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Abstract Recent advances in virology, gene therapy, and molecular and cell biol-
ogy have provided insight into the mechanisms through which viruses can boost the
anti-tumor immune response, or can infect and directly kill tumor cells. A recent ex-
perimental report (Bridle et al. in Molec. Ther. 18(8):1430–1439, 2010) showed that
a sequential treatment approach that involves two viruses that carry the same tumor
antigen leads to an improved anti-tumor response compared to the effect of each virus
alone. In this article, we derive a mathematical model to investigate the anti-tumor
effect of two viruses, and their interactions with the immune cells. We discuss the
conditions necessary for permanent tumor elimination and, in this context, we stress
the importance of investigating the long-term effect of non-linear interactions. In par-
ticular, we discuss multi-stability and multi-instability, two complex phenomena that
can cause abrupt transitions between different states in biological and physical sys-
tems. In the context of cancer immunotherapies, the transitions between a tumor-free
and a tumor-present state have so far been associated with the multi-stability phe-
nomenon. Here, we show that multi-instability can also cause the system to switch
from one state to the other. In addition, we show that the multi-stability is driven
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by the immune response, while the multi-instability is driven by the presence of the
virus.

Keywords Cancer immunology · Oncolytic virus · Mathematical model ·
Multi-stability · Multi-instability

1 Introduction

The use of viruses to treat cancer has a long history, beginning with the anecdotal
reports of spontaneous cancer remission following viral infections or viral vacci-
nations (Dock 1904; Bluming and Ziegler 1971; Hansen and Libnoch 1978). De-
spite numerous advances in virology, gene therapy and molecular and cell biology,
there are still no standard anti-cancer virotherapies (although a number of viruses
are have been used in later stages of clinical trials in humans (Mullen and Tanabe
2002)). The main challenge for a successful therapy is to understand the delicate
balance between the immune-mediated viral clearance and the anti-tumor viral effi-
cacy (Mullen and Tanabe 2002). In particular, the two important aspects of cancer
viral therapy are: (a) the direct anti-tumor effect caused by the use of replicating on-
colytic viruses (i.e., viruses that infect and selectively replicate inside cancer cells),
and (b) the indirect effect caused by the amplification of the anti-tumor immune re-
sponse. While oncolytic viruses have tremendous potential for cancer therapy, their
effect can be greatly diminished by anti-viral immune responses (Silva et al. 2010).
To overcome this problem, Bridle et al. (2010) developed a sequential treatment pro-
tocol that involved the use of two viruses (a vaccine virus and an oncolytic virus)
which carried the same tumor-associated antigen (human dopachrome tautomerase
(hDCT)). The first virus (an adenovirus (Ad)) was used to trigger an immune re-
sponse against the tumor antigen. The second virus (an oncolytic vesicular stomatitis
virus (VSV)) served to boost the anti-tumor immune response, in addition to killing
the tumor directly. Bridle et al. (2010) found that the secondary immune response
against tumor antigens dominated the response against viral antigens. (The immune
response was measured by the number of CD8+ T cells that infiltrate the tumor and
produce IFN-γ .) This resulted in significant viral replication and tumor destruction.
On average, mice survived for 54 days following the combined effect of the two
viruses, compared to a maximum of 30 days following the administration of each
virus alone. Despite this improved survival rate, the majority of mice showed tumor
re-growth.

In this article, we aim to investigate the interactions among the tumor cells, im-
mune cells, and two viruses in the context of the experimental protocol of Bridle et
al. (2010). Our goal is to develop a mathematical model that reproduces the experi-
mental dynamics, and then use it to identify biological conditions that could lead to
permanent elimination of cancer cells.

For the past 10–15 years, various mathematical models have been derived to inves-
tigate the delicate balance between the anti-tumor and anti-viral immune responses
(Wein et al. 2003; Friedman et al. 2006; Bajzer et al. 2008; Wodarz and Komarova
2009; Biesecker et al. 2010; Wu et al. 2004; Wodarz 2001). These models range
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from very simple equations describing the interaction between the infected and un-
infected tumor cells (Wodarz and Komarova 2009), to more complex models that
investigate the spatial dynamics of various types of tumor cells (infected, uninfected,
and necrotic), immune cells and oncolytic viruses (Wein et al. 2003). In general, the
models focus only on the effector immune cells, since these cells are critical for tu-
mor elimination. However, for the dual-immunization protocol described by Bridle
et al. (2010) the magnitude of the secondary effector immune response (following
the oncolytic virus (VSV)) is dependent on the magnitude of the memory immune
response (following the vaccine virus (Ad)). For this reason, in this paper, we model
not only the effector CD8+ T cells but also the memory CD8+ T cells elicited by
the Ad vaccine. To describe the interactions of these cells with the tumor and the
virus particles, we use a two-compartment model. The two compartments, namely
the lymphoid compartment (where the memory T cells reside and antigen presenta-
tion takes place), and the peripheral compartment (where the tumor is located), can
account for the delay in the tumor-immune dynamics. The model investigated in this
paper falls into the general class of non-spatial ODE models reviewed by Eftimie et
al. (2010).

The non-linear interactions among the tumor cells, viruses, and immune cells are
expected to give rise to complex behaviors that could explain the permanent elim-
ination (or lack thereof) of tumor cells. As an example, nonlinear tumor-immune
interactions were shown to give rise to primary and secondary bifurcations (Byrne et
al. 2004) and bi-stability (Lefever and Horsthemke 1979; Bunimovich-Mendrazitsky
et al. 2007; Lejeune et al. 2008). Bi-stability or more general multi-stability, is an
important feature of many biological systems that can operate in two (or more) dis-
tinct modes. Examples of bi-stable and multi-stable behaviors can be found in a va-
riety of biological systems, from the molecular pathways that regulate cell kinetics
(Eißing et al. 2004; Pomerening 2008; Reth and Brummer 2004; Chang et al. 2006;
Angeli et al. 2004), to the macroscopic behavior of insects (Buhl et al. 2006), or
the temporal patterns of infectious disease epidemics (Schwartz and Smith 1983;
Earn et al. 2000). Investigating the mechanisms that could cause bi-stable or multi-
stable behaviors can provide useful information regarding the abrupt transitions
between different states. In cancer immunology, the interest is in the biological
mechanisms that could explain sudden transitions from a tumor-free to a tumor-
present state, and vice versa (Lefever and Horsthemke 1979; Kirschner and Panetta
1998; Bunimovich-Mendrazitsky et al. 2007; Cappuccio et al. 2007; Lejeune et
al. 2008). Examples of such mechanisms are the rate at which the immunothera-
peutic agent is introduced into the system (Bunimovich-Mendrazitsky et al. 2007;
Kirschner and Panetta 1998), the tumor antigenicity (Kirschner and Panetta 1998),
or the ratio of tumor proliferation and tumor elimination rates (Lejeune et al.
2008).

Another complex behavior that could lead to abrupt changes in the dynamics of
a system is multi-instability. This phenomenon has been studied quite intensively in
physical (Schwartz and Carr 1999) or epidemiological (Billings and Schwartz 2002;
Choisy et al. 2006) systems. However, multi-instability has not received much at-
tention in models for cancer immunotherapy. As opposed to multi-stability, multi-
instability (which is characterized by several equilibria, cycles or more complex lim-
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iting states being unstable at the same time) can lead to unexpected outcomes. In epi-
demiology, for example, chaotic patterns of disease outbreaks could be stimulated by
heteroclinic connections resulting from bi-instability (Billings and Schwartz 2002;
Choisy et al. 2006). Similar chaotic behavior has been observed in a delayed dif-
ferential model for virus-immune interactions (Canabarro et al. 2004). In this arti-
cle, we show that the multi-instability phenomenon could lead to a transition from
a tumor-present to a tumor-free state (and vice versa). This transition is the result
of a global homoclinic bifurcation (see Perko 2000 for a general discussion of such
bifurcations). Here, we identify this bifurcation graphically, and discuss its impli-
cations for the outcome of the anti-cancer viral therapy. Also, we show that the
multi-instability phenomenon is related to the persistence of the oncolytic virus,
while the multi-stability phenomenon is related to the anti-tumor immune response.
For the parameters investigated in this model, we have not detected chaotic behav-
ior.

