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Abstract Arbuscular mycorrhizas, associations between plant roots and soil fungi,
are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants
by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal
filaments extending from the root surface into the soil, increase the volume of soil
accessible for plant nutrient uptake. However, no models so far specifically consider
individual hyphae. We developed a mathematical model for nutrient uptake by in-
dividual fungal hyphae in order to assess suitable temporal and spatial scales for a
new experimental design where fungal uptake parameters are measured on the sin-
gle hyphal scale. The model was developed based on the conservation of nutrients in
an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed
based on parameter estimation and non-dimensionalisation. An approximate analyti-
cal solution was derived using matched asymptotic expansion. Results show that nu-
trient influx into a hypha from a small capillary tube is characterized by three phases:
Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the de-
pletion zone reaches the capillary wall and thus uptake is sustained by desorption of
nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held
on the capillary wall have been completely depleted. Simulating different parameter
regimes resulted in recommending the use of capillaries filled with hydrogel instead
of water in order to design an experiment operating over measurable time scales.
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1 Introduction

Understanding the mechanistic basis of nutrient cycling in the plant-soil system re-
mains a key goal in predicting ecosystem responses to climate change and the de-
sign of sustainable agricultural systems. Quantifying nutrient flow at the soil-root
interface, however, represents a major challenge due to the intrinsic biological com-
plexity, high degree of spatial heterogeneity and numerous feedback loops operating
in the rhizosphere Jones and Hinsinger (2008). Investigation of nutrient flow in the
rhizosphere has proved extremely difficult due to the lack of suitable experimental
techniques capable of disentangling multidirectional fluxes at a fine enough scale
(Hinsinger et al. 2005). An alternative approach has been the use of mathematical
modelling which allows prediction of nutrient flow at the correct spatial and temporal
scales as well as allowing the importance of individual factors on plant uptake to be
determined (Saleque and Kirk 1995; Tinker and Nye 2000). While this modelling ap-
proach has proved successful for agricultural systems associated with high additions
of inorganic fertilizer (e.g. KNO3; Mackay and Barber 1985) and where root uptake
is dominated by epidermal cell transport, the models become less robust in low input
agroecosystems or in natural systems which rely heavily on organic nutrient inputs.
This poor predictive power is due to the lack of inclusion of root strategies which
manipulate the rhizosphere to overcome limitations in nutrient supply (e.g. release of
organic acids, rhizosphere acidification etc.; Jones et al. 2004). While some of these
additional effects have been addressed (Kirk et al. 1999), models including arbuscu-
lar mycorrhizas remain in their infancy despite their almost ubiquitous importance in
regulating ecosystem function.

Mycorrhizas are symbioses between plant roots and soil fungi where the fungus
receives photosynthate from the plant while the plant receives mineral nutrients from
the fungus. Other plant benefits are better drought and pathogen resistances; for ex-
ample. Arbuscular mycorrhizal fungi grow both inside the root cortical cells and in
the outside soil where they form very thin filaments around the plant’s roots. These
filaments are called hyphae and they increase the volume of soil from which nutri-
ents can be absorbed. The relative contributions of roots and fungal hyphae to overall
plant nutrient uptake are studied experimentally, e.g., by comparing plant species
that form mycorrhizas with nonmycorrhizal mutants that otherwise have the same
growth traits, life cycles and responses to nutrient availability (Facelli et al. 2010).
However, in spite of the obvious importance of mycorrhizas, mechanistic and spa-
tially explicit models for quantifying the importance of mycorrhizas to plant min-
eral nutrition remain scarce (Deressa and Schenk 2008; Schnepf and Roose 2006;
Schnepf et al. 2008).

Chemical weathering in soil is the dominant natural process delivering new in-
organic nutrients to growing plants (McKeague et al. 1986). Moreover, it has been
known for decades that mycorrhizas can enhance the dissolution of minerals (Boyle
and Voigt 1973). Recently, it was discovered that weatherable minerals (feldspars and
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hornblende) present in eluvial (E) horizons of podzols contain abundant narrow tubu-
lar pores ranging in diameter from 3–10 µm (Jongmans et al. 1997). These pores are
frequently occupied by hyphae, and it has been hypothesized that these hyphae them-
selves are directly responsible for the mining of the mineral grains. Direct evidence
now exists that mycorrhizal hypha are able to penetrate, and most probably create,
microsites which are inaccessible to plant roots and which are isolated from bulk
soil solution phenomena (Van Breemen et al. 2000). Dissolved products can then be
translocated directly to the host plant roots, bypassing the soil solution, and bypassing
competition for nutrient uptake by other organisms (Ezawa et al. 2002). In the case of
the essential nutrient phosphorus, this view is supported by both experimental inves-
tigations (Smith et al. 2003) and mathematical modelling (Schnepf and Roose 2006;
Schnepf et al. 2008). Approaches to modelling mineral weathering by fungi are dis-
cussed by Rosling et al. (2009).

