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Abstract We study the final size equation for an epidemic in a subdivided population
with general mixing patterns among subgroups. The equation is determined by a ma-
trix with the same spectrum as the next generation matrix and it exhibits a threshold
controlled by the common dominant eigenvalue, the basic reproduction number R0:
There is a unique positive solution giving the size of the epidemic if and only if R0
exceeds unity. When mixing heterogeneities arise only from variation in contact rates
and proportionate mixing, the final size of the epidemic in a heterogeneously mixing
population is always smaller than that in a homogeneously mixing population with
the same basic reproduction number R0. For other mixing patterns, the relation may
be reversed.

Keywords Heterogeneous mixing · Final size relation

1 Introduction

Recent focus on pandemic planning and control of emerging diseases has spawned
renewed interest in the final size of epidemics, and in particular in the impact
of behavioral heterogeneities (Wallinga et al. 2006; Mossong et al. 2008; Kret-
zschmar and Mikolajczyk 2009). Classical epidemic models with homogeneous
mixing predicts an unrealistically large final size of a single epidemic and many
modelers have included detailed accounts for heterogeneities in contact structure
to obtain a more realistic outcome (Elveback et al. 1976; Eubank et al. 2004;
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Ferguson et al. 2005; Longini et al. 2005; Arinaminpathy and McLean 2008). In-
terest in the final size problem stems from other contexts as well. For epidemics
on networks, the size of the giant cluster corresponds to the final size and be-
havioral heterogeneities, reflected in the degree-distribution, are in fact the core
of many network studies (Keeling 1999; Pastor-Satorras and Vespignani 2001;
Eames and Keeling 2002; Newman 2002). The final size problem is also pivotal in the
“burn-out approximation” that separates the fast (epidemic) time scale from slower
processes such as host genetics (Gillespie 1975), host demography (May 1985;
Andreasen and Frommelt 2005), or influenza-drift (Andreasen 2003; Boni et al. 2004;
Andreasen and Sasaki 2006).

For a deterministic epidemic in a closed, homogeneous population, the final size
equation gives the number (or frequency) of susceptible hosts at the end of the epi-
demic and involves only a single parameter, the basic reproduction number R0. The
equation may be derived by studying how the size of the infectious class varies with
the size of the susceptible class through the epidemic—an approach that dates back
to Kermack and McKendrick (1927). The original Kermack–McKendrik-equation,
and hence the final epidemic size is not affected by heterogeneities in the temporal
or host-specific intensity of infectivity, in the sense that these quantities only change
the equation through their effect on R0 (Ma and Earn 2006). Heterogeneity in sus-
ceptibility, however, introduces nonlinearities that qualitatively change the structure
of the equation and epidemic size. A generalization of the final size relation to het-
erogeneous susceptibility was first obtained by Gart (1968) for the case where only
susceptibility varies. Ball (1985) generalized Gart’s result to stochastic epidemics and
proved that for fixed R0 the final size of a Gart epidemic is always smaller than the
epidemic in a homogeneous population. Modern reformulations of Gart’s results ex-
tending them to proportionate mixing may be found in Diekmann and Heesterbeek
(2000), Sect. 6.4 and in Dwyer et al. (2000), Andreasen (2003), Arino et al. (2007),
Brauer (2008), Volz (2008a, 2008b). Diekmann and Heesterbeek (2000), Sect. 6.3 de-
rive the final size relation for general mixing patterns but do not analyze its structure
in detail. Corless et al. (1996) relate the final size equation to the Lambert W-function.

For heterogeneous populations the basic reproduction number R0 is defined as
the dominant eigenvalue of the “next generation matrix” describing disease spread
during the initial phase of an epidemic in a fully susceptible population (Diekmann
et al. 1990). Though defined in terms of the transmission conditions at the onset
of an epidemic, the basic reproduction number must characterize the final epidemic
size in homogeneously as well as heterogeneously mixing populations at least in the
trivial sense that the magnitude of R0 controls whether an epidemic occurs or not.
We explore two aspects of this observation in detail. Firstly, we discuss how R0
structures the final size equation. Secondly, we show how heterogeneities can alter
the epidemic size for fixed R0.

