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Abstract This paper presents a mathematical model for cholera epidemics which
comprises seasonality, loss of host immunity, and control mechanisms acting to re-
duce cholera transmission. A collection of data related to cholera disease allows us
to show that outbreaks in endemic areas are subject to a resonant behavior, since the
intrinsic oscillation period of the disease (∼1 year) is synchronized with the annual
contact rate variation. Moreover, we argue that the short period of the host immunity
may be associated to secondary peaks of incidence observed in some regions (a bi-
modal pattern). Finally, we explore some possible mechanisms of cholera control, and
analyze their efficiency. We conclude that, besides mass vaccination—which may be
impracticable—improvements in sanitation system and food/personal hygiene are the
most effective ways to prevent an epidemic.
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1 Introduction

Cholera is a water-borne disease characterized by severe diarrhea. Its spatial distribu-
tion includes the Indian sub-continent, parts of Asia, Africa, and Latin America.

The etiological agent is Vibrio cholerae which colonizes the small intestine and
produces an enterotoxin responsible for the disease. Treatment with fluid replace-
ment therapy and antibiotics may reduce the number of deaths to 1% of the di-
agnosed cases. In fact, antibiotics are useful in abbreviating the course of infec-
tion and decreasing disease severity, but in most cases they are not necessary. The
incubation period of the disease is very short, ranging from a few hours up to 5
days, with symptoms varying greatly, from mild and asymptomatic to intense diar-
rhea, vomiting, thirst, loss of skin elasticity, and muscle cramps (Zuckerman et al.
2007).

Disease transmission is mainly environment-to-human, although a secondary,
less important, route exists, in the form of human-to-human transmission. So far,
the most important and common routes of cholera transmission are water and
food (especially seafood) contaminated with the bacterium (Colwell and Huq 1994;
Hartley et al. 2006). Classical control efforts to prevent cholera outbreaks encompass
improvements in sanitation system, safer water treatment, and improved food/per-
sonal hygiene. Vaccines constitute near-term options for cholera control, but so far
an inexpensive and effective vaccine is still under developed (Longini et al. 2007;
Seidlein 2007; Mahalanabis et al. 2008; Sur et al. 2009), with optimistic prospects
for the future (World Health Organization 2010).

One of the central challenges in cholera epidemiology is the explanation of why
the outbreaks can be so explosive and, at the same time, self-limiting, with recurrence
patterns that can be unimodal or bimodal (twice a year). So far, the explosive nature of
the outbreaks has been associated to a hyper-infectious state of the organism (a short-
lived competitive advantage; Hartley et al. 2006) and to asymptomatic infections with
short-term protection against the pathogen so that depletion of the susceptible pool
brings the epidemic to a halt (King et al. 2008).

Furthermore, in regions where cholera is endemic, its dynamics displays one or
two annual peaks with pronounced inter-annual variability (Pascual et al. 2002). Like
other endemic diseases, cholera outbreaks are associated with seasonality, environ-
ment deterioration, bacterial virulence and host immunity. The interplay between
these factors determines cholera occurrence patterns in a specific region (Koelle et al.
2005).

Compartment models for cholera are usually based on the work of Codeço (2001)
which besides the usual susceptible-infected-recovered compartments, includes a
fourth compartment for bacterial population in order to represent the natural reser-
voir of V. chorelae. This assumption allowed to explain the endemic cholera state as
well as to define a threshold for the existence of an endemic and epidemic cholera
state. The same author added seasonality to this model assuming a periodic vari-
ation of the parameters, and showed that this seasonality is responsible for annual
outbreaks of the disease (a unimodal pattern). Further, important contributions in
cholera modeling were the study of serotype dominance and the influence of epi-
demiological factors on the period of these serotype cycles (Koelle et al. 2006),
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and the use of optimization techniques to carry out control strategies (Neilan et al.
2010).

In this paper, we propose an extension of Codeço’s model (Codeço 2001) to de-
scribe the dynamics of cholera transmission taking into account the loss of host im-
munity and its interplay with seasonality and control mechanisms. First, we give a
resonance approach to the problem, in line with recent results for influenza (Dushoff
et al. 2004). We show that the natural period between outbreaks may be, under some
conditions, close to 1 year. This supports the idea of an intensification of outbreaks
by a resonance effect due to annual variations of contact rates.