In order to quantify the contribution of arbuscular mycorrhizal hyphae to nutrient
dynamics in soil, information about the extent of the external fungal mycelium as
well as the uptake capacity of the individual hyphae is required. A large amount of
information is available on rates of nutrient uptake by hyphae of a variety of fungi as-
sociated with various host plants (Schweiger and Jakobsen 2000). However, they are
based on large scale compartment system experiments and represent an average value
for the whole fungal colony. It has been shown experimentally that macroscopic para-
meters such as the overall hyphal length density are not directly correlated with plant
nutrient uptake (Leigh et al. 2009). Schnepf and Roose (2006), Schnepf et al. (2008)
have shown in their modelling study that hyphal uptake depends greatly on the uptake
parameters of individual hyphae. Therefore, even for the ultimate goal of field scale
predictions, single hyphal scale information and careful upscaling (Darrah et al. 2006;
Roose and Schnepf 2008) are required in order to make realistic estimations of total
phosphorus uptake by mycorrhizal plants. The development of reliable (both exper-
imental and analytical) methods to study physiological uptake properties of hyphae
remains a major challenge (Deressa and Schenk 2008).

Our goal in this paper is to complement the Schnepf and Roose (2006) model
to enable the accurate prediction and scaling of mycorrhizal derived nutrient uptake
in plant-soil systems. In most soils, the diameter of a hypha is smaller than the soil
pore diameter. The single hyphal scale model developed in this paper will serve as a
basis for a model describing nutrient uptake by a single hypha growing in a soil pore.
The model also supports the development of an experimental platform where nutrient
uptake by a single hypha growing in a simulated cylindrical soil pore (capillary tube)
can be measured. We present a mathematical model for the analysis and interpretation
of such data.

2 Materials and Methods

2.1 Developing a Model for Nutrient Uptake by a Single Hypha from a Capillary
Tube

We consider a single hypha inside a cylindrical soil pore which is physically equiv-
alent to that of a long capillary tube. We assume that the radius of the capillary tube
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is in the same order than that of the hypha, i.e., rtube/rhypha = O(1). Furthermore,
we can assume that the capillary tube is long compared to its radius as hyphae typ-
ically have a radius in the order of 10−4 cm (Ezawa et al. 2002) and can be several
centimetres long (Tinker and Nye 2000). In this paper we will ignore the fact that
in reality the hyphae could be off centre. There are two reasons for this. Firstly, we
assume that on average a hypha is at the centre and that variations of it away are
not significant. This is realistic since in such small capillaries it is difficult to image
that the hyphae would be able to significantly squeeze out the fluid between itself
and the capillary wall. Thin water films are notoriously difficult to get rid of under
uniform temperature conditions (Ockendon and Ockendon 1995). The second rea-
son is that for the cylindrically symmetric case we are able to derive an analytic
solution to the entire problem. Thus, this case is simpler to use when interpreting
experimental data. A general geometrical configuration would require more restric-
tive 3-dimensional computer simulations for each specific geometric configuration.
The space between the hypha and the pore wall is filled with either soil solution
or an extracellular mucilaginous polysaccharide material similar to that of hydro-
gel and which is known to be exuded by mycorrhizal hyphae (Abu Ali et al. 1999;
Krcmar et al. 1999). Based on existing literature, there are no convincing arguments
that water uptake within arbuscular mycorrhizal hyphae is a significant process al-
though the significance of wicking along the hyphal surface remains unclear (Allen
2007). In any case, no figures of water uptake rates per unit surface area of hypha
are available. We therefore neglect convective transport and consider radial diffusion
towards the hyphal surface where nutrients are taken up according to Michaelis–
Menten kinetics (da Silveira and Cardoso 2004; Sharma et al. 1999).

We assume that nutrients are present both in the liquid phase and adsorbed to the
pore wall. Hyphae take up nutrients from soil solution. When the hyphal diameter is
in the same order as the pore diameter, we need to consider the effect of the pore wall
on solute delivery. Due to depletion of solution by the hypha, nutrients are desorbed
from the wall of the tube. Assuming that there are no internal nutrient sources or
sinks, the equation for radial diffusion of nutrient is given by

∂Cl

dt
= Dl

1

r

∂

∂r

(
r
∂Cl

∂r

)
, (1)

where Cl is the soil solution concentration in dimensions of mass per unit volume
of soil solution and Dl is the effective diffusion coefficient. We assume that the hy-
phae take up nutrients according to Michaelis–Menten kinetics, so that the boundary
condition at the hyphal surface is

D
∂Cl

dr
= FmCl

Km + Cl

, at r = r0, (2)

where r0 is the radius of the hypha, Fm is the maximal nutrient influx into the hypha
and Km is the Michaelis–Menten constant.