The advantage of using R0 in the characterization of epidemic size is that much
effort has been devoted to quantifying the transmissibility and R0 for many impor-
tant pathogens at the onset of pandemics or other disease out-breaks (Anderson et al.
1996; Ferguson et al. 2001; Riley et al. 2003; Mills et al. 2004). The disadvantage is
that the empirical relation between R0 and the final size is poorly understood (Tildes-
ley and Keeling 2009).
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In the next section, we review what is known about the general final size equation
and discuss its connection to the next generation matrix and R0. We then prove—by
three quite different methods—that the final size equation determines a unique value
for the epidemic size. From a purely mathematical stand point, one proof would suf-
fice. However, the proofs allow us to discuss different aspects of the final size relation.
The subsequent section presents our second main finding, namely a generalization
of Ball’s comparison between the final size in homogeneously and heterogeneously
mixing populations. In particular, we show that Ball’s result holds for a wider class
of proportionate mixing patterns including situations where variation in susceptibil-
ity and infectivity is due only to heterogeneity in contact rates. We conclude with
an example showing that for other types of proportionate mixing, heterogeneity may
increase the epidemic size.

2 The Final Size of an Epidemic

The essential features of the heterogeneous mixing problem are captured in an epi-
demic model with n groups of size Nk , k = 1, . . . , n. For simplicity, we study only
the case where hosts become infectious immediately upon infection and recover at a
fixed rate which we may set to unity with out loss of generality and we express all
population sizes relative to the total population such that

∑
Nk = 1. We assume that

host mortality and recruitment during the epidemic period may be neglected, so that
the state of the population is characterized by the fraction of the population in each
group that is susceptible and infectious, Sk, Ik , k = 1, . . . , n. Letting bkj Ij denote the
rate at which infectious individuals in group j infect hosts in group k, the epidemic
model becomes

Ṡk = −Sk

∑

j

bkj Ij , (1)

İk = Sk

∑

j

bkj Ij − Ik. (2)

It is straightforward to see that the matrix

B =

⎛

⎜
⎜
⎝

b11N1 . . . b1nN1

...
...

bn1Nn . . . bnnNn

⎞

⎟
⎟
⎠ (3)

is the co-called next-generation matrix for the model, and hence that the basic repro-
duction number R0 by definition is the dominant eigenvalue of B . For a general treat-
ment of the problem, see Diekmann and Heesterbeek (2000) or Arino et al. (2007)
and for an extension to diseases where infectivity varies during the infection period
see Diekmann et al. (2010).

In this paper, we will focus on directly transmitted diseases such as influenza and
measles so it is natural to assume that B is positive—or at least nonnegative and
primitive—allowing us to use Perron–Frobenius theory.
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To reflect the impact of a single epidemic in a totally susceptible population, we set
Sk(0) = Nk and assume that Ik(0) is positive with Ik(0) ≈ 0, but a generalization to a
situation with preexisting immunity is straightforward (Andreasen 2003). Following
Brauer (2008), one can show that Ik(t) → 0 for t → ∞ while there exists some
number Sk(∞) such that Sk → Sk(∞) for t → ∞.

The value of Sk(∞) may be determined by integration over the entire epidemic
period, which yields

logSk(∞) − logSk(0) =
∫ ∞

0
Ṡ/S dt = −

∑

j

bkj

∫ ∞

0
Ij dt, (4)

Sk(∞) − Sk(0) =
∫ ∞

0
Ṡk + İk dt = −

∫ ∞

0
Ik dt. (5)

We can now characterize the outcome of the epidemic in terms of the fraction of
susceptible hosts that did not get infected during the epidemic σk = Sk(∞)/Sk(0) =
Sk(∞)/Nk . The quantities σ = (σ1, . . . , σn) give the common expressions for the
size of the epidemic in that the attack rate in group k is xk = 1 − σk and the final
size of the epidemic in group k is (1 − σk)Nk . Letting x and N denote the vectors
(x1, . . . , xn) and (N1, . . . ,Nn), the final size of the epidemic is xT N in the whole
population. Here and throughout the paper, all vectors are considered to be column
vectors and T denotes the transpose.

In terms of σ, the size of the epidemic is a solution to the coupled implicit equa-
tions

0 =
∑

j

bkjNj (1 − σj ) + logσk = Fk(σ ), k = 1, . . . , n.

In matrix notation with

A =

⎛

⎜
⎜
⎝

b11N1 . . . b1nNn

...
...

bn1N1 . . . bnnNn

⎞

⎟
⎟
⎠ , (6)

log meaning the coordinatewise log-function, and 0 = (0, . . . ,0), the final size equa-
tion becomes

0 = A(1 − σ) + logσ = F(σ). (7)

We will refer to the kj ’th element in A as akj . Clearly, the matrix A may be obtained
by “transposing” the population sizes in the B-matrix. In mathematical terms, the
matrix A is similar to B because with the diagonal matrix Δ = diag(N1, . . . ,Nn) we
have

A = Δ−1BΔ.