We find that immunity loss change the resonance period. In particular, we show
that a second peak corresponding to a secondary outbreak, may appear when the im-
munity period is small. This indicates that loss of immunity may be a possible trig-
gering mechanism behind the bimodal pattern observed in some regions. Moreover,
these additional peaks show up only in certain range of parameters, which is con-
sistent with the fact that secondary outbreaks are not always present. Indeed, as the
parameter model depend upon regional factors, two cholera outbreaks do not always
occur in the same year.

We also consider cholera control in the model. We include four different control
mechanisms, namely, reduction of contact parameter, sanitation, water treatment, and
vaccination. Efficiency of both continuous and periodic control strategies is analyzed.
It turns out that besides vaccination, improvements in sanitation system and food/per-
sonal hygiene are the most effective way of cholera prevention.

The paper is structured as follows: in Sect. 2, we formulate the model and discuss
the significance of the equations; in Sect. 3, we analyze the autonomous model with-
out seasonality to provide a basis for further developments; in Sect. 4, we present a
resonance approach to the non-autonomous problem and discuss seasonal behaviors;
in Sect. 5, it is shown that host immunity effects in addition to seasonal ones could
be the reason for the existence of biannual outbreaks; in Sect. 6, control mechanisms
and their efficiency are analyzed, and finally, Sect. 7 is devoted to the concluding
remarks.

2 Mathematical Model for Cholera Transmission

The model proposed in this section is a modified version of Codeço’s model (Codeço
2001). The main point in the model presented in Codeço (2001) is to take into account
an aquatic reservoir where toxigenic V. cholerae can survive, a fact that has been
observed (Colwell and Huq 1994) and is now well established (Vezzulli et al. 2010).
Here, we take this modeling rationale and extend it to consider host loss of immunity.
Besides, we further address the question of control mechanisms, that has not been
studied in the context of the basic model. Thus, let us consider the following system
of differential equations for the number of susceptible hosts, S, infected hosts, I ,
recovered hosts, R, and number of toxigenic bacterial cell per ml, B:
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dS

dt
= μ(H − S) − (θ1β)

B

K + B
S + r1R − θ4S,

dI

dt
= (θ1β)

B

K + B
S − (r + μ)I,

dR

dt
= rI + θ4S − (r1 + μ)R,

dB

dt
= (θ2e)I − (θ3γ )B.

(1)

In the first equation, susceptible individuals are renewed at a rate μ. They become
infected at a per capita rate β multiplied by the probability that a susceptible indi-
vidual becomes infected which is modeled by a Michaelis–Menten functional form
since such probability depends on the concentration of V. cholerae (Cash et al. 1974).
We do not consider human-to-human transmission, since an aquatic environment is
accepted as playing a pivotal role in persistence, dispersion, transmission, as well as
on the evolution of this bacterium (Vezzulli et al. 2010). The parameter θ1 ∈ [0,1]
represents the decrease in the contact rate due to the effect of individual sanitary
measures (hands washing, correct food care, filter pond water through sari cloth) on
the transmission of the infection. It is an aggregate measure of these effects on the
probability of contact between susceptibles and bacteria. Susceptibles are transferred
by vaccination to the recovered compartment at a rate θ4 = PQ, where 0 ≤ P ≤ 1
and 0 ≤ Q ≤ 1 are, respectively, the population proportion that is vaccinated and
vaccine efficacy, which is in the order of 65%–80% (Longini et al. 2007). The sus-
ceptible population also increases by the return of individuals that lose immunity at a
rate r1 and decreases by natural death at a rate μ. The infected population increases
through contact of the susceptibles with V. cholerae, and decreases through recovery
from the disease, r , and by natural death, μ. In the third equation, the immune class
increases due to the arrival of new immune individuals that recovered of the infection
or were vaccinated at rates r, and θ4, respectively. It decreases by loss of immunity
and natural death of the individuals. Finally, the last equation describes the dynam-
ics of V. cholerae in the aquatic reservoir, which increases through the contribution
of infected individuals by a rate θ2e and decreases by the bacterial mortality γ . We
are not considering bacterial replication in the natural environmental because, in the
context of cholera transmission the major contribution to the disease spread is the
contact between human and a hyper-infectious state of the bacterial that occurs few
hours after the passage of the vibrio by the human organisms (Hartley et al. 2006;
Merrell et al. 2002). The parameters θ2 ∈ [0,1], and θ3 ≥ 1 represent the effects of
health measures in reducing the amount of bacterial, in the first case by educational
programs, construction of drainages, water treatment, or directly by killing bacterial
using chemical substances in the second case (Curtis et al. 2009). For example, filter
pond water through sari cloth before drinking reduce the risk of cholera infections
by approximately 50% (Lipp et al. 2002). The model parameters are summarized in
Table 1.