If the diameter of the tube, r1, is such that the depletion zone caused by hyphal
uptake can reach the tube wall, we assume at this boundary that the flux of nutrient
is equal to the rate of change in the density of nutrient bound to the solid surface.
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Here, we express the adsorbed concentration Ca per unit surface of pore wall. We
derive the boundary condition using conservation of mass. Consider the surface area
A of the cylinder with radius r = r1 and unit length. In absence of any source or sink
terms, and assuming that we can neglect intra-particle diffusion or surface diffusion,
the rate of change of adsorbed concentration must be equal to the flux across the
solid-solution interface. Therefore,

d

dt

∫
A

Ca dA = −
∫

A

q · un dA,

where un is the outwards normal vector. (3)

Since Ca is homogeneous on the surface, a unit length of hypha has
∫
A

Ca dA =
2r1πCa . Also, we have q = −D

∂Cl

∂r
, un = −1 and A = 2r1π at r = r1, so that per

unit length of hypha, we have − ∫
A

q · un dA = −2r1πDl
∂Cl

∂r
. Hence, the boundary

condition at r = r1 is

∂Ca

∂t
= −Dl

∂Cl

∂r
. (4)

We assume that the rate of change of Ca is given by a first order kinetic reaction:

dCa

dt
= kaCl − kdCa, (5)

where ka and kd are the ad- and desorption rate constants, respectively.
We now have two equations for the boundary condition at r = r1,

D
∂Cl

∂r
= −(kaCl − kdCa), (6)

dCa

dt
= kaCl − kdCa. (7)

According to these equations, it is possible that the fungus depletes nutrients from the
pore completely, because there is a finite amount of nutrients adsorbed to the surface.
In principle, we could add processes that resupply Cl to the pore, such as intra-particle
diffusion and dissolution of the mineral wall. However, as a first approximation, we
neglect resupply of Cl to the pore. Let us assume that the initial condition for Cl

is Cl = Cl,0 and that, initially, Ca0 is in equilibrium with Cl0, so that Ca0 = ka

kd
Cl0.

Here, the quotient ka

kd
describes a linear relationship between the amount of P ad-

sorbed to the soil phase and its concentration in solution at equilibrium. It is called
the buffer power and denoted by bP = ka

kd
.

In summary, we developed the following model in radial polar coordinates:

∂Cl

∂t
= Dl

1

r

∂

∂r

(
r
∂Cl

∂r

)
, r0 < r < r1, t > 0, (8)

Dl

∂Cl

∂r
= FmCl

Km + Cl

, r = r0, (9)
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{
Dl

∂Cl

∂r
= −(kaCl − kdCa),

dCa

dt
= kaCl − kdCa, r = r1,

(10)

Cl = Cl0, Ca = kaCl0, t = 0. (11)

3 Analysis and Solution of (8)–(11)

3.1 Non-dimensionalisation

For analysis and solution of the model described by (8)–(11), we apply the technique
of non-dimensionalisation (Fowler 1997). The same set of dimensionless parameters
can be the result of different combinations of dimensional parameters. Therefore, it
is more efficient to analyse the dimensionless version of a model.

Let t = [t]t∗, r = [r]r∗, Cl = [Cl]C∗
l and Ca = [Ca]C∗

a . An intrinsic length scale
of this system is the hyphal radius, therefore we chose [r] = r0. In addition, let us
scale the solution concentration with the Michaelis Menten constant, [Cl] = Km and
the adsorbed concentration with the adsorbed concentration which is in equilibrium
with Cl = Km, [Ca] = ka

kd
Km. Time scales of interest are the time scale of the life of

a hypha, which is in the order of several days (Staddon et al. 2003), the reaction time
scale that determines how fast the adsorbed nutrient is available for the fungus, and
the diffusion time scale. On the diffusion time scale, we scale the time with the factor

[t] = r2
0

Dl
, and the non-dimensional model in radial polar coordinates is (dropping

asterisks)

∂Cl

∂t
= 1

r

∂

∂r

(
r
∂Cl

∂r

)
, (12)

∂Cl

∂r
= λ

Cl

1 + Cl

, at r = 1, (13)

{
∂Cl

∂r
= −δ1(Cl − Ca),

δ2
dCa

dt
= Cl − Ca, at r = rend,

(14)

Cl = Ca = c∞, at t = 0. (15)

The dimensionless parameters are λ = Fmr0
DKm

, δ1 = r0ka

Dl
, c∞ = Cl0

Km
, rend = r1

r0
and

δ2 = Dl

kdr2
0

, where λ is the dimensionless uptake parameter, c∞ is the dimensionless

nutrient concentration in the bulk solution, rend is the dimensionless distance to the
pore wall, and δ1 and δ2 are the dimensionless ad- and desorption parameters.

3.2 Parameter Estimation

We parameterise the model with values typical for the case of phosphorus in soil
solution. Values for our choice of dimensional model parameters are given in Table 1
and explained in the following paragraphs.

