. In order to estimate the
negative set of results, we need to know all protein pairs that have been tested (in-
formation that is not always reported): We assume here that the pairwise interactions
among all pairs of proteins which are reported to have an interaction have been tested:

we then have
(robs

i
2

)
potential pairs, where robs

i is the number of distinct proteins re-
ported in experiment i. This will be more accurate for larger experiments, where pairs
are tested comprehensively. Thus, for the overall data, this will give a good approxi-
mation to the amount of testing completed since the HTP tests contribute a majority
of the positive, and similarly negative, interaction results.

2.3 Capture–Recapture Models for Protein Interaction Data

Here, we consider protein-pairs to be observed independently. This allows us to
model repeated observations of such molecular interactions using techniques that had
previously been used in ecology. The basic capture–recapture approach (Burnham
and Overton 1978; Bunge and Fitzpatrick 1993; Chao 2001) applies when we have
access to repeated samples from a fixed set of objects, here a set of interactions. These
approaches have commonly been employed in order to find a population’s size, or to
elucidate its class structure.

2.3.1 Single Urn Models for Protein Interaction Data

The overlap found between two samples (i.e. the number of items recaptured) is used
to estimate the complete population’s size. Multiple capture–recapture (Shokouhi et
al. 2006) is an extension of this approach to account for any number of samples. This
has been used to estimate the size of different populations by observing the overlap
between different samples (Xu et al. 2007). A single urn model is used to assess the
overall population size, by relating the total observed sample to the number of distinct
items sampled. The population considered with this model consists of only one class,
so we cannot consider samples of both true and false interactions.
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Suppose that interactions are sampled (where each sample reports one interaction)
with replacement from an urn containing m different interactions. Having sampled
i distinct interactions, the probability that the next sampled interaction has not been
observed before is

P(novel interaction sampled | i distinct interactions) = m − i

m
. (4)

The number of samples drawn before encountering a novel interaction, given that
i ≥ 0 have already been collected, is geometrically distributed with parameter θ =
m−i
m

. The expected number of samples required to find a novel interaction is then

E(samples, to find novel interaction) = 1

θ
= m

m − i
.

Thus, using the linearity of expectations, the expected number of samples to collect i

distinct interactions is

E(samples, to find i distinct interactions) =
i−1∑

k=0

E(novel sample | k distinct)

= 1 + m

m − 1
+ · · · + m

m − i + 1

= m

i−1∑

k=0

1

m − k
. (5)

When m is known, then (5) can be used to estimate the number of samples neces-
sary to find all of the distinct interactions. Alternatively, given the number of distinct
interactions, i, and the number of interactions sampled, ŝ, is used to estimate m,

ŝ = m

i−1∑

k=0

1

m − k
. (6)

While this simple model cannot be used with noisy data it sheds light on the po-
tential number of putative interactions that each experimental methodology can be
expected to report. If we assume that each methodology is subject to systematic bi-
ases (rather than stochastic noise) then an estimate of the population size will hold
information about the number of different putative interactions that may be expected
to be reported. This, in turn, can give us an indication of the potential systematic
bias.

2.3.2 Multiple Urn Model for Protein Interaction Data

A multiple urn model introduces the ability to sample from several sources of interac-
tions as shown in Fig. 2: (i) true binary physical interactions and (ii) false interactions
which are mis-reported in the data. Firstly, suppose that PPIs are reported from a set
of protein pairs, Eobs, which contains n different proteins. Let mobs be the size of
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Fig. 2 Mixture urn model. The
interactions are sampled from
two urns, one containing true
interactions and the other urn
containing all those protein pairs
which can be reported
erroneously in the putative PPI
data which is being analysed.
The rate at which we sample
from each urn is determined by
the false-discovery rate (FDR)

