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Abstract The accurate reconstruction of phylogenies from short molecular sequen-
ces is an important problem in computational biology. Recent work has highlighted
deep connections between sequence-length requirements for high-probability phy-
logeny reconstruction and the related problem of the estimation of ancestral se-
quences. In Daskalakis et al. (in Probab. Theory Relat. Fields 2010), building on the
work of Mossel (Trans. Am. Math. Soc. 356(6):2379–2404, 2004), a tight sequence-
length requirement was obtained for the simple CFN model of substitution, that is,
the case of a two-state symmetric rate matrix Q. In particular the required sequence
length for high-probability reconstruction was shown to undergo a sharp transition
(from O(logn) to poly(n), where n is the number of leaves) at the “critical” branch
length gML(Q) (if it exists) of the ancestral reconstruction problem defined roughly
as follows: below gML(Q) the sequence at the root can be accurately estimated from
sequences at the leaves on deep trees, whereas above gML(Q) information decays
exponentially quickly down the tree.

Here, we consider a more general evolutionary model, the GTR model, where the
q × q rate matrix Q is reversible with q ≥ 2. For this model, recent results of Roch
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(Preprint, 2009) show that the tree can be accurately reconstructed with sequences of
length O(log(n)) when the branch lengths are below gLin(Q), known as the Kesten–
Stigum (KS) bound, up to which ancestral sequences can be accurately estimated
using simple linear estimators. Although for the CFN model gML(Q) = gLin(Q) (in
other words, linear ancestral estimators are in some sense best possible), it is known
that for the more general GTR models one has gML(Q) ≥ gLin(Q) with a strict in-
equality in many cases. Here, we show that this phenomenon also holds for phylo-
genetic reconstruction by exhibiting a family of symmetric models Q and a phylo-
genetic reconstruction algorithm which recovers the tree from O(logn)-length se-
quences for some branch lengths in the range (gLin(Q),gML(Q)). Second, we prove
that phylogenetic reconstruction under GTR models requires a polynomial sequence-
length for branch lengths above gML(Q).

1 Introduction

Background Recent years have witnessed a convergence of models and prob-
lems from evolutionary biology, statistical physics, and computer science (Mossel
and Steel 2005). Standard stochastic models of molecular evolution, such as the
Cavender–Farris–Neyman (CFN) model (a.k.a. the Ising model or Binary Symmetric
Channel (BSC)) or the Jukes–Cantor (JC) model (a.k.a. the Potts model), have been
extensively studied from all these different perspectives and fruitful insights have
emerged, notably in the area of computational phylogenetics.

Phylogenetics (Semple and Steel 2003; Felsenstein 2004) is centered around the
reconstruction of evolutionary histories from molecular data extracted from modern
species. The assumption is that molecular data consists of aligned sequences and that
each position in the sequences evolves independently according to a Markov model
on a tree, where the key parameters are (see Sect. 2 for formal definitions):

• Rate matrix. A q×q mutation rate matrix Q, where q is the alphabet size. A typical
alphabet is the set of nucleotides {A,C,G,T}, but here we allow more general state
spaces. Without loss of generality, we denote the alphabet by [q] = {1, . . . , q}. The
(i, j)’th entry of Q encodes the rate at which state i mutates into state j .

• Binary tree. An evolutionary tree T , where the leaves are the modern species and
each branching represents a past speciation event. We denote the leaves by [n] =
{1, . . . , n}.

• Branch lengths. For each edge e, we have a scalar branch length τ(e) which mea-
sures the expected total number of substitutions per site along edge e. Roughly
speaking, τ(e) is the time duration between the end points of e multiplied by the
mutation rate.

We consider the following two closely related problems:

1. Phylogenetic Tree Reconstruction (PTR). Given n molecular sequences of length
k (one for each leaf)

{
sa = (

si
a

)k

i=1

}
a∈[n]

with si
a ∈ [q], which have evolved according to the process above with indepen-

dent sites, reconstruct the topology of the evolutionary tree.
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2. Ancestral State Reconstruction (ASR). Given a fully specified rooted tree (that is,
with known topology and edge lengths) and a single state s1

a at each leaf a of the
tree, estimate—better than “random”—the state at the root of the tree, indepen-
dently of the depth of the tree.