Schweiger and Jakobsen (1999) estimated P uptake parameters that are an order of
magnitude larger than root values. We will therefore compare two uptake parameter
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Table 1 Typical values of the dimensional parameters for the pore scale model

Parameter Units Value for P Reference

Dl cm2 s−1 10−5 Lide (2000)

r0 cm 2–5 × 10−4 Ezawa et al. (2002)

r1 cm 1.2 × 10−1–3.5 × 10−3

Fm µmol cm−2 s−1 3.26 × 10−6–2.55 × 10−5 Tinker and Nye (2000),
Schweiger and Jakobsen (1999)

Km µmol cm−3 5.8 × 10−3–1.7 × 10−3 Tinker and Nye (2000),
Schweiger and Jakobsen (1999)

bP cm3 cm−3 239 Barber (1995)

A cm2 cm−3 <1000 for sands (Koorevaar et al.
1983)

kd s−1 5.94 × 10−5–2.72 × 10−2 Chen et al. (1996)

ka cm s−1 1.42 × 10−5–6.50 × 10−3 ka = kdb
A

with A = 1000

Cl0 µmol cm−3 6 × 10−4–3 × 10−3 low to medium concentration
(Barber 1995)

regimes, one with values of roots and one with the larger values as estimated by
Schweiger and Jakobsen (1999). For the parameter values given in Table 1, the value
of the dimensionless parameter δ2 � 1. The values of r0 and r1 in Table 1 suggest
that rend can be either rend = O(1) or rend � 1. In the second case, we can treat the
domain as semi-infinite, so that the outer boundary has no influence on the flux at
the hyphal surface. However, we will only consider the first case when rend = O(1)

in the following simulations. Mycorrhizas tend to increase plant phosphate nutrition
when the soil P concentration is low (Tinker and Nye 2000). The values for Cl0 in
Table 1 suggest that in this case we have c∞ � 1. We will assume that this is the case
in all subsequent calculations. When c∞ � 1, the boundary condition at r = 1 can be
approximated at leading order by the linear equation

∂Cl

∂r
= λCl, r = 1. (16)

Rescaling the concentration Cl = c∞c and Ca = c∞ca , the model becomes

∂c

∂t
= 1

r

∂

∂r

(
r
∂c

∂r

)
, (17)

∂c

∂r
= λc, r = 1, (18)

{
∂c
∂r

= −δ1(c − ca),

δ2
dca

dt
= c − ca, at r = rend,

(19)

c = ca = 1, t = 0. (20)
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3.3 Approximate Analytical Solution

In this section, we develop an approximate analytical solution for the model given by
(17)–(20). Because δ2 � 1, we use an asymptotic expansion in 1

δ2
� 1. This solution

is valid for all t � δ2. We call this the inner solution in time; it corresponds to the
diffusion time scale. We seek solutions of the form

c ≈ c0 + 1

δ2
c1 + O

(
1

δ2
2

)
, (21)

ca ≈ ca,0 + 1

δ2
ca,1 + O

(
1

δ2
2

)
. (22)

Substituting (21) and (22) into (17)–(20) and collecting the terms of O(1), we get

∂c0

∂t
= 1

r

∂

∂r

(
r
∂c0

∂r

)
, (23)

∂c0

∂r
= λc0, at r = 1, (24)

{
∂c0
∂r

= −δ1(c0 − ca,0),
dca,0
dt

= 0, at r = rend,
(25)

c0 = ca,0 = 1, at t = 0. (26)

Because dca

dt
= 0 it follows from the initial condition that ca(t) = 1. Therefore we are

left with a model in c0 only:

∂c0

∂t
= 1

r

∂

∂r

(
r
∂c0

∂r

)
, (27)

∂c0

∂r
= λc0, at r = 1, (28)

∂c0

∂r
= −δ1(c0 − 1), at r = rend, (29)

c0 = 1, at t = 0. (30)

The solution to this model can be found using Laplace transformation. Crank
(1975, p. 86) gives the solution to the diffusion equation in a hollow cylinder with
general linear boundary conditions and zero initial condition. The approximate ana-
lytical solution to (27)–(30) is

c0 = 1 + λ[1 − rendδ1 ln(r/rend)]
−λ − rendδ1 + rendλδ1 ln(1/rend)

− π

∞∑
n=1

e−α2
ntF (αn)C0(r;αn)

[
λ
{
δ1J0(rendαn) − αnJ1(rendαn)

}]
(31)
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where the αn are the roots of

[−λJ0(α) − αJ1(α)
][

δ1Y0(rendα) − αY1(rendα)
]

− [
δ1J0(rendα) − αJ1(rendα)

][
λY0(α) − αY1(α)

] = 0, (32)

F(αn) = (
δ1J0(rendαn) − αnJ1(rendαn)