Eobs. The reported PPIs are then either edges of the true interaction graph or the false
interaction graph. These may be considered as being drawn from two urns contain-
ing either PPIs, ea = (vi, vj ), found in E ∩ Eobs, or false interaction protein pairs,
eb = (vk, vh), found in E′ ∩ Eobs. Let m be the size of E ∩ Eobs and m′ the size of
E′ ∩ Eobs. The proportion of reported data that are found in E′ is also the FDR, κ .
Now let s be the number of interactions sampled from E and s′ be sampled from E′.
Then suppose s with 0 ≤ s ≤ sobs is fixed,

s = ∥∥(1 − κ)sobs
∥∥, (7)

and also trivially, s′ = ‖κsobs‖, where ‖x‖ is the integer closest to x.
The observed number of distinct interactions, iobs, is made up of those sampled

from E and those from E′. Let i be sampled from E and i′ be from E′; then because
E ∩ E′ = ∅ we have iobs = i + i′, and

sobs = s′ + s,

iobs = i′ + i, (8)

mobs = m′ + m.

Here, s and s′ are assumed to be the expected number of samples necessary to find
i and i′ interactions (as in Sect. 2.3.1). So for a given κ solutions for m and i are
sought which satisfy (8) and

s = m

i−1∑

k=0

1

m − k
,

(9)

s′ = m′
i′−1∑

k=0

1

m′ − k
.

Thus, in order to estimate the observable interactome size, FDR, and proportion of
the true interactome currently sampled, we require that g(m, i), is zero,
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g(m, i) = sobs − m

i−1∑

k=0

1

m − k
− m′

i′−1∑

k=0

1

m′ − k
,

(10)

0 = sobs − m

i−1∑

k=0

1

m − k
− (mobs − m)

iobs−i−1∑

k=0

1

mobs − m − k
.

The complete interactome size, m�, is then found for a given solution (which is
unique if it exists) using ρ, the scaling factor introduced in (2) to account for the
coverage of the sampled data, and m:

m� = ‖ρm‖

=
∥∥∥∥
n(n − 1)

ň(ň − 1)
m

∥∥∥∥. (11)

2.3.3 False Discovery Rates for Protein Interaction Data

Whereas the false discovery rate is explicitly modelled in the multiple urn model,
the false negative rate is not captured directly. In order to find the number of false–
negative results in the interaction data, we need to know or estimate the number of
protein pairs which were assayed, and furthermore the number of interactions, which
have been wrongly reported as non-existing. Each experiment produces an interaction
graph on a number of different proteins, {nobs

1 , nobs
2 , . . . , nobs

q }. Analogously to how
the coverage of the complete dataset is estimated, we assume that for each experiment

the complete set of combinations of the observed proteins have been tested, i.e.
(nobs

i
2

)

protein pairs. Thus, the number of tested protein pairs tobs is

tobs =
q∑

i=1

(
nobs

i

2

)
,

where the total number of negative results is tobs − sobs. For uniform sampling (as-
sumed to hold at least approximately within the limits of each experimental tech-
nique), we can use the multiple urn model to find the estimate

#FN = m

m + m′ (tobs − sobs). (12)

The false negative and false discovery rate are presented alongside the interactome
estimates for the S. cerevisiae data in the next section.

3 Results

We have used MCR methods to assess the potential interactome spaces probed by ex-
perimental methods and also to assess the FDR and interactome size for S. cerevisiae.
The urn model is also used to assess the differences between the error rates that are
found in SSE and HTP experimental data.
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3.1 The Effects of Different Experimental Methods

The BioGRID data are split according to experimental methodology, as shown in
Table 2. These are used to assess sampling fractions, from which we then estimate
the possible number of putative interactions that each methodology may be sampling
from; this should give an indication of the potential levels of false–positive noise
inherent to each method. Clearly, each methodology is attempting to report true in-
teractions, but is actually sampling from a set of interactions that at best include the
complete interactome and then also a number of false–positive interactions from the
remaining possible set of protein pairs.

In order to enable a comparison across methodologies of the potential reporting
amounts, the results need to be normalised using the scaling factor introduced in the
methods section. Whilst it is in principle possible to produce an estimate for any of
the methodologies (assuming some level of overlap in the experimental results), the
techniques with a small number of experiments or very small sample sizes have been
excluded. The primary focus is to attempt to compare HTP technologies from a global
perspective and without using gold standard reference sets. To restrict the datasets,
all techniques with fewer than 100 repeats are not considered further. Figure 3 shows
the estimated number of interactions probed by the methods satisfying these criteria.