In both cases, longer edge lengths correspond to more mutations—and hence more
noise—making both reconstruction problems more challenging (Steel and Székely
2002). Our overriding goal is to extend efficient phylogenetic reconstruction to trees
with as large branch lengths as possible.

Reconstruction Thresholds Alternatively, the second problem can be interpreted in
terms of correlation decay along the tree or as a broadcasting problem on a tree-
network. It has thus been extensively studied in statistical physics, probability theory,
and computer science. See, e.g., Evans et al. (2000) and references therein. A crucial
parameter in the ASR problem is τ+(T ) = maxe τ (e), the maximal branch length in
the tree.

One class of ancestral estimators is particularly well understood, the so-called
linear estimators. See Sect. 2 for a formal definition. In essence, linear estimators
are simply a form of weighted majority. In Mossel and Peres (2003), it was shown
that there exists a critical parameter gLin(Q) = λ−1

Q ln
√

2, where −λQ is the largest
negative eigenvalue of the rate matrix Q, such that:

• if τ+ < gLin(Q), for all trees T with τ+(T ) = τ+ a well-chosen linear estimator
provides a good solution to the ASR,

• if τ+ > gLin(Q), there exist trees T with τ+(T ) = τ+ for which ASR is impossible
for any linear estimator, that is, the correlation between the best linear root estimate
and the true root value decays exponentially in the depth of the tree.

For formal definitions, see Mossel and Peres (2003). The threshold gLin(Q) =
λ−1

Q ln
√

2 is also known to be the critical threshold for robust (ancestral) reconstruc-
tion, see Janson and Mossel (2004) for details.

For more general ancestral estimators, only partial results are known. For the two-
state symmetric Q (the CFN model), impossibility of reconstruction as above holds,
when τ+(T ) > gLin(Q), not only for linear estimators but also for any estimator, in-
cluding for instance maximum likelihood. In other words, for the CFN model linear
estimators are in some sense best possible. This phenomenon also holds for sym-
metric models (i.e., where all nondiagonal entries of Q are identical) with q = 3
states (Sly 2009) (at least, for high degree trees). However, for symmetric models
on q ≥ 5 states, it is known that ASR is possible beyond gLin(Q), up to a criti-
cal branch length gML(Q) > gLin(Q) which is not known explicitly (Mossel 2001;
Sly 2009). Larger values of q here correspond for instance to models of protein evo-
lution. ASR beyond gLin(Q) can be achieved with a maximum likelihood estimator
although in some cases special estimators have been devised (for instance, symmet-
ric models with large q) (Mossel 2001). In this context, gLin(Q) is referred to as the
Kesten–Stigum bound (Kesten and Stigum 1967). We sometimes call the condition
τ+(T ) < gLin(Q) the “KS phase” and the condition τ+(T ) < gML(Q) the “recon-
struction phase.”
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For general reversible rate matrices, it is not even known whether there is a unique
reconstruction threshold gML(Q) such that ASR is possible for τ+(T ) < gML(Q)

and impossible for τ+(T ) > gML(Q). The general question of finding the threshold
gML(Q) for ASR is extremely challenging and has been answered for only a very
small number of channels.

Steel’s Conjecture A striking conjecture of Steel (2001) postulates a deep con-
nection between PTR and ASR. More specifically, the conjecture states that for
CFN models if τ+(T ) < gLin(Q) then PTR can be achieved with sequence length
k = O(logn). This says that when we can accurately estimate the states of vertices
deep inside a known tree, then it is also possible to accurately reconstruct the topology
of an unknown tree with very short sequence lengths.