)
× {[

δ1J0(rendαn) − αnJ1(rendαn)
]2(

λ2 + α2
n

)
− [−λJ0(αn) − αnJ1αn

]2(
δ2

1 + α2
n

)}−1
, (33)

and

C0(r,αn) = J0(rαn)
[−λY0(αn) − αnY1(αn)

]
− Y0(rαn)

[−λJ0(αn) − αnJ1(αn)
]
. (34)

In the limit t → ∞, the solution is

clim = rendδ1 + rendδ1λ ln(r)

λ + rendδ1 + rendδ1λ ln(rend)
. (35)

In Fig. 1, (31) is plotted against the numerical solution of the full non-linear prob-
lem. The numerical scheme was obtained using a finite difference scheme with a cen-
tered discretisation in space and the θ -method in time. Due to the non-linear boundary
condition, we have an implicit non-linear expression, which we solved by fixed-point
iteration. The numerical and analytical solutions agree well, so we are confident in
our use of the approximate analytical solution. At t = 100, the solution has reached
the limit where the analytic solution given by (31)–(34) becomes invalid. This is con-
sistent with the condition for the validity of this approximate solution that t � δ2,
where δ2 = 4000.

To get the solution for times t � δ2, we rescale time and let t = δ2τ , so that the
model becomes

1

δ2

∂c

∂τ
= 1

r

∂

∂r

(
r
∂c

∂r

)
, (36)

∂c

∂r
= λc, at r = 1, (37)

{
∂c
∂r

= −δ1(c − ca),
dca

dτ
= c − ca, at r = rend,

(38)

c ≈ clim, ca,≈ 1, at τ ≈ 0. (39)

The initial conditions (39) come from matching with the solution of the diffusion time
scale model as t → ∞. There we saw that, at leading order, ca,0 = 1 for all times,
and c0 = clim as t → ∞.

Using asymptotic expansions in 1
δ2

� 1, we obtain an approximate solution which
we call the outer solution in time and which corresponds to the binding reaction time
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Fig. 1 Plot of (31) (solid line) against numerical solution of full non-linear model (12)–(15) (dashed
line). Model parameters: λ = 0.5, δ1 = 0.6, δ2 = 4000, r0 = 1, r1 = 5. Numerical parameters: 	x = 0.04,
	t = 0.0016

scale. We seek solutions of the form

c ≈ c0 + 1

δ2
c1 + O

(
1

δ2
2

)
, (40)

ca ≈ ca,0 + 1

δ2
ca,1 + O

(
1

δ2
2

)
. (41)

Substituting (40) and (41) into (36)–(39) and collecting the terms of O(1), we get

0 = 1

r

∂

∂r

(
r
∂c0

∂r

)
, (42)

∂c0

∂r
= λc0, at r = 1, (43)

{
∂c0
∂r

= −δ1(c0 − ca,0),
dca,0
dτ

= c0 − ca,0, at r = rend,
(44)

ca,0 = 1, τ ≈ 0. (45)

The solution of (42) is

c0(r, τ ) = B1ln(r) + B2, (46)
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where B1 and B2 are constants of integration to be determined from the two boundary
conditions. From the boundary condition at r = 1 we get that

dc0

dr

∣∣∣∣
r=1

= B1(τ ) = λc0(1, τ ). (47)

Because ln(1) = 0, we get also that at r = 1, (46) becomes c0(1, τ ) = B2. Hence
B1 = λB2(τ ) so that we can express the solution as

c0(r, τ ) = B2λ ln(r) + B2. (48)

From the boundary condition at r = rend, we get

dc0

dr

∣∣∣∣
r=rend

= λB2

rend
= −δ1

(
λB2 ln(rend) + B2 − ca,0

)
. (49)

Hence, we obtain an expression for B2 with respect to ca,0:

B2 = δ1rend

λ + δ1rendλ ln(rend) + δ1rend
ca,0. (50)

Substituting (50) into (48) and substituting the result into the equation for ca,0 in
(44), we get the following linear ordinary differential equation

dca,0

dτ
+ γ ca,0 = 0, (51)

with initial condition ca,0(0) = 1, where

γ = 1 − (λ ln(rend) + 1)δ1rend

λ + δ1rendλ ln(rend) + δ1rend
. (52)

The solution is

ca,0 = e−γ τ . (53)

Substituting this into (51), B2 is

B2 = δ1rend

λ + δ1rendλ ln(rend) + δ1rend
e−γ τ , (54)

and the solution for c0 becomes

c0 = δ1rend[λ ln(r) + 1]
λ + δ1rendλ ln(rend) + δ1rend

e−γ τ . (55)