We will allow the contact rate to be a function of time, representing the seasonal
effects (floods, droughts, temperature variation) that potentially drive cholera dynam-
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Table 1 Parameters used in the model and their meaning (Codeço 2001; Brayton et al. 1987; Kaper et al.
1995; King et al. 2008; Neilan et al. 2010)

Parameter Biological meaning Range of values

μ Natural mortality rate [0.012,0.033] (years−1)

β Contact rate between bacterial and susceptible hosts [1.05,10.5] days−1

K Concentration of bacterial in water that yields 50%
change of catching V. cholerae

[103,106] (cells/ml)

r1 Rate at which people lose immunity [0.001,0.03] (days−1)

r Rate at which people recover from the disease [0.07,0.20] (days−1)

γ Bacterial mortality rate [0.02,1.0] (days−1)

e Contribution of each infected person to the population
of V. cholerae in the aquatic environment

[1,100] (cell/ml day−1 person−1)

ics (Codeço 2001; Pascual et al. 2002). The contact rate β will be taken to vary sinu-
soidally according to

β = β0(1 + δ sin(2πt/365)).

In this case, β0 is the mean contact rate and δ describes the relative amplitude of
seasonal variations. In fact, modeling seasonality as a sine wave is the simplest way
to incorporate an external forcing parameter in infectious diseases, which appear to
be synchronized and periodic in time. This allows us to pursue a generic study of the
system. Of course, to attain predictability concerning a specific geographic location,
more complicated and realistic seasonal forcing functions that describe the processes
underlying the seasonal transmission in a particular region can be added, but the
qualitative aspects that we want to address here will be preserved.

We also consider that the total human population, H , is constant (natality replacing
mortality), and therefore, H = S + I + R, so that the system can be reduced to a
three-dimensional one.

Although the splitting of the infective class, in symptomatic and asymptomatic,
can explain sporadic cholera outbreak in a population, as well as disease dispersion
and, depending on the parameter set, has a positive or negative impact on the esti-
mation of the epidemic size (Neilan et al. 2010; Hsu and Hsieh 2008), we decided
not distinguish between symptomatic and asymptomatic individuals, since our main
interest in this work is to investigate other aspects of the disease dynamics that have
not yet been explored, like the intensification of outbreaks by resonance effects, as
well as the role of the immunity in cholera pattern. In this way, the epidemiological
parameters β , r, and e can be interpreted as the weighted average of its possible val-
ues, where the weight assigned to each possible value is the size of symptomatic and
asymptomatic class.

3 Preliminary Analysis: the System Without Seasonal Effects

In order to set the stage for the analysis of the seasonally forced equation in the next
section, we first consider the case where δ = 0, that is, the contact rate is constant
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and equal to β0. In this case, the corresponding model has two equilibrium points,
namely, the disease-free equilibrium, E0 = (

μ+r1
μ+r1+θ4

H,0,0), and the endemic equi-
librium. The stability of the disease-free equilibrium is given by the eigenvalues of
the characteristic equation P(λ) = det(J ∗ −λI) = 0 evaluated in E0, where J ∗ is the
Jacobian matrix, and I is the identity matrix. In this case the corresponding charac-
teristic equation is

P(λ) = P1(λ)P2(λ) = 0

where {
P1(λ) = −μ − r1 − θ4 − λ,

P2(λ) = λ2 + (r + μ + θ3γ )λ + (r + μ)(θ3γ ) − (θ2e)(θ1β0)(μ+r1)H
(μ+r1+θ4)K

.