Thus, the two matrices have the same spectrum and in particular R0 is the dominant
eigenvalue of A. Since B is assumed to be positive (nonnegative and primitive) so
is A. It is remarkable that the linear part of the final size equation is so closely related
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to the next generation matrix B although B only describes the conditions at the onset
of the epidemic.

Taking the coordinatewise exp of (7) yields the alternative version of the final size
equation in x = 1 − σ

x = 1 − exp(−Ax). (8)

Equation (8) may be interpreted as a probabilistic identity as xk is the probability that
an individual in group k becomes infected during the epidemic while exp(−∑

akj xj )

gives the probability of remaining susceptible during the entire epidemic (Diekmann
and Heesterbeek 2000; Wallinga et al. 2006). With the probabilistic interpretation it is
clear how the coordinate transformation Δ arises because the initial rate of infection
in group k scales the size of the population in group k that can be infected while the
intensities akj xj scale with the size of the infecting group.

3 The Solutions to the Final Size Equation

A direct computation shows that the equation has a trivial solution at (1, . . . ,1) corre-
sponding to the situation where no epidemic has occurred and the population remains
in the disease-free state. From a mathematical view point, it is not obvious how many
other feasible solutions there may exist to (7) but biological intuition suggest the
following.

Conjecture 1 Equation (7) has a single solution in the open unit cube (0,1)n if
R0 > 1 and none if R0 < 1.

We will prove three theorems specifying additional conditions to the conjecture.
The first theorem is proved by a simple and illustrative geometric argument gener-
alizing the usual analysis of the homogeneous final size equation to the case of two
mixing groups. The second theorem is general. The proof builds on bifurcation the-
ory applied to the dynamical system x �→ 1 − exp(−Ax) and shows the similarity
with the bifurcation structure for models of endemic diseases. The last version of the
theorem which goes back to Gart (1968) and Ball (1985) applies only to the case of
proportionate mixing, but the proof is constructive and includes a characterization of
the dynamics during the epidemic.

Theorem 1 The final size equation for two mixing groups (7) has a unique solution
(σ1, σ2) in the open unit square (0,1)2 if and only if R0 > 1.

Proof For n = 2, we can rearrange the final size equations as

s2(σ1) = σ2 = 1

a12
logσ1 + a11

a12
(1 − σ1) + 1,

s1(σ2) = σ1 = 1

a21
logσ2 + a22

a21
(1 − σ2) + 1,
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so geometrically we are looking for intersections of the two curves σ1 = s1(σ2) and
σ2 = s2(σ1) in the open unit square.

The following properties hold for sk :

1. sk(1) = 1. (The existence of a disease-free state).
2. s′

l (1) = (1 − akk)/akl , k = 1,2, l = 2,1.
3. s′′

k (σl) < 0 for 0 < σl < 1.
4. sk(σl) → −∞ for σl → 0+.

To see the existence of a solution for R0 > 1, we distinguish between the case
(i) where at least one diagonal term akk exceeds unity and the case (ii) where both
diagonal terms are smaller than one.

Case (i) akk > 1 for k = 1 or 2, is the situation where transmission in at least one of
the subpopulations alone can sustain the epidemic. As the dominant eigenvalue must
exceed the magnitude of its diagonal elements in a positive matrix, case (i) implies
R0 > 1. Assume a11 > 1 so that s′

2(1) < 0. The curve σ2 = s2 has a negative slope
at (1,1) and by Property (4) combined with the continuity of s2 we conclude that the
curve will cross the entire unit square from bottom to top. This ensures the existence
of an internal intersection of the two curves; see Fig. 1.

In case (ii) where akk < 1 for k = 1,2, the two curves will intersect if the tangent
of s2 lies above the tangent of s1 at the point of intersection (1,1); see Fig. 1. The
tangent condition translates to

1 > s′
1(1)s′

2(1) = 1 − a11

a12

1 − a22

a21
.

This condition may be rewritten as pA(1) < 0, where pA(u) is the characteristic
polynomial of the matrix A. The characteristic polynomial pA(u) is negative for
trA/2 < u < R0 and since we have that 2 > a11 + a22 = trA, we conclude that the
condition is satisfied iff R0 > 1.