Figure 3 shows the potential observable number of interactions for each experi-
mental PPI assay. If we assume that they are probing the same set of true PPIs, then
the estimates provide evidence for the false-discovery rates for all methods; yeast two
hybrid and affinity capture western appear to be the most reliable techniques. How-
ever, the huge difference between biochemical activity estimates and the other meth-
ods is probably an indication that the techniques are probing significantly different

Fig. 3 S. cerevisiae technique
interaction sets. These figures
show the estimated number of
interactions from which the
methods are sampling. The sets
will be a combination of true
and false interactions; therefore,
the relative sizes of the estimates
can provide evidence for how
much error the methodologies
may be subject to, or,
alternatively, whether they are
probing comparable sets of
interactions. The biochemical
activity results appear distinct to
the other physical techniques
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sets of interactions and so should be treated with care when combined for analysis. In
particular, kinase interactions are not detected by any other experimental technique.

3.2 Estimating the Yeast Interactome Size

The BioGRID physical interaction data, Table 1, are used to find the results for FDR
and interactome sizes shown in Fig. 4. The scaling factor, ρ, is approximately 1.36.
Figure 4(a) shows the relationship between FDR, κ , and interactome size, ρm. This
indicates that the FDR for the complete data should be between 0 and 0.6, whilst the
interactome has fewer than 100,000 interactions. Using interactome size estimates
guided by the literature of 20,000–40,000 interactions produces an estimated FDR
across the complete data of 0.32–0.47. Similarly, using FDR estimates from the lit-
erature (which have predicted an FDR of larger than 0.2 in general) suggests that the
interactome size has fewer than 60,000 interactions.

Figure 4(b) shows the proportion of the interactome, i
ρm

, that has been reported
for the range of FDR estimates. Somewhere between 40% and 80% of the true yeast
interactome has already been mapped, depending on the FDR. A higher FDR, due
to its associated lower interactome size (in Fig. 4(a)), means that a higher proportion
of the interactome has already been determined; and there will be fewer unseen true
interactions if there is more noise (interactions sampled from false interaction urn,
E′), a result consistent with how validation information is used to find the FDR and
interactome size in the urn models.

The experimental data also provide an estimate for the completeness of the S. cere-
visiae physical interactome sampled. The false negative rate can be estimated and
used to give an estimate of the number of falsely unreported interactions. Our es-
timate is 0.90, which means that the experimental methods have failed to detect a
number of interactions that is comparable to the true size of the yeast interactome, or

Fig. 4 S. cerevisiae physical interactome size. The results found for S. cerevisiae using the single urn
model are shown in the two plots. Figure 4(a) displays the estimated FDR and size. Figure 4(b) shows how
the FDR relates to the proportion of the complete interactome that has been reported
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Fig. 5 Experiment and interactome size. Plots show the interactome size, ρm, and FDR, κ , estimates
found for SSEε and HTPε data using the single urn model. The HTPε data are less reliable than the
complete data whilst the SSEε data are more reliable, although there is a general lack of validations in the
smallest datasets (SSE5) which may suggest either a higher FDR or poor modelling performance

somewhere between 15,000–40,000 true PPIs, depending on experimental technol-
ogy.

3.3 The Role of Experiment Size

Each type of dataset may have a different FDR. To compare the noise found in HTP
and SSE data, the complete interactome data are split by experiment, Pk , according
to experiment size, rk,obs. The estimated FDR, κ , for a given interactome size is then
compared between SSEε = {Pk : rk,obs < ε} and HTPε = {Pk : rk,obs ≥ ε} data for
ε ∈ {5,10,100,1000}.

Figure 5 shows the relationship between FDR, κ , and interactome size, ρm, for
SSE and HTP datasets. In general, for a fixed interactome size, SSE experiments have
a lower FDR than the HTP data (when defined using the same ε) and HTP data pro-
duce a wider range of possible interactome sizes. The highest estimates obtained from
HTP1000 (containing the 15 studies reporting more than 1,000 interactions) suggest
a maximal yeast interactome size of around 140,000 pairwise interactions, provided
that the FDR is negligible.