Using the Routh–Hurwitz stability criterion (Hurwitz 1895) and defining

Rc = (θ1β0)(θ2e)(μ + r1)H

(μ + r1 + θ4)(θ3γ )(r + μ)K
, (2)

the disease-free equilibrium is locally asymptotically stable if Rc < 1. On the other
hand, if no control mechanisms are applied, that is, θ1 = θ2 = θ3 = 1 and θ4 = 0,
Rc becomes R0 = (β0eH)/(Kγ (r + μ)), the basic reproductive number for cholera
disease.

The second equilibrium point is given by E1 = (S̄, Ī , B̄) where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S̄ = (r+μ)(K(γ θ3)+(eθ2)I )
(β0θ1)(eθ2)

,

Ī = (μ+r1)K(θ3γ )((r+μ)(Rc−1)−θ4)
(θ2e)((μ+r1+θ4)(r+μ)+(θ1β)(r1+r+μ))

and

B̄ = θ2e
θ3γ

I.

From the expressions above, we see that in the absence of vaccination (θ4 = 0),
the condition for Ī > 0 is Rc > 1. In this case, the endemic equilibrium E1 is feasible,
and standard linear analysis of system (1) indicates that E1 is locally asymptotically
stable, and E0 becomes unstable. When Rc ≤ 1, the solutions approach the disease-
free equilibrium E0, and the disease dies out. However, when vaccination is in course
(θ4 > 0), the threshold value for cholera outbreaks is situated at R = R∗

c > 1, where

R∗
c = (μ + r)(Rc − 1)

θ4
. (3)

The steady-state stability analysis shows that control mechanisms on the parame-
ters β0, e,μ, and γ can reduce the value of Rc below 1, stopping cholera transmis-
sion in the population. Also, reducing R∗

c < 1 (with vaccination) prevents cholera
outbreaks.

Similar to Codeço model, the endemic equilibrium is attained through a succes-
sion of epidemic peaks of decreasing amplitude. Therefore, an oscillatory mechanism
is already present in the model, due to the continuous entrance of susceptible individ-
uals, with an intrinsic period of outbreaks peaks. A natural inquiry is to examine the
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effects of seasonal forcing on these oscillations. In analogy to mechanical oscillators,
we would expect that an external forcing will sustain the oscillations, whose ampli-
tude should depend on the frequency of the forcing, and resonance phenomenon could
appear (Nayfeh and Mook 2004). Therefore, to examine the case where the system is
subject to seasonal forcing, we take an approach based on resonance studies.

4 Seasonal Cycles on Cholera Transmission: a Resonance Approach

A dynamical system with damped natural oscillations under the action of a periodic
forcing develops sustained cycles, whose amplitude usually depends on the period
and amplitude of the forcing. The seasonality of cholera outbreaks will be analyzed
according to a resonance approach (Dushoff et al. 2004; Greenmam et al. 2004). The
parametric forcing depends on three parameters: the frequency, the amplitude and the
mean value. The mean value is approximately known and we will take it as known.
We thus have a two-dimensional parameter space for the seasonality related effects.
Examining the dependence on the amplitude would lead us to the realm of nonlinear
effects, as is usual in the study of parametrically forced systems. However, we have no
reason to proceed in this way as there are no evidences for strong nonlinear behavior
coming from data. On the other hand, varying the frequency is the usual way to
perform a resonance analysis, and was been done so in epidemiology. We begin by
scaling the parameters of the model by a constant factor p−1: μ′ = μ

p
,β ′

0 = β0
p

, r ′
1 =

r1
p

, r ′ = r
p
, e′ = e

p
, θ ′

4 = θ4
p

, γ ′ = γ
p

and time as t ′ = tp. Dropping the primes, for
convenience, the new rescaled equations have the same form of system (1) with

β = β0

(
1 + δ sin

(
2πt

365p

))
.