Fig. 1 Geometric solution of the final size equation for an epidemic model with general mixing between
two subgroups. The condition for the final size is expressed in terms of σk , the fraction of the susceptible
population in group k that remains susceptible at the end of the epidemic. The curve σ2 = s1(σ1) deter-
mines the final size condition for group 2 for known σ1 and does not depend directly on the transmission
into group 2. The intersection of s1 and s2 gives the final size in the two groups. An intersection exists
iff the tangent t2 lies above the tangent t1. The tangent condition is met if and only if the reproduction
number R0 exceeds unity. The curves s1 and s2 represent a case where none of the subpopulations alone
can support an epidemic. The curve s∗

2 shows a case where group 1 alone can support an epidemic, while
s∗
1 combined with s2 shows a situation where no epidemic will occur
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To see that the two curves have at most one intersection in addition to the trivial
intersection at (1,1), observe that by the (down) convexity of s2(σ1) all points on the
curve must lie above the secant between the intersection and the point (1,1), while
all points on s1(σ2) lie below the secant. This excludes the existence of multiple
intersections.

If R0 < 1, the two curves cannot intersect in the interior of the unit square. By
its convexity, the curve s2(σ1) will remain below its tangent at (1,1) while s1(σ2)

remains above its tangent. This completes the proof of Theorem 1. �

A generalization of the proof to higher dimension n > 2 is not straightforward and
a more promising avenue is to apply bifurcation theory to (7) treating R0 as a bifur-
cation parameter. In other words for a final size matrix A1 with dominant eigenvalue
1, we consider as R0 changes the structure of the solutions to (7) where A = R0A1.
We first note that the Jacobian of F at the no-epidemic point DF(1, . . . ,1) is sin-
gular for R0 = 1 suggesting that the interior root bifurcates off the trivial root when
R0 passes through 1 in a manner similar to the transcritical bifurcation that is known
from classical epidemic models with endemic equilibria.

The analysis proceeds through a series of lemmas and we postpone the statement
the theorem until we can motivate its exact formulation. The first step along the analy-
sis is the following lemma.

Lemma 1 If R0 < 1, (7) has no solutions in the interior of (0,1)n.

Proof Assume—to obtain a contradiction—that σ ∈ (0,1)n solves (7). By the
Perron–Frobenius theorem, the left-hand eigenvector w corresponding to the dom-
inant eigenvalue of A may be chosen to be positive in all coordinates and satisfy
wT 1 = 1. Taking the inner product of w and (7) gives

0 = wT 0 = wT logσ + wT A(1 − σ)

= wT logσ + R0w
T (1 − σ)

≤ logwT σ + R0
(
1 − wT σ

)
by Jensen’s inequality

≤ (R0 − 1)
(
1 − wT σ

)
< 0 by the inequality logy ≤ y − 1,

which is a contradiction, and hence proves Lemma 1. �

We next show the existence of a root in (0,1)n for R0 > 1 and small. The exis-
tence of a nontrivial root crossing (1, . . . ,1) at R0 = 1 follows naturally from the
singularity of DF so the main issue is to demonstrate that the root be positive. We
need to impose a condition that ensures that we are in “the generic case.”

Lemma 2 Let v1 be a positive (right-hand) eigenvector of A corresponding to the
dominant eigenvalue R0 and let u1 be the vector v1 squared coordinatewise. If u1
is linearly independent of the set of subdominant eigenvectors v2, . . . , vn, then for
R0 > 1 and R0 sufficiently small there exists a solution to (7) in the open unit cube
(0,1)n.
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Remark The condition on u1 is satisfied for almost all final size matrices A and
ensures that we are in the generic case. If A does not have a full spectrum, generalized
eigenvectors should be added to the subdominant eigenvectors to form a full n − 1
dimensional basis.

Proof To see the existence of a feasible solution for R0 > 1, we perform an asymp-
totic expansion of (7) in (R0 − 1) and show that there exists a solution of the form

1 − σ = x = (R0 − 1)α0v1 + (R0 − 1)2
∑

k

αkvk + O
(
(R0 − 1)3),

where the coefficients α0 
= 0 and α2, . . . , αn are to be determined. Letting x2 and
logx denote the coordinatewise operations on the vector and λk the subdominant
eigenvectors of A, (7) simplifies to

0 = Ax + log(1 − x)

= Ax − x − 1

2
x2 + h.o.t.

= (R0 − 1)2α0v1 − 1

2
(R0 − 1)2α2

0u1 + (R0 − 1)2
∑

k

αk(λk − 1)vk

+ O
(
(R0 − 1)3).

Retaining only terms of order (R0 − 1)2 and setting α′
k = αk/α0, we observe that α0

and α′
k must solve the linear equation

v1 = 1

2
α0u1 +

∑
α′

k(1 − λk)vk.

Our assumption that the vectors on the right-hand side be linearly independent
ensures the existence and uniqueness of a solution. Since v1 is independent of
v2, . . . , vn, we know that α0 
= 0 and from Lemma 1 we conclude that α0 > 0. This
shows the existence of a small, positive root in x, and hence of a root σ = 1 − x ∈
(0,1)n for 0 < R0 − 1 � 1.