4 Discussion

Capture–recapture models have been used to find the relationship between FDR and
interactome size. Firstly, we assessed how many interactions are sampled by the dif-
ferent techniques. This suggests that, under the assumption that different methodolo-
gies sample the same underlying true interactions, two-hybrid and affinity capture
western techniques are the least error prone of the physical interaction assays. Sec-
ondly, a more detailed urn model was used to estimate the combination of false and
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true interactions found in the complete (BioGRID) S. cerevisiae interaction data for
physical interactions. These provide evidence that around half of the complete physi-
cal interactome is already in the BioGRID dataset. As more replicates are generated,
these true interactions should start to stand out more from the background noise.

The models require substantial numbers of validated interactions in order to pro-
vide reliable estimates; this is already the case for the available S. cerevisiae interac-
tion data. Our results suggest that the FDR rate for the physical data is at most ≈ 0.6,
and, given an interactome size of 20,000–40,000, we estimate the FDR to be in the
range of 0.32–0.47. The multiple urn model requires FDR estimates in order to allow
us to predict the size of the whole interactome. However, the model can be used to
assess published estimates for either FDR or interactome size, and check for incon-
sistencies. For instance, reported FDRs of 90% have been published for HTP data.
Our analysis suggests strongly that this is not possible and that the FDR is certainly
less than 0.8 even under the most extreme conditions.

Repeatedly reported interactions can be used to construct a reference set of PPIs,
and our urn models allow us to assess this in more detail and recent HTP techniques
present an opportunity for all the observable protein pairs to be tested in this manner.
The assumption of uniform sampling of interactions is at least correct in a mean-
field sense, and is increasingly supported by the technical set up of the larger exper-
iments that contributed the majority of the PPI data. However, the role of systematic
error in any of the experimental methods has been ignored. If the sampling is signif-
icantly skewed toward a particular subset of proteins, or particular interactions, then
the overall interactome size estimates will be lower than in found here, as will the
FDR estimates.

Differences in how the protein pairs have been sampled may make also affect
comparisons of error rates between SSE and HTP studies. If the SSE size estimates
are too low, then the relative FDR will increase for a given interactome size, further
reducing the difference between the FDR seen for HTP and SSE data. Overall, the
FDR is found to be up to 50% larger in the biggest HTP experiments compared to the
smallest SSE.

The presented model also assumes that errors are stochastic in nature, rather than
systematic. Systematic errors and bias give rise to spurious interactions, as they will
almost certainly appear more often than stochastic errors. Ignoring this potential set
of errors will increase the interactome size estimate, whilst reducing the FDR pre-
sented here. In order to take account of systematic errors from different techniques,
the same multiple urn model should be reapplied to all the data from each technique.
Given enough data, the amount of systematic error from each technique can then be
assessed and the size of the interactome estimated more reliably.

From our analysis, it appears that over half a million sampled interactions may be
required to classify all the reported interactions correctly. However, through simple
replication, this should be possible without the requirement of having an underlying
reference set as a simple statistical approach could separate out the noise and identify
any systematic biases. Obviously, the number of repeated samples would be lower
if the FDR could be reduced in experimental replicates. Then, if the scaling factor
is appropriate, validations enable complete elucidation of the—approximately 73%,
given the scaling factor—PPIs that are currently observable. Then further inference



Assessing Coverage of Protein Interaction Data 369

methods using biological characteristics, or new experimental methods, can use this
PPI reference set to fully elucidate the S. cerevisiae interactome.