The model parameters used in the simulations are μ = 0.00007 days−1,
β0 = 1.2 days−1, δ = 0.3, K = 106 cell/ml, r1 = 0.0035 days−1, r = 0.12 days−1,
γ = 0.4 days−1 and e = 10 cells/ml days−1 person−1. The total population
H is assumed equal to 10,000. To go step by step, we analyze first the case with no
control.

To determine the existence of a resonance phenomenon in cholera transmission
dynamics, in Fig. 1a, we look at the local maxima of the infectious population Imax,
which is periodic as shown in Fig. 1b, plotted against the external force period p.
The value of a variable at time t is a local maximum if it is higher than the values
measured at times (t − 3), (t − 2), (t − 1), and not lower than that ones measured at
times (t + 1), (t + 2), (t + 3).

Now, it is known that the usual SIRS model with immunity loss and vital dynamics
has an intrinsic period of oscillation T ∼ 2π/

√
((r1 + μ)(r + μ)(R0 − 1)) (Keeling

and Rohani 2008). This period is a good approximation to the one of our model.
Suppose, for instance, that the bacterial population reaches equilibrium values much
faster than the human population, and that the number of infected human individuals
is much smaller than Kγ/e. Then the proposed model can be view as a SIRS model
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Fig. 1 In (a), the local maxima of the temporal evolution of the infected individuals are plotted against the
external force period. In (b), the temporal evolution of the logarithm (base 10) of the infected individuals
is plotted for p = 1.0 (dotted line), p = 1.3 (dashed line), and p = 3.03 (continuous line)

and the result obtained for the period of the oscillation is in good agreement with the
above expression.

Resonance phenomena can occur for T near the period of the seasonal forcing
producing amplified oscillations in the disease incidence (Dushoff et al. 2004). Sub-
stituting the parameters given above in model (1) without seasonality (i.e. δ = 0)
and control mechanisms, we estimate R0 = 2.50 with an intrinsic or natural pe-
riod of oscillation of T ∼ 0.70, and maximum number of infected individuals
Imax = 172.8 (the correct value is 2π divided by the modulus of the imaginary
part of the complex conjugate eigenvalues of the Jacobian of (1)). On the other
hand, the numerical results for the model with seasonality show that maximum re-
sponse is given at p ∼ 1.0 day with Imax = 1024. As expected, without seasonal
forcing, the maximum number of infected individuals is smaller than that obtained
with δ 	= 0. Interesting, Fig. 1b shows that for 0 < p < 1.25 the temporal evolution
of the number of infected individuals (plotted in base 10 logarithm) is unimodal,
for 1.25 ≤ p ≤ 3.0 it is bimodal and finally, for 3.0 < p ≤ 4.0 it is trimodal. In
all cases, the system responds with oscillations of the same period as the external
force.

In the range of parameters explored, which correspond to typical values (Codeço
2001; Brayton et al. 1987; Kaper et al. 1995; King et al. 2008), sustained peaks of
cholera outbreaks can be explained by seasonal forcing in a nearly linear regime. The
value of p obtained in this way is close to one, implying a near-resonant matching of
periods if the origin of infective periodicity is related to annual variations, which is a
reasonable assumption. We notice, however, that cholera is subject to many region-
specific factors. Therefore, a more precise case-specific analysis should be performed
to effectively propose strategic decision-making assessments. For instance, natural
defense mechanisms against the disease are more common in populations continu-
ally exposed to cholera vibrios, or survivors of severe infections. Also, depending on
sanitary conditions of the region, as well as water treatment, the amount of bacterial
can increase. All these factor may be important under certain conditions. Over this
work, we aim to explore the general features in the cholera transmission, rather than
analyze specific cases.
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Fig. 2 Variability of seasonal
cholera in the endemic provinces
Bengal (�) and Madras
(•)—bimodal pattern—and in
the epidemic Punjab province
(+)—unimodal pattern. Figure
taken from (Pascual et al. 2002)