We begin in Sect. 2 by deriving the mathematical model. In Sect. 3, we discuss the
local behavior of the system and the conditions that ensure the stability of the steady
states. In Sect. 4, we discuss the short-time and long-time behavior of the system.
In particular, we focus on the conditions that can lead to multi-stability and multi-
instability. We also discuss the effect of these two phenomena on the transition from
a tumor-present to a tumor-free state. Finally, in Sect. 5, we summarize and discuss
the biological implications of the multi-stability and multi-instability phenomena for
the improvement of cancer immunotherapies.

2 Model Description

The tumor-immune-virus interactions depend on the migration of cells and viral par-
ticles into the solid tumor, as well as on the tumor architecture (Blohm et al. 2006;
Breitbach et al. 2007). Mathematically, these interactions could be modeled with the
help of spatial models based on partial differential equations (Araujo and McEl-
wain 2004). However, since these models can become quite complicated, as a first
step in the modeling process we do not model this spatial component explicitly and
use instead compartmental ODE models. To account for the delay in the tumor-
immune interactions induced by the spatial component, we introduce two com-
partments: the lymphoid compartment (where the immune cells get activated and
proliferate) and the peripheral compartment (where the tumor is localized) (see
Fig. 1).

To model the anti-tumor and anti-viral immune responses, we focus on the changes
in the tumor size (denoted by x), the size of the immune response (denoted by y),
and the magnitude of the viral infection (denoted by v) following the injection of two
viruses: an oncolytic virus (the vesicular stomatitis virus (VSV)) and a vaccine virus
(the adenovirus (Ad)). To measure the effect of the oncolytic virus on the tumor cells,
we model separately the time evolution of uninfected (xu) and infected (xi) tumor
cell populations. For the immune response, we model the evolution of effector (and
effector-memory) cells in the lymphoid compartment (yel) and in the periphery (yep),
and the central memory cells (ycm) in the lymphoid compartment. Finally, we model
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Fig. 1 Schematic representation of the interactions among immune cells, tumor cells, and virus particles.
We focus on two compartments: the lymphoid tissue (where the immune cells are activated and undergo
clonal expansion) and the peripheral tissue (where the tumor is localized)

the viral loads for the oncolytic virus (vv) and the vaccine virus (va). These variables
are summarized in Table 2 (Appendix B).

Before introducing the model, let us describe in detail the assumptions that we
make about the cancer-immune-virus interactions. These assumptions are depicted
schematically in Fig. 1.

(i) The dynamics of uninfected tumor cells (xu). We assume that tumor cells prolif-
erate at an intrinsic rate r with logistic density dependence. These cells can be-
come infected with the oncolytic virus at intrinsic rate dv. Since viral replication
and spread can be hindered by the architecture of the solid tumor (Breitbach et
al. 2007), we consider a Michaelis–Menten term to describe these tumor-virus
interactions: xuvv

hu+xu
, where hu is the half-saturation constant of tumor cells. Fi-

nally, the tumor cells are lysed at a rate du by the effector cells in the periphery.
Again, tumor architecture can restrict the tumor-immune interactions (Blohm et
al. 2006): we model this with a factor

xuyep
hep+yep

, where hep is the half-saturation
constant of immune cells.

(ii) The dynamics of infected tumor cells (xi). This cell population increases at a rate
dv, following the infection of tumor cells with the oncolytic virus. The infected
cells are lysed by viruses at a rate δ, and by effector cells in the periphery at a
rate di.

(iii) The dynamics of central memory cells (ycm). In the absence of any antigen, these
cells can proliferate at a very slow rate ic (Wherry et al. 2003; Sallusto et al.
2004). To maintain this pool of memory cells, proliferation is counterbalanced
by a low death rate dc (Marsden et al. 2006). In addition, there might be a
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very low inflow (inc) of memory cells caused by the presence of tumor antigens
(or some other antigens). These cells also proliferate following encounter with
viral antigens (Marsden et al. 2006). We denote by pa

c and pv
c the proliferation

rates in the presence of Ad and VSV antigens, respectively. Since memory cells
compete for space with other cells, we use a logistic function to describe their
proliferation: ycm(1 − kcycm). In addition, cell proliferation in response to viral
antigens is described by

P(va,v) = va,v

ha,v + va,v
. (1)

This sigmoidal function can account for the different observations regarding
the level and duration of antigen stimulation necessary to induce clonal ex-
pansion (Kaech et al. 2002; Finn et al. 2009; Turner et al. 2007; de Boer et
al. 2001). Parameters ha,v describe the amount of antigen (or virus particles)
necessary to generate half-maximal stimulation. The full terms describing the
proliferation of memory cells in response to Ad and VSV particles/antigens are:
p

a,v
c P(va,v)ycm(1 − kcycm).

The secondary encounter with the tumor-associated antigen causes memory
cells to proliferate quickly and then differentiate to effector cells (Sallusto et
al. 2004). This differentiation process, which depends on the presence of viral
antigen (Wherry et al. 2003), is described by rcl

vvycm
hv+vv

.
We assume that the population of memory cells can also increase through the

survival and migration to the lymphoid tissue of effector and effector-memory
cells following the contraction phase of the immune response (Wherry et al.
2003; Marsden et al. 2006). The migration process, which is assumed to be
reduced in the presence of antigen (Kaech et al. 2002; Wherry et al. 2003), is
described by

mplyep
1+gvvv

. Here, mpl is the very low migration rate, and 1/gv is the
concentration of VSV antigen at half maximum.

Finally, the early stages of VSV infection are characterized by a severe lym-
phopenia, which results in a reduction of CD8+ T cell numbers for 2–4 days
following the infection (Bahl et al. 2006; Schattner et al. 1983). This reduc-
tion, which affects mainly memory cells, can be described mathematically by
lcL(t)ycmvv, where

L(t) = e−q|t−t0|. (2)

Here, 1/q is related to the duration of virus-induced lymphopenia, while lc is
the reduction rate of CD8+ T cells.

(iv) The dynamics of effector (and effector-memory) cells in the lymphoid tissues
(yel). First, there is a very low, constant influx (inl) of cells into the lymphoid
tissue (caused, for example, by the presence of tumor antigens). Cell numbers
can also increase following encounter with viral antigens: p

a,v
e P(va,v)yel(1 −

keyel). Here, p
a,v
e are the proliferation rates. The logistic term describes a

self-limitation process with carrying capacity 1/ke. (Effector cells produce
molecules such as IFN-γ and perforin, which limit their growth (Badovinac
et al. 2000).)
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The number of effector cells can also increase following the expansion and
differentiation (at a rate rcl) of memory cells into effector cells (Sallusto et al.
2004).

Finally, cell numbers are reduced as a result of cell death (at a rate dl), mi-
gration to the peripheral tissue (at a rate mlp), and virus-induced lymphopenia
(at a rate ll).