Here, we have applied relatively straightforward ideas from sampling and proba-
bility theory in order to assess how complete interaction networks are. This, however,
opens up are several further avenues to explore: First of all, we have assumed that
there is some homogeneity in the way interactions are assayed. With high probability,
the variability in the tendency of different proteins to generate false–positives will be
considerable. Here, simple urn schemes, even more complicated ones than presented
here (data not shown), prove too restrictive to cope with such variability. It would be
possible, at least in principle, to use bio-informatics approaches to collate the exten-
sive functional and structural and use mixture models (Marras et al. 2010) to perform
more sophisticated analyses than the one presented here. This will come at consider-
able computational expense (Kelly and Stumpf 2010). Gaining robust insights into the
architecture of such networks, their functional organization and evolution is, however,
of increasing importance in biomedical and biotechnological problems. The biggest
challenge, experimentally and theoretically, may arguably come from the intrinsi-
cally dynamic nature of molecular interaction networks (Kelly and Stumpf 2008;
Lèbre et al. 2010): descriptions in terms of static (time-independent) graphs provide
a poor description and more flexible and powerful descriptors are called for. In light
of this, our estimates only refer to the total number of potential interactions, and not
those that are realized at any given time point.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: The Effects of Experiment Size on PIN Estimates

This Appendix contains further information about the multiple capture–recapture
methodology, and compare the simple urn model with one where experimental size
is taken into account in order to predict the FDR and interactome size from a variety
of datasets.

A.1 Uniqueness of Solution

In order to examine the possible uniqueness of i such that g(m, i) = 0 take m and i

both as positive real number for convenience. The expectation found in (5) is (only
in this section) approximated by

E(S, to find i distinct interactions) = m

i−1∑

k=0

1

m − k

= m

i−1∑

k=1

1

m − k
+ 1
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≈ m

∫ i−1

0

1

m − x
dx + 1

= m log

(
m

m − i + 1

)
+ 1. (13)

Now, in order to examine the uniqueness of a solution for the urn model, (9) are
approximated using (13) as

S ≈ m log

(
m

m − i + 1

)
,

(14)

S′ ≈ m′ log

(
m′

m′ − i′ + 1

)
.

g(m, i) now is

g(m, i) ≈ sobs − m log

(
m

m − i + 1

)
− m′ log

(
m′

m′ − i′ + 1

)

= sobs − m log

(
m

m − i + 1

)

− (mobs − m) log

(
mobs − m

(mobs − m) − (iobs − i) + 1

)
, (15)

and the derivative of g(m, i) with respect to i is

∂g(m, i)

∂i
≈ − m

m − i + 1
+ mobs − m

(mobs − m) − (iobs − i) + 1
. (16)

This derivative is negative if

m
(
(mobs − m) − (iobs − i) + 1

)
> (mobs − m)(m − i + 1),

which reduces to

mobs

m
>

iobs − 2

i − 1
. (17)

As protein interaction graphs are assumed to be sparse (i.e. m � mobs), it follows that
∂g(m,i)

∂i
can be positive only for small i. Figure 6 shows the behaviour of g(m, i) for

the physical data parameters taken from Table 1.
Using (10) and setting i = 1 for simplicity,

g(m,1) = sobs − (mobs − m) log

(
mobs − m

(mobs − m) − iobs

)
, (18)

which is positive for all parameter sets defined in Table 1 and m � mobs.
Further, (16) is decreasing in i, so the second derivative of g with respect to i is

negative. Therefore, as g(m,1) for considered m is positive, if an i exists such that
g(m, i) = 0 then the solution is unique.
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Fig. 6 Single urn function. g(m, i) for the physical interactome data parameters, sobs = 59956,
mobs = (4967

2
)

and iobs = 41313. For m ∈ {10000,50000} the function can be seen to have a single solution
satisfying g(m, i) = 0

A.2 Multiple urns

Rather than in a series of independent studies reporting individual interactions, the
S. cerevisiae data have been published in studies producing multiple interactions.
Each study, Pk , contains a set of reported interactions EPk

. A multiple urn model has
also been used, which assumes that interactions are drawn without replacement from
the observable protein pairs, Eobs. This differs from the assumption in Sect. 2.3.2
where each interaction is drawn from Eobs with replacement.