In fact, since the number of trees on n labeled leaves is 2Θ(n logn), this is an op-
timal sequence length up to constant factors—that is, we cannot hope to distinguish
so many trees with fewer potential datasets. The proof of Steel’s conjecture was es-
tablished in Mossel (2004) for balanced trees and in Daskalakis et al. (2010) for
general (under the additional assumption that branch lengths are discretized). Fur-
thermore, results of Mossel (2003, 2004) show that for τ+(T ) > gLin(Q) a poly-
nomial sequence length is needed for correct phylogenetic reconstruction. For sym-
metric models, the results of Mossel (2004), Daskalakis et al. (2010) imply that it is
possible to reconstruct phylogenetic trees from sequences of length O(logn) when
τ+(T ) < gLin(Q). These results cover classical models such as the JC model (q = 4).
Recent results of Roch (2009), building on Roch (2008), Peres and Roch (2009), show
that for any reversible mutation matrix Q, it is possible to reconstruct phylogenetic
trees from O(log(n))-length sequences again when τ+(T ) < gLin(Q).

However, these results leave the following important problem open:

• As we mentioned before, for symmetric models on q ≥ 5 states, it is known that
ASR is possible for τ+(T ) < gML(Q), where gML(Q) > gLin(Q). A natural ques-
tion is to ask if the “threshold” for PTR is gML(Q) (i.e., the threshold for ASR)
or gLin(Q) or perhaps another value. (Note that for the CFN model, the thresh-
old for PTR has been shown to be gLin(Q) but in that case it so happens that
gLin(Q) = gML(Q).)

Our Contributions Our main results are the following:

• We show that for symmetric models Q with large q , it is possible to reconstruct
phylogenetic trees with O(logn)-length sequences whenever τ+(T ) < g+

q where
gLin(Q) < g+

q < gML(Q). We thus show that PTR from logarithmic sequences is
sometimes possible for branch lengths above the KS bound.

• We also show how to generalize the arguments of Mossel (2003, 2004) to show
that for any Q and τ+(T ) > gML(Q) it holds that correct phylogenetic recon-
struction requires polynomial-length sequences in general. The same idea is used
in Mossel (2003, 2004) and the argument presented here. The main difference is
that in the arguments in Mossel (2003, 2004) used mutual information together
with coupling while the more elegant argument presented here uses coupling only.
The results of Mossel (2003) apply for general models but are not tight even for
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the CFN model. The argument in Mossel (2004) gives tight results for the CFN
model. It is possible to extend that argument to more general models, but we prefer
the simpler proof given in the current paper.

Organization We begin with preliminaries and the formal statements of our results
in Sect. 2. The proof of our upper bound can be found in Sect. 3. The proof of our
lower bound can be found in Sect. 4.

2 Definitions and Results

2.1 Basic Definitions

Phylogenies We define phylogenies and evolutionary distances more formally.

Definition 1 (Phylogeny) A phylogeny is a rooted, edge-weighted, leaf-labeled tree
T = (V ,E, [n], ρ; τ) where: V is the set of vertices; E is the set of edges; L = [n] =
{1, . . . , n} is the set of leaves; ρ is the root; τ : E → (0,+∞) is a positive edge
weight function. We further assume that all internal nodes in T have degree 3 except
for the root ρ which has degree 2. We let Yn be the set of all such phylogenies on n

leaves and we denote Y = {Yn}n≥1.

Definition 2 (Tree Metric) For two leaves a, b ∈ [n], we denote by Path(a, b) the set
of edges on the unique path between a and b. A tree metric on a set [n] is a positive
function d : [n] × [n] → (0,+∞) such that there exists a tree T = (V ,E) with leaf
set [n] and an edge weight function w : E → (0,+∞) satisfying the following: for
all leaves a, b ∈ [n]

d(a, b) =
∑

e∈Path(a,b)

we.

For convenience, we denote by (τ (a, b))a,b∈[n] the tree metric corresponding to phy-
logeny T = (V ,E, [n], ρ; τ). We extend τ(u, v) to all vertices u,v ∈ V in the obvi-
ous way.