(v) The dynamics of effector (and effector-memory) cells in the periphery (yep).
The effector cells arrive in the peripheral tissue following migration (at a rate
mlp) from the lymphoid tissues. The decline in the number of effector cells is
the result of cell death (at a rate dp) or virus-induced lymphopenia (at a rate ll).
Finally, the effector cells in the periphery are inactivated (at a rate dt) following
interactions with the uninfected tumor cells.

(vi) The dynamics of the oncolytic vesicular stomatitis virus (vv). The virus is in-
jected on day t0 > 0 following a pulse-like treatment cv(t):

cv(t) =
{

107 PFU
(μl)(day)

, if t ∈ [t0, t0 + 1],
0, otherwise,

(3)

where PFU/μl denotes “plaque forming units per μl of blood”. When an in-
fected tumor cell dies (at a rate δ), it releases b virus particles. Finally, the virus
is eliminated by various cells (e.g., Kupffer cells) at a rate ωv (Brunner et al.
1960).

(vii) The dynamics of the adenovirus vaccine (va). The virus, which is injected into
the tumor-bearing mice on day 0, is eliminated rapidly (at a rate ωa) by various
immune cells (Alemany et al. 2000).

Putting together all the above assumptions, leads to the following equations, which
describe the interactions among tumor cells, immune cells, and viral particles:

dxu(t)

dt
= rxu

(
1 − k(xu + xi)

) − dv
xuvv

hu + xu
− du

xuyep

hep + yep
, (4a)

dxi(t)

dt
= dv

xuvv

hu + xu
− δxi − di

xiyep

hep + yep
, (4b)

dycm(t)

dt
= inc + ycm

(
ic + pa

cP(va) + pv
cP(vv)

)
(1 − kcycm)

+ mpl
yep

1 + gvvv
− rcl

vvycm

hv + vv
− dcycm − lcL(t)ycmvv, (4c)

dyel(t)

dt
= inl + yel

(
pa

eP(va) + pv
eP(vv)

)
(1 − keyel) + rcl

vvycm

hv + vv

− dlyel − mlpyel − llL(t)yelvv, (4d)

dyep(t)

dt
= mlpyel − dpyep − dtxuyep − mpl

yep

1 + gvvv
− llL(t)yepvv, (4e)
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dvv(t)

dt
= cv(t) + δbxi − ωvvv, (4f)

dva(t)

dt
= −ωava. (4g)

Note that (4f) does a not include a term of the form

−dv
xuvv

(hu + xu)
, (5)

which would model the removal of free virus particles. Once a virus enters a tumor
cell, it cannot infect other cells, and thus it cannot be part of the free virus popula-
tion. This assumption was incorporated into the mathematical models of Bajzer et
al. (2008), Dingli et al. (2009), Biesecker et al. (2010) and references therein. How-
ever, many other models do not incorporate such a term (e.g., Friedman et al. 2006;
Wu et al. 2004; Ferreira et al. 2005; Paiva et al. 2009). The question comes down
to whether successful cell entry represents a significant loss term for free virus. We
tested the sensitivity of our model to this assumption with numerical simulations. We
found that while this term slightly changes one of the steady states, it does not have
a significant impact on the overall dynamics of system (4). For this reason, we chose
to leave it out and avoid complicating the model further.

In the following, we will investigate the effect of the linear and nonlinear tumor-
immune-virus interactions on the local and global dynamics of this model.

3 Linear Analysis of Steady States

We begin investigating the behavior of system (4) by discussing first the steady state
solutions. System (4) can evolve toward a tumor-free steady state, or toward various
tumor-present steady states.

1. The tumor-free (TF) steady state is described by

(xu, xi, ycm, yel, yep, vv, va) = (
0,0, y∗,0

cm , y
∗,0
el , y∗,0

ep ,0,0
)
, (6)

with

y
∗,0
el = inl

dl + mlp
, (7a)

y∗,0
ep = mlpy

∗,0
el

dp + mpl
, (7b)

y∗,0
cm =

ic − dc +
√

(ic − dc)2 + 4ickc(inc + mply
∗,0
ep )

2ickc
. (7c)

2. The first tumor-present steady state does not depend on the oncolytic virus:

(xu, xi, ycm, yel, yep, vv, va) = (
x∗

u ,0, y∗
cm, y∗

el, y
∗
ep,0,0

)
. (8)
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Here,

y∗
el = inl

dl + mlp
, (9a)

y∗
ep = mlpy

∗
el

dp + dtx∗
u + mpl

, (9b)

y∗
cm =

ic − dc +
√

(ic − dc)2 + 4ickc(inc + mply∗
ep)

2ickc
, (9c)

x∗
u =

r − du
y∗

ep
hep+y∗

ep

rk
. (9d)

This tumor-only (TO) steady state (i.e., tumor without virus) exists when

r > du
y∗

ep

hep + y∗
ep

. (10)

Using (9b), we can rewrite this inequality as

mlpy
∗
el

dp + dtx∗
u

<
rhep

du − r
. (11)

We now observe that (11) (or (10)) is likely to be satisfied for large hep. (Parameter
r is usually fixed, since it depends on how aggressive the tumor is.) Parameter hep
is related to the number of tumor-infiltrated immune cells necessary for an optimal
killing of tumor cells. Since this parameter could be changed experimentally (see
the discussion in Sect. 5), in the next sections we will investigate its role on the
dynamics of system (4).

Using (9b) and (9d), one can show that system (4) could have at most two TO
steady states, x

∗,1
u and x

∗,2
u . These states are given by (see also Fig. 5):

x∗,1,2
u = −B ± √

B2 − 4AC

2A
, (12)

with

A = rkhepdt, (13a)

B = rkhep(dp + mpl) + rkmlpy
∗
el − rhepdt, (13b)

C = −rhep(dp + mpl) + (du − r)mlpy
∗
el. (13c)

Note that when B < 0 and C > 0 (which could happen only for large dt) there are
two positive steady states, x

∗,1,2
u . On the other hand, when B < 0 and C < 0, or

B > 0 and C < 0, there is only one positive steady state, x
∗,1
u . This could happen

if either of hep or r is sufficiently large.

Corresponding to these x
∗,1,2
u states, there are two different states for the effec-

tor cells: y
∗,1,2
ep . We will revisit these states in the next section.
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3. The second tumor-present steady state depends on the oncolytic virus (vv):

(xu, xi, ycm, yel, yep, vv, va) = (
x∗,v

u , x
∗,v
i , y∗,v

cm , y
∗,v
el , y∗,v

ep , v∗,0
)
. (14)

We will denote this steady state by TV (“tumor with virus”). Because of the com-
plexity of (4), it is impossible to obtain closed-form expressions for the states
described by (14). (Finding the steady states would amount to finding the roots of
a polynomial of degree higher than four.) However, using (4b) and (4f), one can
show that the TV state exists only when

dv
x

∗,v
u

hu + x
∗,v
u

− ωv

δb

(
δ + di

y
∗,v
ep

hep + y
∗,v
ep

)
= 0. (15)

This equation depends on the parameters describing the dynamics of the oncolytic
virus. To understand it, let us introduce the effective reproduction number, Rv

e ,
which is a measure of the infection of tumor cells with the oncolytic virus (see
also Nowak and May 2000 for a discussion on how to calculate Rv

e ):

Rv
e =

dvδb
x

∗,v
u

hu+x
∗,v
u

ωv(δ + di
y

∗,v
ep

hep+y
∗,v
ep

)

. (16)

Now, it becomes clear that (15) is equivalent to Rv
e = 1. Note that the state vari-

ables in (16) are actually described in terms of the model parameters. However,
since the exact formulas for these variables are very complex, throughout this ar-
ticle we will work directly with x

∗,v
u and y

∗,v
ep .