5 Effects due to Loss of Host Immunity

Cholera dynamics have been the object of many studies, but until now unsolved puz-
zles still remain about its mode of transmission and the role of host immunity in
its dynamics. For instance, King et al. (2008) fitted a SIRS model to data from the
province of Bengal over the period 1891–1940 and showed that immunity must wane
on a time scale of weeks to months and that most exposures do not result in severe
forms of cholera, but in mild or asymptomatic infection with shorted-lived immuno-
logical memory. Systematic changes on their basic model could explain the data sig-
nificantly better, but their conclusions about low R0 ∼ 1.5, rapid loss of immunity
and high prevalence of asymptomatic infection remain unchanged. They also asso-
ciated the disease persistence to environmental reservoirs which provide an extrinsic
force of infection, whose strength varies geographically following a pattern, rein-
forcing the idea that extrinsic factors can trigger cholera outbreaks (an hypothesis
already discussed in Sect. 4). These results contrast with the belief that infection-
derived immunity to cholera wanes on a time scale of 3–10 years, and with the
much higher values of R0 ∼ 8.7 proposed by other authors (Hartley et al. 2006;
Koelle and Pascual 2004).

In this section, we will address the different patterns observed in cholera epidemics
peaks, using the model parameters given in King et al. (2008), and relate the one or
two annual epidemics peaks observed in the endemic regions of cholera to different
periods of host immunity (Fig. 2).

In order to explore the role of immunity loss in cholera dynamics we show in
Fig. 3 the effect of the variation of r1 in cholera periodicity and severity. The param-
eter values are the same as used before. First, we note that the number of infected
individuals always increases when r1 increases. Since r−1

1 is the typical period of
time that an individual remains immune, it is not surprising that the fast recovery
of the susceptible pool by return of the immune individuals increases the number of
infected individuals in the population. The numerical results obtained for p times r1
corroborate the analytical results given by T ∝ √

1/r1 (for the SIRS model), as we
expect that the resonance occurs at p ∼ T (Keeling and Rohani 2008). Finally, for
small value of r1, resonance occurs for largest values of p, because the susceptible
pool takes more time to recover.
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Fig. 3 Resonance period, p, and the number of infected individuals, Ib (in the inset), as a function of
the immune rate, r1. The p value is the one that maximizes the number of infected individuals for each
parameter set, and Ib is the biggest value of I obtained from the time series of the infected individuals.
The symbol (◦) corresponds to the simulation and the continuous line to the analytical results given by
T ∼ 2π/

√
((r1 + μ)(r + μ)(R0 − 1)) for the usual SIRS model with immunity loss and vital dynamics

Fig. 4 In (a), the region of the parameter space where a unimodal or bimodal curve for the infectious
individuals versus time appears. In (b), the temporal evolution of the infected individuals for r1 = 0.003
days−1 (dotted line) and r1 = 0.01 days−1 (dashed line)

Figure 4a shows the local maxima obtained from the time evolution of the infec-
tious population as r1 varies for distinct initial conditions (it was obtained from the
derivative of the curve of infected individuals in time). Observe that there is a region
in the parameter space where two local maxima occur in a period, which characterizes
a bimodal curve. We can note that for r1 < 0.0068 the curve of the number of infected
individuals versus time is unimodal. On the other hand, for 0.0068 ≤ r1 ≤ 0.03,

the curve of the number of infected individuals versus time is bimodal. Also, for
r1 < 0.002, the projection of the attractor of the infected individuals versus the sus-
ceptible total population shows that the system dynamics can depend on the initial
conditions (result not shown).
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To emphasize the existence of unimodal and bimodal curves in the parameter
space, in Fig. 4b, we have depicted the number of infected individuals versus time
for r1 = 0.003 days−1 (dotted line) and r1 = 0.01 days−1 (dashed line). Disease
severity is not the same for the different set of parameters. Following the disease
for one year, we can see that we have one peak of incidence for r1 = 0.003 days−1

(which can be related to a community with long-lasting immunity) and two peaks
of incidence for r1 = 0.01 days−1 (which can be related to a community with short
immunity). In fact, different patterns can be generated by distinct r1, reinforcing the
idea that immunity has an important role on cholera transmission, and also that it
can be the basis of the explanation of the different patterns observed on cholera
disease. We conclude that the seasonal forcing parameter alone is not sufficient to
explain the annual bimodal pattern, it is triggered by a seasonal force plus host im-
munity.