We next note

Lemma 3 Additional roots to (7) can not arise through bifurcations in the interior
of the unit cube (0,1)n.

To see this observe that except for the trivial root, (7) has exactly the same roots
as the vector-equation

0 = akk +
∑

j 
=k

akj

1 − σj

1 − σk

+ logσk

1 − σk

, k = 1, . . . , n. (9)

Consider the left-hand sides of (9) as a vector valued function G(σ1, . . . , σn), set
g(y) = logy/(1 − y), g′

k = g′(σk), and σ̄k = 1 − σk . The Jacobian of G has determi-
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nant

detDG

= det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
k 
=1

a1k σ̄k

σ̄ 2
1

+ g′
1 − a12

σ̄1
· · · − a1n

σ̄1

− a21
σ̄2

∑
k 
=2

a2k σ̄k

σ̄ 2
2

+ g′
2 · · · − a2n

σ̄2

...
...

. . .
...

− an1
σ̄n

− an2
σ̄n

. . .
∑

k 
=n
ankσ̄k

σ̄ 2
n

+ g′
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= �σ̄−1
k det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
k 
=1

a1k σ̄k

σ̄1
+ g′

1σ̄1 − a12σ̄2
σ̄1

. . . − a1nσ̄n

σ̄1

− a21σ̄1
σ̄2

∑
k 
=2

a2k σ̄k

σ̄2
+ g′

2σ̄2 . . . − a2nσ̄n

σ̄2

...
...

. . .
...

− an1σ̄1
σ̄n

− an2σ̄2
σ̄n

. . .
∑

k 
=n
ank σ̄k

σ̄n
+ g′

nσ̄n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since g′(y) > 0 by the convexity of logy, the matrix in the last line is diagonally
dominant and hence regular. It follows that detDG 
= 0.

Since DG is everywhere regular the implicit function theorem shows that the num-
ber of solutions to G = 0 cannot change in the open unit-cube. This completes the
proof of Lemma 3. �

We next need to exclude the possibility of roots entering through the boundaries.

Lemma 4 Equation (7) has no nontrivial roots on the boundary of the unit cube
(0,1)n.

Proof Assume that σ is a point on the boundary of the unit cube and solves (7).
Clearly, σk 
= 0 for all k. So, we must have σk = 1 for some coordinate k. Inspection
of the kth row in the equation shows that since logσk = 0, we have

∑
akl(1−σl) = 0,

implying that σl = 1 for all l.
Finally, we need to exclude the possibility of additional roots crossing through

the trivial root. Additional bifurcations at (1, . . . ,1) may occur only as subdomi-
nant eigenvalues pass through unity, however, from the Perron–Frobenius theorem
we know that the associated eigenvectors can not be positive on all coordinates. Ap-
plying the same method as in the proof of Lemma 2 to the subdominant eigenvector,
we find that such roots cannot enter the unit cube (0,1)n.

This concludes our analysis of the general case and we have proved the following
theorem.

Theorem 2 Let v1, . . . , vm denote the set of eigenvectors and generalized eigenvec-
tors of the final size matrix A and u1, . . . , um the set of these vectors squared co-
ordinatewise. If each uk is linearly independent of the set of all eigenvectors and
generalized eigenvectors excluding vk , then (7) has a single solution in the open unit
cube (0,1)n if R0 > 1 and none if R0 < 1.
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The condition on the eigenvectors is satisfied for almost all final size matrices A

and may be considered the generic case. It is unclear if the theorem will also hold in
the non-generic case. Nongeneric cases must be of dimension n ≥ 3 because in the
two-dimensional case the positive vector u1 cannot be proportional to the subdomi-
nant eigenvector v2 as the coordinates of v2 have opposite sign.

For the special case of proportionate mixing bkj = pkqj , the situation is less com-
plex and the interior root can be found in a simple way as the final size equation (7)
separates to

0 = pk logσ1 − p1 logσk, k = 2, . . . , n,

0 =
∑

k

qkNk

(
1 − σ

pk/p1
1

) + logσ1.
(10)

Thus, the final size of the Gart epidemic is determined by the roots of (10) (Gart 1968;
Ball 1985). Formally this separation arises because the linear terms in (7) form a
matrix of rank 1. From a dynamical perspective, the separation is due to a sim-
ple power relationship between the sizes of the susceptible subpopulations in that
Sk(t)/Sk(0) = (S1(t)/S1(0))pk/p1 . This observation, which was the key to Gart’s
original analysis, allows an explicit description of the dynamics during the epidemic
in terms of σ1(t) = S1(t)/S1(0). Clearly, σ1 is a monotonically decreasing variable
throughout the epidemic; for details see Andreasen (2003).