The expression for Rv
e is slightly different than the effective reproduction num-

ber Ro
e associated with the TO state:

Ro
e =

dvδb
x

∗,1,2
u

hu+x
∗,1,2
u

ωv(δ + di
y

∗,1,2
ep

hep+y
∗,1,2
ep

)

. (17)

Here, the tumor (x∗,1,2
u ) and immune (y∗,1,2

ep ) states do not depend on the virus
(v∗). Since the virus contributes to the elimination of tumor cells x

∗,v
u , we expect

that

x∗,v
u < x∗,1

u . (18)

It is possible in principle that some of x
∗,v
u are greater than x

∗,2
u . However,

throughout most of this article (with the exception of Sect. 4.1), we focus on the
parameter regime where x

∗,2
u does not exist.

Figure 2 depicts graphically the surfaces describing the two effective reproduc-
tion numbers, Ro

e and Rv
e . We choose to focus on two parameters, du and ωv, since

they can be manipulated experimentally (see also the discussion in Sect. 5). Note
that for x

∗,v
u close to x

∗,1
u , the TV state exists only when ωv < ω∗ (Fig. 2(b)). This

corresponds to Ro
e > 1 (Fig. 2(a)). The parameter values used to calculate these
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Fig. 2 (a) Graphical depiction of Ro
e as two parameters are varied at the same time: the rate at which

the immune cells eliminate the tumor cells (du), and the rate at which the oncolytic virus is eliminated
(ωv). For du ∈ [0.1,1.8], Ro

e crosses the threshold Ro
e = 1 at a value ωv = ω∗ ∈ [34.51,37]. In particu-

lar, when du = 1.8, ω∗ = 34.51. (b) Graphical depiction of the surface generated by Rv
e = 1, for a wide

range of tumor sizes (x∗,v
u ) and viral loads (v∗) (see (16)). Note that, for x

∗,v
u ≤ x

∗,1
u (where x

∗,1
u de-

notes the only positive tumor size for the TO steady state), Rv
e = 1 only when ωv ≤ ω∗. Here, du = 1.8,

lc = 9.45 × 10−6, ll = 4.5 × 10−7, hv = 104, ha = 10−2 inc = 0. The rest of parameter values are given
in Table 1 (Appendix B)

two surfaces are given in the caption of Fig. 2 and in Table 1 (Appendix B). We
will revisit these TV states in the next section.

Remarks When inl = inc = mpl = 0, there is no long-term immune response: y∗
el =

y∗
ep = y∗

cm = 0. If, in addition dc = ic = 0, then in the absence of the oncolytic virus
(v∗ = 0) memory cells can approach an infinite number of states y∗

cm. (There is an
entire line of values for y∗

cm.)

3.1 Stability of Steady States

In the following, we will present the analytical conditions necessary for the stabil-
ity of the virus-free steady states. The stability of the TV state will be investigated
numerically.

To begin, the stability of the tumor-free (TF) steady state (6) is given by the sign
of the first eigenvalue (λ1) of the Jacobian matrix associated with system (4). (All
other eigenvalues are always negative.)

λ1 = r − duy
∗,0
ep

hep + y
∗,0
ep

. (19)

Lemma 1 The TF steady state (6) is

(a) Stable when

r <
duy

∗,0
ep

hep + y
∗,0
ep

. (20)

In this case, the steady state is a stable node.
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(b) Unstable when

r >
duy

∗,0
ep

hep + y
∗,0
ep

. (21)

In this case, the steady state is a saddle point.

Note that the TF and TO states are defined by slightly different effector cell num-
bers (see (7b) and (9b)). This allows for the possibility that (20) and (10) are both sat-
isfied when dt is large enough. In this case, it could be possible to have a bi-stability
phenomenon between the TF and the TO states. We will investigate this possibility
further in Sect. 4.1.

When the TO state (8) exists, its stability is determined by the value of the effective
reproduction number Ro

e , as well as the immune response.

Lemma 2 The TO steady state (8) is

(a) Stable when

Ro
e < 1 and

(
y

∗,1,2
ep

hep + y
∗,1,2
ep

)2

<
rkmlpinl

(dl + mlp)duhepdt
. (22)

In this case, the steady state is a stable node.
(b) Unstable when

Ro
e > 1 or

(
y

∗,1,2
ep

hep + y
∗,1,2
ep

)2

>
rkmlpinl

(dl + mlp)duhepdt
. (23)

In this case, the steady state is a saddle point.

A sketch of the proof is given in Appendix A.
An analytical investigation of the stability of TV steady states is almost impossi-

ble. However, one can calculate numerically both the TV states and the eigenvalues
of the Jacobian matrix corresponding to these states. Figure 3 shows the eigenvalues
of a particular TV state when the parameter ωv is decreased. (We choose to focus on
parameter ωv since it appears in Ro

e and Rv
e , and it can be manipulated experimen-

tally.) We observe that for large ωv (ωv > 30), the TV state is always stable (a stable
focus or a stable node). For smaller ωv (ωv < 30), the TV state is an unstable focus.
The parameter values used to calculate these eigenvalues are given in the caption of
Fig. 3 and in Table 1.

Note that the TV state investigated in Fig. 3 is not unique. Usually, when ωv < 34
there are at least two other TV states that are unstable foci and/or saddle points (not
shown here).



2944 R. Eftimie et al.

Fig. 3 Stability of a particular TV steady state, as given by the sign of the eigenvalues λj , j = 1, . . . ,7, of
the Jacobian matrix. To compute the eigenvalues, we first calculated numerically the TV states correspond-
ing to different values of ωv ∈ (16.5,34). (These states were calculated in Maple using solve command
to find the solutions of a 7 × 7 system of algebraic equations.) We then used these TV states to calculate
the Jacobian matrix associated with system (4). (a) The eigenvalue λ1 is responsible for the change in
stability. In particular, for ωv > 30, Re(λ1) < 0 and the TV state is a stable focus (ωv ∈ (30,34)) or a
stable node (ωv > 34). For ωv < 30, Re(λ1) > 0 and Im(λ1) > 0, and the TV state is an unstable focus.
(b) The eigenvalues λj , j = 2, . . . ,7. Note that for ωv < 30, the eigenvalue λ6 is the complex conjugate of
the eigenvalue λ1, and hence its real part is positive. All other eigenvalues are always negative. For these
simulations, we used du = 1.8, lc = 9.45 × 10−6, ll = 4.5 × 10−7, hv = 104, ha = 10−2, inc = 0. The
rest of parameter values are given in Table 1 (Appendix B)

4 Numerical Results

We begin discussing the dynamics of model (4) by investigating the short-time be-
havior of this system. The initial conditions for the numerical simulations follow the
experimental protocol of Bridle et al. (2009). We assume that “day 0” is the day
when 106PFU/μl of Adenovirus (Ad) are injected: va(0) = 106. The rest of initial
conditions are: xu(0) = 106, xi(0) = 0, ycm(0) = 0.01, yel(0) = 1.5, yep(0) = 1.5,
and vv(0) = 0. The parameter values used for these simulations are given in Table 1
(Appendix B).