6 Control Mechanisms

In this section, our aim is to compare the efficiency of different control mechanisms
acting at the periodic model (i.e. δ 	= 0) to stop or decrease cholera transmission.
Therefore, we introduce an index, Ji , defined as

Ji =
(

1 − Ai

A0

)
× 100 where Ai =

∫ τ

0
I (t) dt, with i = 1,2,3,4.

Hence, A0 and Ai are the area below the curve of the infected individuals measure
between t = 0 to τ without and with control mechanisms, respectively. The index
Ji measures the reduction of the infected individuals obtained by the application of
a specific control mechanism during τ years (Ferreira et al. 2008). To simplify the
analysis, we will discuss the effects of each one of the control mechanisms separately.

Control mechanisms can be applied using several distinct strategies. We analyzed
two of them:

1. periodic: in this case, specific control mechanisms are applied during the period
of the year when cholera has the highest probability of appearing. The period was
determined by measuring the slope of the number of infected individuals in time.
Therefore, the control is applied when cholera infection starts to grow (positive
slope) and is stopped when it starts to decay (negative slope);

2. continuous: in this case, specific control mechanisms are applied all the time.

The parameters values are the same used before and p = 1 day. Initially, the sim-
ulation is carried on until the time evolution of the population achieves a periodic
regular pattern. Then a specific control is applied and disease dynamics with and
without control is compared during 5 years of simulation, i.e. τ = 5 years (Ferreira
et al. 2008).

Figure 5 shows control efficiency measurement as a function of θ1. In this case,
the control has been applied directly on the rate of cholera transmission and can be
seen as an improvement of individual behavior, like hand washing. An interesting
example is a common practice of the habitants of the Amazonian region consisting of
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Fig. 5 Control efficacy, J1,
measured as a function of θ1.
The other control parameters are
θ2 = θ3 = 1 and θ4 = 0. As an
example, θ1 can be thought of as
the protective effect of hand
hygiene. In (◦) for continuous
control and (•) for periodic one

Fig. 6 Control efficacy, J2,
measured as a function of θ2.
The other control parameters are
θ1 = θ3 = 1 and θ4 = 0. The
parameter θ2 can be related to
an increase of sanitation
conditions. In (◦) for continuous
control and (•) for periodic one

add citrus juice to water, because the acid in the fruit kills the Vibrio bacterial (Tauxe
et al. 1995). In fact, this practice protects the susceptible individuals from cholera
disease. If control is applied continuously, a 60% of efficiency is obtained with 4.6
times less effort compared to periodic control. For this parameter set, periodic control
cannot eradicate cholera transmission. On the other hand, for continuous control,
eradication is achieved with θ1 = 0.4. This threshold value represents a reduction
of 40% in the contact rate, and corroborates the analytic results obtained using (2),
assuming a constant transmission rate β = 1

τ

∫ τ

0 β0(1 + δ sin(2πt/365)) dt = β0, i.e.,
for this parameter set Rc = 0.9994.

Figure 6 shows control efficiency measurement as a function of θ2. Good sanitary
conditions drive cholera to extinction if continuous control is applied. Unfortunately,
during wars and complex humanitarian emergencies the provision of safe water and
sanitation break down leaving the susceptible individuals exposed to cholera Vibrio.
If continuous control is applied, using (2) and, as before, assuming a constant trans-
mission rate β = β0, eradication is achieved with θ2 = 0.4 which gives Rc = 0.9992.
This threshold value represents a reduction of 40% in the amount of bacterium ex-
pelled by a infected human into the environment. Also, continuous control gives a
60% of efficiency with 1.4 times less effort compared to periodic one.
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Fig. 7 Control efficacy, J3,
measured as a function of θ3.
The other control parameters are
θ1 = θ2 = 1 and θ4 = 0. The
parameter θ3 can be related to
an improvement of water
treatment. In (◦) for continuous
control and (•) for periodic one

Figure 7 shows control efficiency measurement as a function of θ3 which can be
related to water treatment. If continuous control is applied, using (2) and assuming a
constant transmission rate β = β0, eradication is achieved with θ3 = 2.5 which gives
Rc = 0.9994. This threshold value represents an increase of 2,5 times in bacterium
mortality. As before, continuous control gives a 60% of efficiency with 1.4 times
less effort compared to periodic one. The anomalous behavior observed in the curves
(like at θ3 ∼ 2) is related to the J definition (integration interval) and to the applied
of control mechanisms which cause oscillation in the infective curves.