Gart’s characterization of the final size offers a simpler proof of our conjecture as
it suffices to show the following theorem.

Theorem 3 The Gart-equation (10) has a unique nontrivial root in the open interval
(0,1), if the reproduction number exceeds unity, i.e.,

R0 =
∑

k

qkpkNk > 1. (11)

If R0 < 1, then the Gart-equation has no nontrivial roots in (0,1).

For a proof, see Andreasen (2003).

4 The Effect of Heterogeneity on the Size of the Epidemic

For our comparison of epidemic size, it turns out to be convenient to express the epi-
demic size in terms of attack rates xk rather than susceptibles remaining uninfected,
xk = 1 − σk .

To see the effect of heterogeneous disease transmission on the final size of the
epidemic, we compare the final size of the epidemic in the heterogeneous population
to that of an epidemic with the same R0 in a homogeneously mixed population.

The final size in the homogeneously mixing population ξ is determined by

R0ξ + log(1 − ξ) = 0 (12)
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while the final size in the heterogeneously mixing population is xT N = ∑
xkNk . The

attack rates x solve

Ax = h(x), (13)

where h(x) = − log(1 − x) coordinatewise.
We focus exclusively on the case of proportionate mixing bkj = pkqj in a fully

susceptible population. Here, R0 = ∑
pkqkNk and using Gart’s characterization we

can express the attack rate in group k in terms of σ1, the fraction of hosts in group 1
that are still susceptible after the epidemic, as xk = 1 − σ

pk/p1
1 .

For two extreme cases, the result is known from previous studies. For the case
where only susceptibility varies q1 = · · · = qn, Ball (1985) showed that hetero-
geneities in disease transmission decreases the final size of the epidemic xT N ≤ ξ .
Conversely, Ma and Earn (2006) observed that if susceptibility is constant p1 =
· · ·pn, then the final size of the epidemic depends only on the magnitude of R0,

i.e., ξ = xT N .
These two results cannot be combined directly. In fact, we shall give an exam-

ple where heterogeneity in both susceptibility and infectivity gives a larger epidemic
than one would observe in a homogeneously mixing population with the same trans-
missibility R0, so an additional constraint on p and q is needed. To motivate this
constraint, we first discuss the situation where host heterogeneity is attributable to
variation in contact rates (Hethcote and Yorke 1984). Assume that each host in group
k makes ck contacts per time unit and that these contacts are distributed among all
groups in proportion to that group’s contribution to the total number of contacts. Each
host in group k then makes

ck

cjNj
∑

i ciNi

contacts with hosts in group j so we have that

bkj Ij = ckcj

βIj
∑

i ciNi

,

where β is the probability that a susceptible host become infected after a contact
with an infected host. Host heterogeneity that arises in this way clearly is of the
proportionate mixing type qkpj but it in addition has the property that p and q are
proportional vectors. We need a slightly weaker version of this property to prove the
following theorem. �

Theorem 4 Let R0 denote the dominant eigenvalue of the next generation matrix

B =

⎛

⎜
⎜
⎝

p1q1N1 . . . p1qnN1

...
...

pnq1Nn . . . pnqnNn

⎞

⎟
⎟
⎠ .
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and A the corresponding final size matrix (6), and let x be the solution to (13) and ξ

the solution to (12). If

p1 < p2 · · · < pn and q1 < q2 < · · · < qn,

then for all positive vectors N with
∑

Nk = 1, the inequality NT x ≤ ξ will hold.

Proof We first note that since R0ξ = h(ξ), by the (up) convexity of h it suffices to
show that R0N

T x ≥ h(NT x), since this shows that the number NT x must lie to the
left of ξ .

Taking the inner product with N on both sides of (13) and applying Jensen’s in-
equality to h gives

NT Ax = NT h(x) ≥ h
(
NT x

)
,

and it remains to see that R0N
T x ≥ NT Ax.