Figure 4 shows the dynamics of system (4) following a standard immunization
treatment (with Ad alone) or a sequential treatment (with Ad and VSV). (In the
absence of any treatment, the tumor grows logistically and the immune response
is almost non-existent (not shown here).) The immune response following Ad in-
jection (Fig. 4(b)) leads to a slow decrease in tumor size, followed by a rapid tu-
mor regrowth (Fig. 4(a)). The tumor reaches maximum size between 30–40 days.
This is consistent with the experimental results in Bridle et al. (2010). When the
oncolytic virus is introduced (Figs. 4(c) and (d)), the immune response increases
significantly. This leads to a much higher reduction in tumor size, and a longer
time until the tumor grows back. The results are consistent with murine experiments
showing an increased secondary immune response following the injection of the on-
colytic virus (VSV) (see Figs. 2 and S1 in Bridle et al. 2010). We note here an
increased level of memory cells following the administration of the second virus.
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Fig. 4 (a) Tumor size in the absence of the oncolytic virus (only the Ad vaccine is given). (b) The magni-
tude of the memory and effector immune responses following the boost with the vaccine virus. (c) Tumor
size following the administration of the dual treatment: vaccine virus on day 0, and oncolytic virus on
day 14. (d) The magnitude of the memory and effector immune responses following the dual treatment.
The parameter values for these simulations are: ωv = 40, hv = 104, ha = 10−2, inc = 0. The rest of the
parameter values are given in Table 1 (in Appendix B)

This high level is important since it could theoretically control subsequent tumor re-
lapses.

In Fig. 4(d), we also observe an immediate decrease in the immune response
caused by the introduction of the VSV on day 14 (i.e., virus-induced lymphopenia).
Detailed numerical simulations (not shown here) suggest that by increasing the dura-
tion of the immune suppression, one can obtain a higher immune response later. This
is the indirect result of larger tumors and better viral replication, which leads to better
proliferation of immune cells.

For the parameter values used in these simulations, the tumor always grows back.
Here, the only non-negative TO state, x

∗,1
u , is always stable. The TF steady state x

∗,0
u

is always unstable. The permanent elimination of tumor cells, which is observed in
certain experiments (Bridle et al. 2010), could be explained in system (4) by higher
du rates (see also the discussion in Sect. 3.1).

We also tested numerically what happens when we consider injecting only one
virus, either the oncolytic virus (VSV) or the vaccine virus (Ad). (For both cases,
we took pa

e = pv
e = 0.6 and pa

c = pv
c = 0.09 to be the immune proliferation rates
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in the absence of immunological memory. The rest of the parameters were chosen
as in Fig. 4). The results suggested that even if we increase the dose of each virus
by ten fold, the single treatment protocols are not as effective against the tumor as
the sequential treatment discussed in Fig. 4(c) (when both viruses are given). More
precisely, increasing the Ad dose from 106PFU/μl to 107PFU/μl delays tumor re-
growth by 2–3 days (compared to the dynamics shown in Fig. 4(a)). Increasing the
VSV dose from 107PFU/μl to 108PFU/μl cannot stop tumor growth: the tumor will
reach its carrying capacity before it can be shrunk by the immune response. We infer
that the sequential treatment is better than just giving a higher dose of one of the two
viruses.

So far, we have discussed the patterns exhibited by system (4) from the perspective
of conditions that determine the local stability of the steady states. In the following,
we will focus on the global behavior of system (4), and discuss two mechanisms that
could alter the final steady state patterns. These two mechanisms are multi-stability
and multi-instability.

4.1 Multi-Stability for the Tumor-Immune-Virus Dynamics

The multi-stability phenomenon is caused by the presence of multiple steady
states that are stable at the same time. (If there are only two stable steady states,
we call it a bi-stability phenomenon.) In cancer immunology, the existence of
such a phenomenon can provide information on the conditions that could cause
a sudden transition from a tumor-present to a tumor-free steady state (and vice
versa).

As seen in Sect. 3, for some parameters it is possible to have three steady states:
one tumor-free (TF) and two tumor-present (TO) states. Figure 5 shows the dynam-
ics of system (4) in a region of the parameter space characterized by relatively high
rates for the tumor-induced inactivation of effector cells (dt = 2.98 × 10−9) and very
high tumor killing rates (du = 15.8). To investigate the transition between the dif-
ferent steady states, we focus on the parameter hep. This parameter is related to the
concentration of effector immune cells necessary to be present in the tumor to ensure
half the maximum killing rate (see also the discussion in Sect. 5). For intermediate
values of hep (hep ∈ (35,50)), we observe a bi-stable behavior between the TF steady
state and one of the TO steady states (Fig. 5(a)). (Here, there is no TV state since
Ro

e < 1.) This behavior can explain the abrupt changes in tumor size as one param-
eter is gradually increased. In particular, we note that tumors with sizes above the
dashed curve (which describes the unstable state x

∗,2
u ) will continue growing until

they reach the stable state x
∗,1
u . This has implications on the treatment protocol. In

particular, treatment does not have to be administered until the complete elimination
of the tumor. It is enough to treat the tumor until its size decreases below the dashed
curve. Then the solution of system (4) will be attracted by the stable tumor-free steady
state.

This bi-stable behavior is accompanied by a hysteresis phenomenon. As hep is
increased, the tumor-free steady state loses stability and the system evolves toward
the higher tumor-present steady state (x∗,1

u ). If hep is now decreased below hep = 50,
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Fig. 5 Graphical description of the existence and stability conditions for the TF (6) and the TO (8) steady
states. (a) For small hep, there is only one steady state: the TF state which is stable (the continuous line).
As hep increases slowly, there is a saddle-node bifurcation that gives rise to another two steady states:
the TO states. The first state is stable (the continuous curve), while the second one is unstable (the dotted
curve). As hep increases further, the second state disappears through a subcritical bifurcation at hep ≈ 50.
(b) Graphical description of inequalities (20)–(21) and (10), which determine the stability of the TF steady

state (corresponding to y
∗,0
ep ) and the existence of the TO steady states (corresponding to y

∗,1
ep and y

∗,2
ep ).

(c) Graphical description of the second part of inequalities (23) and (22), which give the stability of the two

TO states (13). The parameter A is given by A = rkmlpinl
dudthep(dl+mlp)

. The first steady state (corresponding

to y
∗,1
ep ) satisfies inequality (23), while the second state (corresponding to y

∗,2
ep ) satisfies inequality (22).

Here, du = 15.8, dt = 2.89 × 10−9, lc = 9.45 × 10−6, ll = 1.845 × 10−5, hv = 104, ha = 10−2 and
inc = 0. The rest of the parameter values are specified in Table 1 (Appendix B)

the system does not return immediately to its inital tumor-free steady state. It will
return to this state later, when hep ≈ 35.

Figure 5(b) depicts graphically the conditions that ensure the existence of TO
steady states and the stability of TF steady state ((10) and (20)–(21)). As hep in-
creases past the value hep = 50, the TF state loses its stability (the dotted curve
goes below the line r/du). At the same point, one of the TO states disappears (the
dashed curve is now above the horizontal line r/du). Figure 5(c) depicts graphically
the second part of inequalities (22)–(23), which describe the stability of the TO steady
states. We note here that the two steady states have opposite stabilities (the continu-
ous and the dotted curves are above and below the thick continuous curve described
by A = rkmlpinl

dudthep(dl+mlp)
).

We note that, for the parameter values investigated in Fig. 5, it is not possible to
have both TO steady states stable. However, since the parameter space is very large,
we cannot exclude the possibility that for some specific parameter values all virus-
free states could be stable at the same time.

To conclude, the existence of a bi-stable or, more generally, a multi-stable regime
for the tumor-free and tumor-present steady states could explain the transitions
between these states during the evolution of cancer. In particular, environmental
stochasticity could push the system from one state to the other. Thus, relatively large
tumors could disappear even in the absence of external treatment, and tumors that
were thought to be in remission could relapse again.
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4.2 Multi-Instability for the Tumor-Immune-Virus Dynamics

In this section, we discuss a more complex phenomenon exhibited by model (4),
namely multi-instability. As we will show next, this phenomenon, too, could cause a
transition from a tumor-present to a tumor-free steady state.