Example 1 (Homogeneous Tree) For an integer h ≥ 0, we denote by T (h) =
(V (h),E(h),L(h), ρ(h); τ) a rooted phylogeny where T (h) is the h-level complete bi-
nary tree with arbitrary edge weight function τ and L(h) = [2h]. For 0 ≤ h′ ≤ h, we
let L

(h)

h′ be the vertices on level h − h′ (from the root). In particular, L
(h)
0 = L(h) and

L
(h)
h = {ρ(h)}. We let HY = {HYn}n≥1 be the set of all phylogenies with homoge-

neous underlying trees.

Model of Molecular Sequence Evolution Phylogenies are reconstructed from mole-
cular sequences extracted from the observed species. The standard model of evolution
for such sequences is a Markov model on a tree (MMT).
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Definition 3 (Markov Model on a Tree) Let q ≥ 2. Let n ≥ 1 and let T =
(V ,E, [n], ρ) be a rooted tree with leaves labeled in [n]. For each edge e ∈ E, we
are given a q × q stochastic matrix Me = (Me

ij )i,j∈[q], with fixed stationary distribu-
tion π = (πi)i∈[q]. An MMT ({Me}e∈E,T ) associates a state sv in [q] to each vertex
v in V as follows: pick a state for the root ρ according to π ; moving away from
the root, choose a state for each vertex v independently according to the distribution
(Me

su,j )j∈[q], with e = (u, v) where u is the parent of v.

The most common MMT used in phylogenetics is the so-called general time-
reversible (GTR) model.

Definition 4 (GTR Model) Let [q] be a set of character states with q = |[q]| and
π be a distribution on [q] satisfying πi > 0 for all i ∈ [q]. For n ≥ 1, let T =
(V ,E, [n], ρ; τ) be a phylogeny. Let Q be a q × q rate matrix, that is, Qij > 0 for all
i 	= j and

∑
j∈[q] Qij = 0, for all i ∈ [q]. Assume Q is reversible with respect to π ,

that is, πiQij = πjQji , for all i, j ∈ [q]. The GTR model on T with rate matrix Q is
an MMT on T = (V ,E, [n], ρ) with transition matrices Me = eτeQ, for all e ∈ E. By
the reversibility assumption, Q has q real eigenvalues 0 = Λ1 > Λ2 ≥ · · · ≥ Λq . We
normalize Q by fixing Λ2 = −1. We denote by Qq the set of all such rate matrices.
We let Gn,q = Yn ⊗ Qq be the set of all q-state GTR models on n-leaf trees. We de-
note Gq = {Gn,q}n≥1. We denote by sW the vector of states on the vertices W ⊆ V .
In particular, s[n] are the states at the leaves. We denote by L T ,Q the distribution of
s[n].

GTR models are often used in their full generality in the biology literature, but
they also encompass several popular special cases such as the CFN model and the JC
model.

Example 2 (q-State Symmetric Model) The q-state symmetric model (also called
q-state Potts model) is the GTR model with q ≥ 2 states, π = (1/q, . . . ,1/q), and
Q = Q(q) where

Q
(q)
ij =

⎧
⎨

⎩

− q−1
q

if i = j,

1
q

o.w.

It is easy to check that Λ2(Q) = −1. The special cases q = 2 and q = 4 are called
respectively the CFN and JC models in the biology literature. We denote their rate
matrices by QCFN,QJC. For an edge e of length τe > 0, let

δe = 1

q

(
1 − e−τe

)
.

Then we have

(Me)ij = (
eτeQ

)
ij

=
{

1 − (q − 1)δe if i = j,

δe o.w.



On the Inference of Large Phylogenies with Long Branches 1633

Phylogenetic Reconstruction A standard assumption in molecular evolution is that
each site in a sequence (DNA, protein, etc.) evolves independently according to a
Markov model on a tree, such as the GTR model above. Because of the reversibil-
ity assumption, the root of the phylogeny cannot be identified and we reconstruct
phylogenies up to their root.