NT Ax − R0N
T x =

∑

k

pkNk

∑

j

qj xjNj −
∑

j

pjqjNj

∑

k

xkNk

=
∑∑

kj

NkNjpkpj (qj xj /pj − qjxk/pk)

= covpN(q, x/p)
(∑

pkNk

)2
,

where covpN is the covariance with respect to the normalized distribution pkNk .
The sign of the last expression depends on how the ratio of the attack rate to

the susceptibility xk/pk depends on the magnitude of the infectivity qj . Since we
are assuming proportionate mixing, the analysis of the Gart equation shows that
xk = 1 − spk for some s. Specifically, we have that s = p1

√
σ1 where σ1 solves (10)

but it suffices to observe that 0 < s < 1. The function φ(y) = (1 − sy)/y is de-
creasing due to the concavity (down) of the log-function. By assumption, we now
have that q1 < · · · < qn and φ(p1) = x1/p1 > · · · > φ(pn) = xn/pn. If follows
that covpN(q, x/p) < 0. We conclude that R0N

T x ≥ NT Ax which completes our
proof. �

5 A Numerical Example

As a specific example, we study how the susceptibility p and the infectivity q affect
the ratio ρ of the total attack rate in a homogeneous population 1−ξ to the attack rate
in a heterogeneous population xT N = ∑

(1 − σpk )Nk with the same reproduction
number, i.e.,

ρ =
∑

(1 − σpk )Nk

(1 − ξ)
. (14)

For simplicity, we focus on a population consisting of two subpopulations of equal
size N1 = N2 = 1

2 and we will assume that subpopulation 1 has the smallest suscepti-
bility and that it is fixed at unity so that p = (1,p2). For fixed reproduction ratio R0,
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Fig. 2 The final size of an epidemic in a heterogeneously mixing population relative to the size in a
homogeneous population with the same basic reproduction number R0 = 2. The population consists of
two subpopulation of the same size N1 = N2 = 1

2 . Mixing is of the proportionate mixing type and in
subpopulation 1 infectivity and susceptibility are p1 = 1 and q1, respectively. In subpopulation 2, the cor-
responding quantities are p2 and q2. The heavy curve gives those parameter values where heterogeneity
does not change the final size. In the upper part of the figure, heterogeneity leads to an increased epidemic
size. In the lower part of diagram, the heterogeneous epidemic is the smaller than a epidemic in a homo-
geneous population. Only parameter values with p2 > 1 and q1 − q2 < 0 can arise from heterogeneities
that are solely caused by variation in contact rates

the mixing pattern is now determined by two parameters which we take to be p2 ≥ 1
and q1 − q2 with the additional requirement that since q2 ≥ 0 and q1 ≥ 0, we must
have R0/N1 ≥ q1 − q2 ≥ R0/(p2N2).

Level curves of ρ in the (p2, q1 −q2)-plane are characterized by the Gart-equation
(10) combined with the size of R0, (11), and the level condition (14). The three
conditions allow us to parameterize the level curves explicitly in terms of σ

p2(σ ) = log(1 − [ρ(1 − ξ) + (1 − σ)N1]/N2)

logσ
,

q2(σ ) = logσ + R0(1 − σ)

p2(σ )(1 − σ)N2 − (1 − σp2)N2
,

q1(σ ) = R0 − q2(σ )p2(σ )N2

N1
,

which produces Fig. 2 for the case of R0 = 2. The heavy line ρ = 1 shows those
parameter values where the final size of the epidemic is unaffected by mixing het-
erogeneities. From Ma and Earn (2006) we know that the vertical axis p2 = 1 cor-
responding to constant susceptibility lie on ρ = 1 as well, and from Ball (1985)
that ρ ≤ 1 at q1 − q2 = 0 while we have just extended Ball’s result to ρ ≤ 1 for
q1 − q2 ≤ 0.

The maximal value of ρ will depend on the structure of the population. In our
example, it occurs in the limit where subpopulation 2 is highly susceptible p2 → ∞
while incapable of spreading the disease q2 = 0. As we have fixed R0 = 2, we have
q1 = R0/N1 and since subpopulation 2 does not contribute to disease-spread, the
final attack-rate 1 − s in population 1 is determined the homogeneous final size equa-
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Fig. 3 The effect of the basic
reproduction number on the final
size in a heterogeneously mixing
population. The curves show
those parameter-values where
heterogeneity does not change
the size of the epidemic (ρ = 1)
for R0 = 1.5, . . . ,10. All
parameter values except R0 are
the same as in Fig. 2

tion log s + q1N1(1 − s) = 0, which gives s = ξ . The total attack-rate in the hetero-
geneous populations is now (1 − ξ)N1 + N2 giving ρmax = N1 + N2/(1 − ξ). For
N1 = N2 = 1

2 and R0 = 2 we find ρmax = 1.127.
The minimal ρ arises in the limit where all disease transmission is concentrated

in the most susceptible population; since we have fixed p1 = 1 this corresponds to
the situation where p2 → ∞ while p2q2N2 → R0 and q1 = 0, leading to an attack
rate of 1 − ξ in population 2 and vanishing attack rate in population 1. Thus, ρmin =
N2 = 0.5.