Inequality (23) suggests that condition Ro
e > 1 is sufficient to cause the TO steady

states to become unstable. Note that Ro
e depends mainly on the parameters governing

the dynamics of the oncolytic virus (vv). Hence, the stability/instability of TF steady
state (which depends only on the immune response) can be decoupled from the in-
stability of TO steady states. Moreover, Figs. 2(b) and 3(a) suggest that when Ro

e > 1
the TV steady states exist and can also be unstable. This leads to the possibility of
having a parameter regime where all equilibria (i.e., TF, TO, and TV) are unstable.
This is called a multi-instability phenomenon. (Note that, if there are only two states
and they are both unstable, this is usually called a bi-instability phenomenon.)

Figure 6 describes the long-term dynamics of system (4), as the parameter ωv
is decreased past the threshold value ω∗

v = 34.51 (obtained for Ro
e = 1). (All other

parameters are fixed and their values are described in the caption of Fig. 6 and in
Table 1.) For large ωv (and Ro

e < 1), the system evolves toward the TO steady state
x

∗,1
u (Fig. 6(b)). The figure in the inset shows the absence of the oncolytic virus. Note

that for the parameter values used in these simulations, the state x
∗,2
u is negative.

Figure 6(c) shows that as we decrease ωv (ωv ∈ (30,34.51)), the dynamics of the
system approaches the TV state. This state, which is characterized by the presence
of the virus and a slightly smaller tumor size, is stable for ωv > 30 (see also Fig. 3).
As ωv is decreased further (ωv ∈ (22.7,30)), the system approaches a limit cycle,
where both the tumor and the virus are present (Fig. 6(d)). The amplitude of these
oscillations increases as ωv decreases. We will refer to these oscillations as “spike-
like” oscillations. Here, all steady states are unstable (see also Fig. 3 for the stability
of TV state). If we decrease ωv below the critical value 22.7, the oscillations become
more complex, involving all three steady states: TF, TO, and TV (Fig. 6(e)). Actually,
the transition from the TO state to the TF state happens as the solution passes near
the TV state. In particular, in Fig. 6(e), we note a lower tumor size toward the end
of the tumor peaks. This corresponds to a peak in the virus load (i.e., a TV state).
We will refer to these oscillations as “plateau-like” oscillations. Here, the TF and TO
equilibria are unstable saddle points, while the TV equilibria are either saddle points
or unstable foci (see also Fig. 3). Finally, for very small values of ωv, system (4)
evolves toward a tumor-free state (Fig. 6(f)). Note that in this case, the oncolytic
virus can be detected in the system for 10–11 days after it was introduced (compared
to only 4–5 days when ωv > 30). Here, we consider the detection threshold to be
vv ≥ 1000 particles.

Note that the dynamics shown in Fig. 6 are not sensitive to the initial conditions.
Small changes in the initial tumor size or in the initial immune response will influence
only the short-term dynamics of system (4) (described in Fig. 4). They will not have
any effect on the long-term dynamics of this model.

Figure 7 shows a phase-plane representation of the patterns described in Figs. 6(d)
and (e). Note that the period of oscillations increases as ωv decreases. Close to the
threshold value ωv = ω∗∗

v = 16.3, the period becomes very large. As ωv crosses this
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Fig. 6 The effect of decreasing ωv on the long-term behavior of system (4). (a) Graphical depiction of Ro
e

as the rate at which the oncolytic virus is eliminated (ωv) decreases. Ro
e crosses the threshold Ro

e = 1 when
ω∗

v = 34.51 (and du = 1.8). (b) The TO steady state (see (8)). The inset shows the absence of the oncolytic
virus (VSV). (c) The TV steady state (see (14)). The inset shows the presence of the virus. (d) Oscillatory
behavior for the TV state. (e) Oscillatory behavior that involves all three steady states. The solution spends
a significant amount of time near the TF state or the TO state. To get from the TO to the TF state, the
solutions first passes near the TV state (see the VSV values in the inset figure). (f) The TF steady state. For
these simulations, we used du = 1.8, lc = 9.45 × 10−6, ll = 4.5 × 10−7, hv = 104, ha = 10−2, inc = 0.
The rest of parameter values are given in Table 1 (in Appendix B)

threshold, the dynamics changes drastically, and the system now evolves toward a
tumor-free steady state (see also Fig. 6(f)). This suggests that at ω∗∗

v = 16.3 there
is a homoclinic bifurcation, which is characterized by a period of oscillations that
becomes very large as ωv → ω∗∗

v . This “dangerous bifurcation” could explain the
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Fig. 7 Phase-plane dynamics for system (4), corresponding to the oscillatory patterns shown in Fig. 6.
Here, we graph only the long-term behavior of this system (t > 1500 days). The immune response-axis
shows the total number of immune cells: ycm + yel + yep. (a) For ωv = 20, the system evolves toward
a homoclinic orbit. This corresponds to the plateau-like oscillations shown in Fig. 6(e). (b) For ωv = 30,
the system evolves toward a limit cycle. This corresponds to the spike-like oscillations shown in Fig. 6(e).
(c) The period of oscillations as a function of the parameter ωv. (We calculated this period numerically, by
computing the distance between two successive maximum points in the number of uninfected tumor cells.
For ωv > 22.7, the oscillations describe only the TV state (since vv > 0), while for ωv < 22.7 the oscil-
lations describe the periodic transitions TO–TV–TF–TO.) A homoclinic bifurcation occurs at ωv = 16.3.
Note that at ωv = 22.7, the decrease in the period slows down. This corresponds to a transition from
plateau-like to spike-like oscillations. Here, du = 1.8, lc = 9.45 × 10−6, ll = 4.5 × 10−7, hv = 104,
ha = 10−2, inc = 0. The rest of parameter values are given in Table 1 (Appendix B)

sudden disappearance of the periodic attractor and the jump to a distant unrelated
attractor, where the tumor is eliminated permanently (Thompson et al. 1994). This
new attractor contains the stable manifold of the tumor-free steady state (which is a
saddle point).

Note that even if the virus dynamics (and in particular ωv) can push system (4)
toward a tumor-free state (as in Fig. 7(f)), the immune response is crucial. We tested
the importance of the immune cells for the outcome of the treatment by removing
the anti-tumor immune response (du = 0) while keeping, however, the anti-tumor vi-
ral response (dv 	= 0). This is equivalent to injecting an oncolytic virus which does
not carry tumor antigens. Figure 8 shows the outcome of this experiment. First, we
observe that the tumor reaches its maximum size before is eventually eliminated
(Fig. 8(a)). This is the result of having an immune response which cannot “see” the
tumor to control it (due to a lack of tumor antigens). The decrease in tumor size is
associated with a very large increase in viral load (Fig. 8(b)). We conclude from here
that even if the virus can eventually kill the tumor by pushing the system toward the
TF state, the existence of an anti-tumor immune response is necessary to prevent the
tumor from growing too fast toward its maximum size. These results are consistent
with the experimental data in Bridle et al. (2010), which shows that the lack of tumor
antigens leads to a very poor survival.