Definition 5 (Phylogenetic Reconstruction Problem) Let Ỹ = {Ỹn}n≥1 be a sub-
set of phylogenies and Q̃q be a subset of rate matrices on q states. Let T =
(V ,E, [n], ρ; τ) ∈ Ỹ. If T = (V ,E, [n], ρ) is the rooted tree underlying T , we de-
note by T−[T ] the tree T where the root is removed: that is, we replace the two edges
adjacent to the root by a single edge. We denote by Tn the set of all leaf-labeled
trees on n leaves with internal degrees 3 and we let T = {Tn}n≥1. A phylogenetic
reconstruction algorithm is a collection of maps A = {An,k}n,k≥1 from sequences
(si[n])ki=1 ∈ ([q][n])k to leaf-labeled trees T ∈ Tn. We only consider algorithms A
computable in time polynomial in n and k. Let k(n) be an increasing function of
n. We say that A solves the phylogenetic reconstruction problem on Ỹ ⊗ Q̃q with
sequence length k = k(n) if for all δ > 0, there is n0 ≥ 1 such that for all n ≥ n0,
T ∈ Ỹn, Q ∈ Q̃q ,

P
[

An,k(n)

((
si[n]

)k(n)

i=1

) = T−[T ]] ≥ 1 − δ,

where (si[n])
k(n)
i=1 are i.i.d. samples from L T ,Q.

An important result of this kind was given by Erdös et al. (1999). Let α ≥ 1 and
q ≥ 2. The set of rate matrices Q ∈ Qq such that tr(Q) ≥ −α is denoted Qq,α . Let
0 < f < g < +∞ and denote by Y

f,g the set of all phylogenies T = (V ,E, [n], ρ; τ)

satisfying f < τe < g, ∀e ∈ E. Then Erdos et al. showed (as rephrased in our setup)
that, for all α ≥ q − 1, q ≥ 2, and all 0 < f < g < +∞, the phylogenetic reconstruc-
tion problem on Y

f,g ⊗ Qq,α can be solved with k = poly(n). (In fact, they proved
a more general result allowing rate matrices to vary across different edges.) In the
case of the Potts model, this result was improved by Daskalakis et al. (2010) (build-
ing on (Mossel 2004)) in the Kesten–Stigum (KS) reconstruction phase, that is, when
g < gLin(Q) = g


Lin ≡ ln
√

2. They showed that, for all 0 < f < g < g

Lin, the phylo-

genetic reconstruction problem on Y
f,g ⊗ {Q(q)} can be solved with k = O(log(n)).

More recently, the latter result was extended to GTR models by Roch (2009), build-
ing on Roch (2008), Peres and Roch (2009). But prior to our work, no PTR algorithm
had been shown to extend beyond g


Lin.

2.2 Our Results

Positive Result In our first result, we extend logarithmic reconstruction results for
q-state symmetric models to ln

√
2 < g < ln 2 for large enough q . This is the first

result of this type beyond the KS bound.

Theorem 1 (Logarithmic Reconstruction beyond the KS Transition) Let 0 < f <

g < +∞ and denote by HY
f,g the set of all homogeneous phylogenies T =
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(V ,E, [n], ρ; τ) satisfying f < τe < g, ∀e ∈ E. Let g

Perc = ln 2. Then, for all

0 < f < g < g

Perc, there is R ≥ 2 such that for all q > R the phylogenetic recon-

struction problem on HY
f,g ⊗ {Q(q)} can be solved with k = O(log(n)).

Theorem 1 can be extended to general phylogenies using the techniques of Daskal-
akis et al. (2010), although then one requires discretized branch lengths. See Daskal-
akis et al. (2010) for details.

Negative Result In our second result, we show that for g > gML(Q) the number
of samples k must grow polynomially in n. In particular, this is true for the q-state
symmetric model for all q ≥ 2 and g > ln 2 by the results of Mossel (2001).

Theorem 2 (Polynomial Lower Bound Above gML(Q) (see also Mossel 2003, 2004))
Let Q ∈ Qq and f = g > gML(Q). Then the phylogenetic reconstruction problem on
HY

f,g ⊗{Q} requires k = Ω(nα) for some α > 0 (even assuming Q and g are known
exactly beforehand).

Remark 1 (Biological Convention) Our normalization of Q differs from standard
biological convention where it is assumed that the total rate of change per unit time
at stationarity is 1, that is,

∑

i

πiQii = −1.