For increasing R0, the reduction in the final size gets more pronounced—this may
be seen in Fig. 3 and by observing that ρ → 1 as 1 − ξ → 1.

6 Discussion

This paper presents new results on the structure of the final size equation for general
epidemics and on the effect of heterogeneity on the size of epidemics with propor-
tionate mixing.

The structure of the final size equation for an epidemic in a heterogeneous pop-
ulation consists of a fixed nonlinear term plus a linear part that depends on disease
transmission. The linear part is similar to the next generation matrix describing the
conditions at the onset of the epidemic, but while the rows of the next generation
matrix scale with the sizes of the subpopulations, for the final size matrix it is the
columns that scale. Since the final size matrix can be obtained from the next genera-
tion matrix by a coordinate transformation, the two matrices have the same spectrum.
In particular, the common dominant eigenvalue R0 controls the epidemic threshold
for the onset of the epidemic as well as the number of roots of the final size equation.
This generalizes the dual role played by R0 in the classical homogeneous epidemic
model.

Intuitively, one would expect that the final size equation uniquely specifies the size
of the epidemic and the intuition is confirmed except for the well-known caveat that
the final size equation will also yield a trivial solution corresponding to no epidemic.
Since the final size equation does not contain information about the dynamical aspects
of the system there is no natural way to distinguish between the two solutions. The
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uniqueness of the internal solution shows that the magnitude of the epidemic and the
distribution of infected hosts are independent of how the initial cases are distributed.

The existence of the nontrivial solution is governed by a threshold condition on
the basic reproduction number R0 and the solution arises through the nondynam-
ical component of a transcritical bifurcation off the no-epidemic root, in the sense
that a nontrivial solution crosses through the trivial solution and into the biologically
feasible region exactly when R0 passes unity.

The analysis of the final epidemic size and the impact of heterogeneity carries over
to situations where the transmission classes are described by a discrete or continuous
distribution of transmission types—or degree distribution in the terminology of epi-
demic networks. In particular, the final size of an epidemic on a scale-free network as
analyzed by Pastor-Satorras and Vespignani (2001) may be seen as a special case of
our analysis (Lloyd and May 2001; Kiss et al. 2006). The model of Pastor-Satorras
and Vespignani as well as the present approach ignores the local depletion of suscep-
tible hosts occurring in true network-models providing a way to distinguish between
the effect of heterogeneous contact rates as such and local depletion in network-
models (Keeling 1999).

To assess the impact of host heterogeneity on epidemic size, we focus on propor-
tionate mixing and further require that the magnitude of susceptibility and infectivity
in the sub-populations are ranked in the same order. This case includes heterogene-
ity that is solely due to variation in contact rates combined with proportionate mix-
ing, thus it includes most models of venereal diseases and many models of air-borne
infections. We show that for this case the final size in the heterogeneously mixing
population is always smaller than what it would have been in a homogeneously mix-
ing population with the same basic reproduction number in analogy with the results
for endemic diseases in heterogeneously mixing populations (Hethcote and Yorke
1984). However, if the ordering of susceptibilities is the reverse of the ordering of
infectivities, heterogeneity may lead to an increase in epidemic size. Mathematically
mixing patterns with such negative correlation between susceptibility and infectiv-
ity are known to cause unusual results. They can, for example, give rise to sustained
oscillations in an age-structured SIR-model (Andreasen 1995), but their biological
importance remains to be seen.

It is unclear how our size comparison may be extended to transmission patterns
other than proportionate mixing for example preferred mixing. While the final size
equation generalizes naturally, there is no obvious generalization of the condition
that the magnitude of susceptibility and infectivity are ordered in the same sequence.
The technical condition in the proof relates to the covariance of infectivity and total
attack rate over susceptibility, a condition that is somewhat awkward to work with in
situations where the total attack rate is poorly characterized. Alternatively, one may
explore the differential inequalities used by Ball (1985).

Our analysis have assumed that the infection does not affect host mortality and that
the epidemic does not change population size. This assumption may exclude many
outbreaks particularly in animal populations. An extension of our results to a deadly
disease is far from obvious. The present formulation is formally the same for density
and frequency dependent transmission, but a varying population size requires that
the density dependent aspect of disease transmission be addressed explicitly (Getz
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and Pickering 1983). Furthermore, many of our results including the derivation of the
final size condition as well as the similarity between the next generation and final size
matrices rest on the assumption of constant population size. Arino et al. (2007) and
Brauer (2008) provide a possible starting point but the characterization of the final
epidemic size in a varying population remains an open question.
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