Finally, we note that the oscillatory behavior shown in Figs. 6(d), (e) and 7(a), (b)
is not biologically realistic (at least not for solid tumors). One can argue that this is
just a mathematical artifact not observed during the periods of tumor growth. In fact,
these oscillatory patterns are observed only after the tumor has reached its carrying
capacity. Nevertheless, these results suggest that by increasing the persistence of the
oncolytic virus (i.e., from virus being detected for 4–5 days to being detected for
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Fig. 8 The dynamics of system (4), when we alter the anti-tumor immune response. (a) The upper panel
shows the tumor growth pattern when du = 1.8 for t < t0 = 14, and du = 0 for t ≥ t0. This is equivalent
to adding the tumor antigen to the vaccine virus (Ad), but not to the oncolytic virus (VSV). In this case
the immune cells can “see” the tumor cells after the Ad, but not after the VSV. The lower panel shows
the tumor growth pattern when du = 0 for all t ≥ 0. This is equivalent to removing the tumor antigen
from both viruses. In this case, the immune cells never “see” the tumor cells (they are virus-specific and
not tumor-specific cells). (b) The effector immune response (yep) and the oncolytic virus load (vv) cor-
responding to the tumor-growth patterns shown in panel (a). Note that the immune response reaches its
maximum soon after day 14, following the introduction of the oncolytic virus. The decline in the immune
response coincides with the elimination of the tumor and the oncolytic virus. Here, the parameters are:
ωv = 13.56, lc = 9.45 × 10−6, ll = 4.5 × 10−7, hv = ha = 104, inc = 0. The rest of parameter values are
given in Table 1 (Appendix B)

10–11 days), one can push the system into a regime characterized by the permanent
elimination of tumor cells.

5 Discussion and Biological Implications

In this article, we derived and investigated a non-spatial mathematical model that de-
scribed the interactions among cancer cells, immune cells, and therapeutic viruses.
The model followed a novel experimental protocol proposed by Bridle et al. (2010),
which involved the sequential administration of two different viruses with the
purpose of increasing the immune response. Despite the improved survival rates,
the majority of mice in these experiments suffered tumor relapse (Bridle et al.
2010).

First, we showed that the mathematical model can exhibit exactly the same dy-
namics as the experimental observations. Numerical simulations revealed a secondary
immune response much higher than the primary immune response. In addition, the
results suggested that this response could be made even higher if we increase the
immune suppression following the virus-induced lymphopenia.

Using this mathematical model, we then investigated the conditions that could en-
sure permanent tumor elimination. In particular, we focused on two complex phenom-
ena, namely multi-stability and multi-instability. Both phenomena have the potential
to induce sudden changes in the dynamics of a system.

The multi-stability phenomenon is characterized by the existence of multiple
steady states that are simultaneously stable. The mathematical model derived in this
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article exhibited a bi-stability phenomenon between a tumor-free and a tumor-present
steady state. (Throughout this paper we referred, however, to the more general multi-
stability phenomenon, since in a different parameter regime it might be possible to
observe multiple stable steady states (i.e., the TO and TV states).) The bi-stable be-
havior was the result of the mutually inhibitory feedback between the tumor and
the persistent immune response (Angeli et al. 2004). The indefinite persistence of
effector cells—which required the assumption of indefinite persistence of tumor or
viral antigens—was a necessary condition for the stability of the tumor-free steady
state.

In addition to this bi-stability (or multi-stability) phenomenon (which has been
previously described in models of tumor-immune interactions (Kirschner and Panetta
1998; Fiasconaro et al. 2008)), we also discussed the opposite phenomenon: the
multi-instability phenomenon. This phenomenon was previously investigated in epi-
demiological models (Billings and Schwartz 2002; Choisy et al. 2006), but has not re-
ceived much attention in models for tumor-immune-virus interactions. In our model,
this phenomenon was associated with the long-time persistence of the oncolytic virus.
(By “long-time persistence”, we mean that the virus can be detected in the system for
10–11 days, compared to its usual detection period of 4–5 days.) We showed that
multi-instability, which was the result of all states being unstable at the same time,
could push the dynamics of the system toward a tumor-free state. This was the result
of a homoclinic bifurcation that triggered the sudden disappearance of the tumor-
present attractor and the jump to a distant tumor-free attractor. The evolution of the
system toward this tumor-free state could not have been predicted by the local analy-
sis of the model.

We also tested whether the elimination of the tumor—which was caused by vi-
ral persistence—depended on the immune response. The results showed that sup-
pressing the anti-tumor immune response while keeping intact the anti-viral immune
response, could not stop tumor growth. Hence, an improvement in the treatment
can occur only when both the anti-tumor immunity and the oncolytic activity are
present.

The multi-instability phenomenon was observed only when the effective repro-
duction number was greater than one (Ro

e > 1). However, we cannot exclude the
possibility of having a different bi-instability phenomenon when Ro

e < 1. This bi-
instability could occur if the immune response causes both the TF and the TO states
to become unstable (see inequalities (21) and (23)). However, we were unable to find
parameter values that would ensure the instability of both these states.

Biological Implications First, we note that the simulation results for the dynamics
of the tumor and immune cells are consistent with the experimental observations. For
example, it was shown experimentally that the presence of CD8+ T cells is neces-
sary to control the growth of the tumors during treatment with the vesicular stom-
atitis virus (VSV) (Diaz et al. 2007; Bridle et al. 2010). Bridle et al. (2010) showed
that viral treatment has a poor outcome if the two viruses are administered alone
(and not in combination), or if the viruses do not carry tumor antigens. In particular,
mice survived on average for 30 days following treatment with Ad-hDCT (i.e., Ad
carrying the tumor antigen hDCT), or for 20 days following treatment with VSV-
hDCT (i.e., VSV carrying the tumor antigen hDCT). However, the combination of
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Ad-hDCT and VSV-hDCT lead to an average survival of 50 days or more. Moreover,
removing the tumor antigen from either virus decreased mouse survival. The mathe-
matical model introduced in the present paper showed similar dynamics (see Figs. 4
and 8).

To investigate the bi-stability and multi-instability phenomena, we focused on
three parameters: the rate at which the immune cells kill the tumor (du), the half-
saturation constant for the effector cells that support half the maximum killing rate
(hep), and the rate at which the oncolytic virus particles are eliminated from the sys-
tem (ωv). All these parameters can be changed during the experiments. For exam-
ple, the first parameter, which is associated with the functionality of immune cells
(i.e., their capacity to produce tumor-suppressing cytokines such as IFN-γ ), could be
changed by blocking the receptor programmed death-1 (PD-1) expressed on T cells
(Curran et al. 2010). The second parameter, which is associated with the number
of immune cells necessary for an optimal tumor cell lysis, could be experimentally
modified by using antibody agonists against co-stimulatory molecules such as 4-1BB
(Munks et al. 2004; Choi et al. 2007), or by blocking the PD-1 receptor (Curran et
al. 2010). Finally, ωv could be changed by blocking viral clearance by the reticulo-
endothelial cells in the liver (Brunner et al. 1960).

We note that the model could have been simplified by investigating the ratio
du/hep, which represents the slope of the anti-tumor immune response. However,
experiments have shown that some treatments affect mainly the functionality of tu-
mor cells (du), while others affect mainly the recruitment of immune cells inside the
tumor (hep). By investigating separately the role of du and hep on the dynamics of the
system, we tried to emphasize that this mathematical model could be further used to
examine which particular experimental treatments are more likely to reduce the size
of the tumor.

As previously mentioned, the bi-stability phenomenon was possible only under
the assumption that there is a continuous source of effector cells that can kill the
tumor (i.e., inl 	= 0). This assumption might not be very realistic, since the effec-
tors are usually eliminated from the blood following infection clearance. This sug-
gests that unless there is another immunological mechanism that leads to the long-
time presence of effector cells, the bi-stable behavior between a tumor-free and
a tumor-present state might not be very relevant from an experimental perspec-
tive.