Recall that the number of true interactions, the interactome size, is m. Now sup-
pose that q experiments, P1, . . . ,Pq , are conducted and that the number of true in-
teractions reported in experiment Pk is rk . For each experiment, Pk , let ph,j,k be the
probability of drawing (j − h) novel true interactions, given that h distinct true in-
teractions are observed in experiments {P1, . . . ,Pk−1}. The probability ph,j,k can be
described as a transition matrix (each state referring to the number of distinct inter-
actions sampled) where for the kth experiment,

ph,j,k =

⎧
⎪⎨

⎪⎩

0 if j < h,

(m−h
j−h)(

h
rk−j+h)

(m
rk
)

if j ≥ h,
(19)

which is equivalent to

ph,j,k =
(

(m − h)!h!rk !(m − rk)!
(j − h)!(m − j)!(rk − j + h)!(j − rk)!m!

)
if j ≥ h. (20)

To find possible values of κ and m that are consistent with the data found in Ta-
ble 1, different values of m, s, and i are simulated. Unlike the single urn model,
however, the experiments provide sobs samples and in each experiment the reported
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Fig. 7 Single or multiple urns. Plots show the differences between the interactome size, ρm, and FDR, κ ,
estimates found using the single and multiple urn models for: (a) SSE100 and (b) HTP100 data. The single
urn results are shown in red and the multiple urn results are shown in blue. The effect on SSE data is small
between the models, whilst there is a larger difference to the predictions made when considering the HTP
experiments

interactions have to be split into true (e ∈ E) and false (e ∈ E′) reported interactions.
The complete experiment sizes {r1,obs, r2,obs, . . . , rq,obs} are such that

sobs =
q∑

k=1

rk,obs. (21)

In order to simulate this model, κ ∈ { 1
sobs

, . . . ,
sobs−1
sobs

} is chosen, and then the num-
ber of interactions drawn from the urns of true interactions and false interactions are
uniformly, and at random, selected such that {r1, r2, . . . , rq} are sampled from the in-
teraction urn (E) and {r ′

1, r
′
2, . . . , r

′
q} are sampled from the false interaction urn (E′),

such that rk + r ′
k = rk,obs ∀k ∈ [1, q] and

∑q

k=1 rk = (1 − κ)sobs.
For each possible κ (along with a collection of 1,000 sampled experiment sizes)

and each m ∈ [0,mobs] the average number of distinct interactions, ǐ, is found through
simulation and forms a possible solution for m and κ only if ǐ = iobs. The multiple
urn model is simulated in order to assess the effect of sampling from experiments of
different sizes, in contrast to the simple with the replacement model in Sect. 2.3.2.

This model is used as a comparison to the simple model on predictions found
from high-throughput (HTP) and small-scale experimental (SSE) data. The single
urn model, found in the main text, ignores the effect of experiment size. This will
have a more profound effect on the HTP results, as the single urn model provides a
better description of data produced by smaller experiments. The multiple urn model
described above takes explicit account of experiment sizes, {r1,obs, r2,obs, . . . , rq,obs},
(at the expense of simplicity) which is now used to estimate the size and FDR for the
same datasets.

Figure 7 shows the difference between the predicted FDR and size values for the
multiple and single urn models. The figures show the minimal changes on the solu-
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Fig. 8 Multiple urn interactome
size results. Plot shows the FDR
and size results for multiple urn
model. The results are shown for
three datasets: complete physical
data; SSE100; and HTP100. This
shows the differences between
the data, with the maximal size,
ρm, being over 50% more for
the HTP100 data in contrast with
the SSE100 data

tions when only smaller experiments are considered (in this example SSE100), whilst
the effect of using the HTP100 data is more pronounced.

Figure 8 shows HTP100 and SSE100 results from the multiple urn model, along
with the results for the full physical data shown in black. The complete data results
only show minor differences to the estimated FDR and sizes found for the single urn
model (shown in Fig. 4). The maximal interactome size is about 50% larger for the
HTP100 set than found for the SSE100. For interactome size estimates from recent
publications of 20,000–40,000 the FDR estimates for each dataset are: 0.31–0.46
(all); 0.38-0.54 (HTP100); and 0.24-0.42 (SSE100). The lower FDR estimates relate
to a higher estimated interactome size.
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