This approximate analytical solution was compared to the numerical solution of the
full non-linear model (12)–(15) but with the time expressed in terms of τ . The result
is shown in Fig. 2; the analytical solution agrees well with the numerical solution.
Therefore, we are confident in our use of this approximate analytical solution in the
following simulations.
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Fig. 2 Plot of (56) (solid line) against numerical solution of full model (12)–(15) (dashed line). Model
parameter: λ = 0.5, δ1 = 0.6, δ2 = 4000, r0 = 1, r1 = 5. Numerical parameter: 	x = 0.04, 	τ = 0.0016

For the example given in Fig. 3, the equilibrium concentration c0 = 0 is reached
fast. In dimensional terms (based on the parameter values on Table 1), it is reached
after approximately 1.5 hrs, which means that within this time, the fungus has com-
pletely exhausted all the available nutrients in the pore. This is related to the fast
reaction time. The fungus would require a longer time to take up all available nutri-
ents if the desorption reaction was slower.

The composite solution valid at all times is obtained as the sum of the outer and
the inner solution minus the common part, i.e. the concentration at r = 1 is

c = 1 + δ1rend[e−γ τ − 1 − λ ln(rend)] − λ

λ + rendδ1 + rendλδ1 ln(rend)

− π

∞∑
n=1

e−α2
nδ2τF (αn)C0(1;αn)

[
λ
{
δ1J0(rendαn) − αnJ1(rendαn)

}]
, (56)

where the αn are the positive roots of (32) and F(αn) and C0 are given by (33) and
(34) when r = 1.

Based on this, the dimensionless influx into the hypha is given by

F(τ) = λc∞c = λc∞

[
1 + δ1rend[e−γ τ − 1 − λ ln(rend)] − λ

λ + rendδ1 + rendλδ1 ln(rend)
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Fig. 3 Approximate analytical and numerical solution for nutrient influx into hypha. Model parame-
ters: λ = 0.5, δ1 = 0.6, δ2 = 4000, r0 = 1, r1 = 5. Numerical parameters: 	x = 0.04, 	τ = 0.0016
and 	τ = 1 × 10−6 during the first five seconds

− π

∞∑
n=1

e−α2
nδ2τF (αn)C0(1;αn)

× [
λ
{
δ1J0(rendαn) − αnJ1(rendαn)

}]]
. (57)

The scaling for the flux is DKm

r0
= Fm

λ
and the scaling for time in terms of τ is 1

kd
.

Therefore, the dimensional influx into the hypha is FD(tD) = Fm

λ
F (kd tD).

FD(tD) = Fmc∞

[
1 + δ1rend[e−γ kd tD − 1 − λ ln(rend)] − λ

λ + rendδ1 + rendλδ1 ln(rend)

− π

∞∑
n=1

e−α2
nδ2kd tDF (αn)C0(1;αn)

× [
λ
{
δ1J0(rendαn) − αnJ1(rendαn)

}]]
, (58)

where λ = Fmr0
DlKm

, δ1 = r0ka

Dl
, c∞ = Cl0

Km
, rend = r1

r0
, δ2 = Dl

kd r2
0

and tD is the dimensional

time.
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Fig. 4 Phases of phosphate influx into a single hypha as calculated by the bounded pore model

4 Results and Discussion

Rates of arbuscular mycorrhizal hyphal growth in soil are known to be relatively rapid
and similar in magnitude to those of roots (0.5–3 mm d−1; Jakobsen et al. 1992).
Whilst these rates of hyphal expansion suggest rapid exploitation of the soil volume,
our knowledge of nutrient depletion rates by hyphae has been limited to large scale
measurements (on the mm to cm scale). This scale of measurement, however, is far
removed from the spatial scale at which hyphae largely operate (µm to mm scale).
Experimentally measuring hyphal-mediated nutrient depletion from micropores in
a complex soil matrix, however, is currently not possible. Consequently, we have
little idea of the times taken for hyphae to exploit soil pores of different volumes
and wall chemistries. Here we present a model for a relatively immobile nutrient
which suggests that hyphae can rapidly deplete P from soil micropores. This result
is consistent with the rapid rates of hyphal growth and turnover reported in Staddon
et al. (2003).

Figure 4 points out the phases of phosphate uptake by a single hypha from a capil-
lary tube, approximating a uniform cylindrical soil pore, using parameter values from
Table 1. Time is plotted on a logarithmic scale for better visualisation. The speed at
which P uptake takes place depends on the values of the ad- and desorption as well
as uptake parameters. At a time scale in the order of the solute diffusion time scale
tdiffusion = r2

0/Dl (in this example 0.025 s), the flux rapidly decreases as the hypha
takes up P , creating a depletion zone around it. At a time scale in the order of the
reaction time scale, treaction = 1/kd (in this example 1.7 min), the depletion zone has
reached the outer boundary at the pore wall and the concentration in the pore water
solution is sustained with nutrients that are desorbed from the pore wall. After the ad-
sorbed phase has also been depleted by the fungus, the concentration in the solution
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tends to zero, which is the equilibrium concentration reached at a time much larger
than the reaction time scale.