The multi-instability phenomenon that leads to the elimination of tumor cells was
associated here with long-time persistence of the vesicular stomatitis virus (VSV)
(i.e., a low ωv). In general, this virus is neuro-toxic for mice (but not humans).
However, since neuro-virulence could be attenuated through molecular manipula-
tions (Egan et al. 2004; Cooper et al. 2008), this prolonged virus persistence should
not be of major concern. A more serious concern is a possible feedback loop caused
by the VSV itself, which can limit its persistence. In particular, the oncolytic virus
can stop the intra-tumor blood flow and kill the uninfected tumor cells (Breitbach et
al. 2007). This, in turn, can limit the spread and the persistence of the virus (since the
virus replicates only inside the tumor cells).

Another shortcoming of VSV is its basic reproduction ratio, which is usually less
than one (R0 < 1) (Lord and Tabachnick 2002). Hence, the effective reproduction
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number (Ro
e ) is also less than one. Our results suggest that using a different oncolytic

virus (with a better half-life or a better replication rate) could improve the treatment.

Mathematical Implications The investigation of these two phenomena, multi-
stability and multi-instability, was possible because of the decoupling of the anti-
tumor immune response from the anti-tumor viral response. We suspect that other
mathematical models that show similar decoupling mechanisms would exhibit simi-
lar behaviors.

In general, a multi-instability phenomenon observed in a tumor-immune-virus
model does not necessarily mean that the tumor will be eliminated. The exis-
tence of steady states that are simultaneously unstable could cause, for example,
chaotic behavior (as observed in some epidemiological models Billings and Schwartz
2002, or delayed models for virus-immune interactions Canabarro et al. 2004).
Since model (4) has a very large parameter space, it might be possible to observe
chaotic behavior in a different region of this space. However, our goal was not to
investigate the entire parameter space. We only wished to suggest a mechanism,
namely the homoclinic bifurcation caused by the multi-instability phenomenon, that
could lead to tumor elimination. In addition, we showed that a thorough investi-
gation of the global behavior of the system is absolutely necessary if we want to
understand the effects of the non-linear interactions on the outcome of the treat-
ment.

The current model can be simplified by ignoring the effect of the vaccine virus
(Ad), and/or by reducing the number (types) of effector cells that we model (yep
and yel). We are currently working with a simplified 1-compartment model to un-
derstand the conditions that cause the homoclinic bifurcation and the possibility of
having additional chaotic behavior. A detailed investigation of the cascade of com-
plex bifurcations shown by the simplified model (which includes also chaotic pat-
terns following period-doubling bifurcations) will be presented in a forthcoming pa-
per.

Acknowledgements This work was supported by the Terry Fox New Frontiers Program Project Grant
#018005. We acknowledge fruitful discussions with Yonghong Wan and Brian D. Lichty.

Appendix A

Stability of TO Steady State In the following, we will briefly discuss the stability
of the TO steady state. The Jacobian matrix associated with system (4) has seven
eigenvalues. The first three eigenvalues are easy to calculate (they are the only non-
zero terms on three specific rows and columns in the Jacobian matrix):

λ1 = ic − dc, λ2 = −ωa, λ3 = −dl − mlp. (24)

Since ic < dc and all model parameters are positive (see Table 1), these three eigen-
values are always negative.

The next two eigenvalues are the solutions of the quadratic equation

−λ2 + (a21 − Ea26)λ + δba26 + Ea26a21 = 0, (25)
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where

a21 = −δ − di
y

∗,1,2
ep

hep + y
∗,1,2
ep

, (26a)

a26 = dv
x

∗,1,2
u

hu + x
∗,1,2
u

, (26b)

E = δb

Ro
e (δ + di

y
∗,1,2
ep

hep+y
∗,1,2
ep

)

. (26c)

The two eigenvalues that satisfy (25) are

λ4,5 = −1

2
(Ea26 − a21) ∓ 1

2

√
(Ea26 − a21)2 + 4a26(δb + a21E). (27)

Note that Ea26 − a21 > 0, and hence the sign of λ4,5 is given by

δb + a21E = δb
(Ro

e − 1)

Ro
e

. (28)

If Ro
e < 1, then both λ4,5 < 0. If Ro

e > 1, then λ4 < 0 and λ5 > 0 (and hence the
steady state TO is unstable). We remark here that it is not possible for λ4,5 to have
complex values:

(Ea26 − a21)
2 + 4a26(δb + a21E) = (Ea26 + a21)

2 + 4δba26 > 0. (29)

Finally, the last two eigenvalues, λ6,7, satisfy equation

λ2 − (a11 + a55)λ + a11a55 + a15dty
∗,1,2
ep = 0, (30)

where

a11 = r − 2rkx∗,1,2
u − du

y
∗,1,2
ep

hep + y
∗,1,2
ep

= −rkx∗,1,2
u , (31a)

a15 = −du
x

∗,1,2
u hep

(hep + y
∗,1,2
ep )2

, (31b)

a55 = −dp − dtx
∗,1,2
u − mpl. (31c)

The two eigenvalues satisfying (30) are

λ6,7 = 1

2
(a11 + a55) ± 1

2

√
(a11 + a55)2 − 4

(
a11a55 + a15dty

∗1,2
ep

)
. (32)

Note that a11 + a55 < 0, and hence the sign of λ6,7 is given by
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a11a55 + a15dty
∗1,2
ep = x

∗1,2
u (dp + dtx

∗,1,2
u + mpl)

mlpinl

(
rkmlpinl

− dudthep(dl + mlp)

(
y

∗,1,2
ep

hep + y
∗,1,2
ep

)2)
. (33)

When (
y

∗,1,2
ep

hep + y
∗,1,2
ep

)2

<
rkmlpinl

dudlhep(dl + mlp)
, (34)

both λ6,7 < 0. Otherwise, λ6 < 0 and λ7 > 0, which makes the TO steady state un-
stable. We also remark that neither λ6 nor λ7 can take complex values, since a15 < 0,

and thus

(a11 + a55)
2 − 4

(
a11a55 + a15dty

∗,1,2
ep

) = (a11 − a55)
2 − 4a15dty

∗,1,2
ep > 0. (35)

Therefore, the equilibrium points are either stable nodes or unstable saddle points.
This completes the proof of Lemma 2.

Existence Conditions for the TV Steady State The TV steady state is defined by the
condition Rv

e = 1. In this case, the tumor TV state x
∗,v
u satisfies the implicit equation

x∗,v,1,2
u = (D − rkhu) ∓ √

(D − rkhu)2 + 4rk(huD − duv∗)
2rk

, (36)

with

D = r − duy
∗,v
ep

hep + y
∗,v
ep

− rk
ωvv

∗

δb
. (37)

If the TF state is stable (i.e., inequality (20) is satisfied), then D < 0 and the TV
state does not exist. This TV state exists when both Rv

e = 1 and at least one of the
following inequalities are satisfied:

r >
duy

∗,v
ep

hep + y
∗,v
ep

+ rk
ωvv

∗

δb
+ rkhu and (D + rkhu)

2 > 4rkduv
∗, (38)

or

r >
duy

∗,v
ep

hep + y
∗,v
ep

+ rk
ωvv

∗

δb
+ duv

∗

hu
. (39)

Appendix B

The parameter values used for the numerical simulations presented in this article are
described in Table 1. Table 2 summarizes the variables in model (4).
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Table 2 State variables used in model (4)

State variables Meaning

xu Cancer cells: uninfected

xi Cancer cells: infected

ycm Immune cells: central memory cells

yel Immune cells: effector cells in the lymphoid compartment

yep Immune cells: effector cells in the peripheral compartment

vv Virus particles: replicating (oncolytic) Vesicular Stomatitis Virus

va Virus particles: non-replicating Adenovirus
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