Figure 8 shows control efficiency measurement as a function of θ4. Mass immu-
nization programs are not in view presently because an effective and low-cost vac-
cine has not been developed yet. Nonetheless, during cholera outbreaks (periodic
control) vaccination campaigns can be a good strategy to control cholera epidemics.
In Longini et al. (2007), a spatial stochastic model was used to asses the efficiency
of vaccination campaigns in cholera transmission. They assumed that the vaccine
induces immunity, which results in a reduction of the probability of infection per
contact with an infectious source. For endemic cholera, where population-level im-
munity is relatively high, it was shown that relatively low vaccine coverage levels
(50%–70%) can control cholera transmission. Using a different approach, i.e. a com-
partmental model plus the assumption that vaccination reduces the number of suscep-
tible individuals in the total population, our results agree with theirs; periodic control
can suppress cholera outbreaks if θ4 > 0.015 which accounts for the number of re-
covered individuals R ∼ 6,000. Therefore, in a total population of H = 10,000 and
considering a effective vaccine efficiency of 0.8, it means a coverage reach of 60%
of the population.

As shown before, the continuous control is always more efficient than the periodic
one. In particular, control measures related to individual behavior when made in a
non-continuous way greatly diminishes the effectiveness of this control on cholera
transmission (see Fig. 5). Also, comparing Figs. 5, 6, 7, and 8, we obtain that vac-
cination and improvements in the sanitation system and food/personal hygiene are
the most efficient control strategies to prevent cholera transmission and outbreaks.
Indeed, the real contribution of each one can only be measured by knowledge of the
parameter set that characterizes a specific region.
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Fig. 8 Control efficacy, J4,
measured as a function of θ4.
The other control parameters are
θ1 = θ2 = θ3 = 1. The
parameter θ4 can be seen as the
proportion of individuals
immunized. In (◦) for
continuous control and (•) for
periodic control

7 Conclusion

The model developed here is an extension of Codeço’s model and captures essen-
tial features of cholera epidemics. We show that extrinsic (e.g. environmental) and
intrinsic factors correlate in time with components of the epidemic cycle. The inter-
play of time-scales of the incidence cycles and the annual variations of contact rates
may give rise to resonant behavior, which shows up as an increase of the number
of infected individuals. When a third typical time-scale is also considered, that of
immunity duration, possible complex behavior may emerge.

Our model offers a clue to the existence of secondary outbreaks. They appear as
a consequence of the finite duration of immunity to the disease. When this is not
taken into account, the model does not show a bifurcation to a two-maxima-per-year
regime. On the other hand, we note that solutions of the model showing secondary
peaks only exist in a certain range of parameters. Because these parameters are regu-
lated by regional policies, some regions may exhibit secondary peaks and others may
not.

For the autonomous model, a threshold value given by R∗
c , which depends on

the biological parameters of the pathogen and the host and also on population size,
separates disease-free equilibrium and endemic equilibrium. Control mechanisms,
such as vaccination, improved sanitary conditions, and water treatment applied con-
tinuously, can diminish R∗

c < 1 and prevent cholera transmission. Indeed, an effective
cholera prevention strategy addresses individual behavior and public health practices.
We analyzed the application of different control mechanisms and emphasized the im-
portance of sanitary conditions, better water treatment, and hand/food hygiene in the
disease dynamics. If mass vaccination is possible (maybe in a critical situation or
in a endemic area), periodic application of this kind of control can eradicate or re-
duce cholera outbreaks. As in Longini et al. (2007) model, the range of vaccination
coverage depends on a population’s level of immunity.
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