The model described here can provide information for the design of single hy-
phal scale experiments by estimating a range of parameter values for an optimal ex-
perimental setup. Such an experimental setup would be useful for validating single
hyphal scale nutrient acquisition models which would ultimately have broad applica-
tion (e.g. for optimization of nutrient supply rates, inclusion in mineral weathering
models, prediction of carbon flow in plant-soil systems). In the model described here
we portray a hypha entering a long cylindrical pore which experimentally could be
matched by glass capillaries. We focus on the study of P uptake from this capillary
by a hypha. We sought to represent an experimental system such that its dynamics
occurs on practicable time scales and that concentrations and fluxes are within de-
tection limits of current analytical methods. Properties of the capillary wall, and thus
the reaction time scale, could be manipulated by applying different coatings to the
capillary walls (e.g. different (oxy)hydroxides of Al and Fe). Diffusion time scale
could be manipulated by using different hydrogels instead of water solutions which
would have a different diffusion coefficient or by using hyphae of different radii,
although this is of course harder to control. Varying the spatial dimensions (capil-
lary radius) or the initial P concentration in solution/hydrogel changes the time at
which final zero equilibrium is reached and the magnitude of the uptake rate, re-
spectively. All these effects are illustrated in Figs. 5–10. One by one, the effects of
varying the model parameters are shown, starting with a default parameter set of
kd = 3 × 10−2 s−1, C0 = 1 × 10−4 µmol cm−3, Dl = 1 × 10−5 cm2 s−1, bp = 239,
r0 = 5 × 10−4 cm, r1 = 25 × 10−4 cm. Hence, default diffusion and reaction time
scales in this example are 0.025 s and 0.56 min, respectively. In addition, two different
capacities of the fungus to take up P are considered: (a) Fungal uptake parameter val-
ues similar to those of a plant (Tinker and Nye 2000): Km = 5.8 × 10−3 µmol cm−3,
Fm = 3.26 × 10−6 µmol cm−2 s−1, and (b) larger fungal uptake parameter values
as estimated by Schweiger and Jakobsen (1999): Km = 1.7 × 10−3 µmol cm−3,
Fm = 2.55×10−5 µmol cm−2. They do not affect the diffusion or reaction time scale;
however, they do affect the magnitude of P influx which could be of importance with
respect to the measurement method, i.e., detection limit.

The effect of varying the value of the desorption rate constant kd is shown in
Fig. 5. This parameter is related to the speed of P desorption from the capillary
wall. It shows that when desorption is slow, the concentration in the soil solution is
sustained at a lower value, but over a longer period of time. Decreasing the value of
kd by one and two orders of magnitude increases the reaction time scale from the
default value of 0.56 min to 5.56 min and 55.56 min, respectively.

Figure 6 shows that when diffusion is slow, the height of the plateau is lower. The
width of the plateau zone is changed on the left hand side due to a different diffusion
time scale. Decreasing the default value of the diffusion coefficient by a factor of 0.1
or 0.5 increases the diffusion time scale from 0.025 s to 0.05 s and 0.25 s, respectively.

The parameter bp describes the distribution of P between solution and capillary
wall at equilibrium. Varying the buffer power bp changes the time at which the equi-
librium concentration of 0 is reached (Fig. 7). When the buffer power is larger, then
there are more nutrients available for desorption and the concentration in solution
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can be sustained for a longer period of time. When bP is very small, the plateau dis-
appears because the amount of nutrients to be desorbed becomes negligibly small.
Diffusion and reaction time scales are not changed by changing the buffer power bp .

Figure 8 shows that a larger hyphal radius causes the diffusion time scale to be
larger and the height of the plateau to be smaller. A smaller hyphal radius of 1 µm
decreases the diffusion time scale from the default value of 0.025 s to 0.004 s; a larger
hyphal radius of 10 µm increases the diffusion time scale to 0.1 s. The equilibrium
concentration of 0 is reached at an earlier time when the hyphal radius is large.

Changing the radius of the capillary tube r1 leaves the diffusion and reaction time
scales the same. However, the equilibrium concentration of 0 is reached at a later time
for large r1 (Fig. 9).

Changing the initial solution concentration Cl0 only changes the value of the initial
influx and the height of the plateau, but the width of the diffusion and reaction time
scale zones stay the same and the equilibrium concentration of 0 is also reached at
the same time (Fig. 10). For practical applications, Cl0 should be chosen such that P

concentrations are within the detection limit of the measurement method used.
The model presented here is a tool for interpreting single hyphal scale experi-

ments. We illustrated that the dynamics of hyphal P uptake from a capillary tube
is characterised by three phases: one where the diffusion coefficient of the solu-
tion/hydrogel is important, one where the sorption properties of the capillary wall
dominate, and finally one when the wall has been depleted and the final zero equi-
librium is reached. Based on a default parameter set, parameter values were changed
within realistic limits (see Table 1) in order to find the experimental setup most suit-
able with respect to time and spatial scales.

To facilitate measuring the P influx, the dynamics of P uptake should occur on
a large enough time scale. Diffusion and reaction time scales can be increased by
decreasing the diffusion coefficient and desorption rate constant, respectively. These
abiotic factors of the experimental setup can be manipulated by using hydrogels that
have a smaller diffusion coefficient than water solutions and by using different coat-
ings on the capillary walls that effect sorption properties for P (Abdallah and Gagnon
2009; Park et al. 2009). Such hydrogels are non-toxic and have been frequently used
to study the growth of plants and fungi in the laboratory (Pierard et al. 2007). Further,
their chemical and physical properties can be readily manipulated to alter their diffu-
sion properties and chemical delivery rates (Pierard et al. 2007; Moribe et al. 2008;
Zheng et al. 2009). In the case of the capillary coatings, these could consist of dif-
ferent (oxy)hydroxides of Al and Fe, minerals which commonly occur in soil and
primarily limit P availability at soil pH values <7. Depending on the parameter val-
ues used, the solution concentration inside the capillary tube can be sustained in the
range of seconds to days. Comparing the effect of the parameter values of kd and
Dl on the influx into the hypha after 0.5 min, Fig. 11 shows that increasing kd has
negligible effect on the influx compared to increasing Dl . The model suggests that in
order to design an experiment operating on measurable time scales, changing the dif-
fusion coefficient, e.g., by using various hydrogels, would be most successful. This
would also be suitable with the use of in vitro cultures of arbuscular mycorrhizal
fungi which are typically grown on agar plates.

The choice of the spatial dimension of the capillary tube is primarily dependent on
the radius of the mycorrhizal hyphae used (typically ca. 2.5 to 20 µm in width). The
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Fig. 11 Effect of varying both
the parameters kd and Dl on the
calculated influx after 0.5 min

model presented here is suitable if the capillary radius is in the same order than the
hyphal radius. If the capillary radius is much larger than the hyphal radius, the model
changes to one with a semi-infinite domain, i.e. the capillary wall is so far away that
the hypha is not affected by it. On the other hand, if the hypha were growing in a (soil)
matrix with pores much smaller than the hyphal radius, the model would reduce to
the situation of a continuum soil which is mostly the case for plant roots. For this
situation, there exists an approximate analytical solution as detailed in Roose et al.
(2001).

However, this model is based on the following assumptions that represent simpli-
fication of the real soil system:

Assuming radial symmetry with a completely fluid filled pore in which a hypha
is centrally positioned might be acceptable for an artificial experimental, but is not
realistic for soil situations. Pores would be filled with air as well and hyphae would
not be positioned in the centre. Cameron and Buchan (2006) suggest the following
soil pore classes: macro-pores 75–100 µm, meso-pores 30–75 µm, micropores 5–
30 µm, ultramicropores 0.1–5 µm, crypto-pores 0.01–0.1 µm and 0.007–0.01 µm.
Thus, our model is valid for soils with pores mainly in the micro- and mesopore
range. In such situations, the hypha can be viewed as growing in individual soil pores
instead of viewing the soil as a homogeneous matrix.

Uptake properties are likely to change along the axis of the hypha. For example,
tip-localized release of P solubilising agents (e.g. organic acids) and uptake of P has
been reported in some fungi (Plassard and Dell 2010). This limitation could be over-
come in a 3-dimensional model where particularly the variations along the hyphal
axis could be taken into account. A 3-dimensional approximation would be closer
to the real soil situation. Our model can only be seen to represent a unit length of a
hypha; and different characteristics might be assigned to the different units that make
up the whole hypha in an upscaling process as has been done for root hairs by Leitner
et al. (2010). This would also capture the limitation that we did not consider hyphal
growth.
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It has been shown that a hypha can modify its environment, e.g. by acidifying
the region behind the tip (Jolicoeur et al. 1998), excretion of organic acids, or direct
mineral weathering (Rosling et al. 2009). These processes have not been considered
in this paper, but extension to this would not be impossible. Rather we consider this
beyond the scope of this paper.

One could also think of an alternative experimental setup where hyphae grow into
narrow gaps between glass slides. Modelling such an experimental situation would
result in a 1-dimensional model or a 2-dimensional model which could take varia-
tions along hyphal axis into account. Qualitatively, results should be similar to the
cylindrical case, however, if one is interested in quantitatively realistic parameter val-
ues, the cylindrical shape seems more appropriate as it mimics the soil pore situation
more closely.

In conclusion, we present a mechanistic model that suggests that arbuscular my-
corrhizal hyphae can rapidly deplete nutrients from soil micropores. These findings
are consistent with gross spatial scale experimental measurements made in soil. This
analysis will help to design relevant single hyphal scale experiments.
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