See, e.g., Felsenstein (2004). Let −λQ denote the largest negative eigenvalue under
this convention. Then the Kesten–Stigum bound is given by the solution to

2e−2λQgLin(Q) = 1.

In the case of symmetric models with q states, one can check that

λQ = q

q − 1
,

and hence,

gLin(Q) = q − 1

2q
ln 2.

Here are a few typical values:

q = 2 (CFN model): gLin(Q) = 1

4
ln 2 ≈ 0.17,

q = 4 (JC model): gLin(Q) = 3

8
ln 2 ≈ 0.26,

q = 16: gLin(Q) = 15

32
ln 2 ≈ 0.32,

q → +∞: gLin(Q) → 1

2
ln 2 ≈ 0.35.



On the Inference of Large Phylogenies with Long Branches 1635

Values for gML(Q) are not known in general—except when they coincide with
gLin(Q). This is known to happen in the symmetric case with q = 2,3 (Bleher et
al. 1995; Ioffe 1996; Sly 2009). See also Borgs et al. (2006).

3 Upper Bound for Large q

3.1 Root Estimator

The basic ingredient behind logarithmic reconstruction results is an accurate estima-
tor of the root state. In the KS phase, this can be achieved by majority-type pro-
cedures. See Mossel (1998, 2004), Evans et al. (2000). In the reconstruction phase
beyond the KS phase, however, a more sophisticated estimator is needed. In this sub-
section, we define an accurate root estimator which does not depend on the edge
lengths.

Random Cluster Methods We use a convenient percolation representation of the
ferromagnetic Potts model on trees. Let q ≥ 2 and T = (V ,E, [n], ρ; τ) ∈ HYn with
corresponding (δe)e∈E . Run a percolation process on T = (V ,E) where edge e is
open with probability 1 − qδe. Then associate to each open cluster a state accord-
ing to the uniform distribution on [q]. The state so obtained (sv)v∈V has the same
distribution as the GTR model (T ,Q(q)).

We will use the following definition. Let T ′ be a subtree of T which is rooted at ρ.
We say that T ′ is an l-diluted binary tree if, for all s, all the vertices of T ′ at level sl

have exactly 2 descendants at level (s +1)l. (Assume for now that log2 n is a multiple
of l.) For a state i ∈ [q] and assignment s[n] at the leaves, we say that the event Bi,l

holds if there is a l-diluted binary tree with state i at all its leaves according to s[n].
Let Bl be the set of all i such that Bi,l holds. Consider the following estimator: pick
a state X uniformly at random in [q] and let

s̄l
ρ =

{
X, if X ∈ Bl,

pick uniformly in [q] − {X}, o.w.

We use the following convention. If log2 n is not a multiple of l, we add levels of
0-length edges to T so as to make the total number of levels be a multiple of l and
we copy the states at the leaves of T to all their descendants in the new tree. We then
apply the estimator as above.

Error Channel We show next that s̄ρ = s̄l
ρ is a good estimator of the root state under

the conditions of Theorem 1. Let

M
ρ,l = (

P[s̄ρ = j | sρ = i])
i,j∈[q].

Proposition 1 shows that this “error channel” is of the Potts type with bounded length,
no matter how deep the tree. The key behind our reconstruction algorithm in the next
section will be to think of this error channel as an “extra edge” in the Markov model.
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Proposition 1 (Root Estimator from Diluted Trees) Let g

Perc = ln 2. Then, for all

0 < g < g

Perc , we can find l > 0, R ≥ 2 and 0 < b̄ < +∞ such that

M
ρ,l = ebρQ,

where bρ ≤ b̄ and Q = Q(q), for all q > R and all T ∈ HY
0,g .

Proof The proof is based on a random cluster argument of Mossel (2001). Fix 0 <

f < g < g

Perc. In Mossel (2001), it is shown that one can choose ε > 0 small enough

and l,R large enough such that

P[Bi,l | sρ = i] ≥ ε, (1)

and

P[Bi,l | sρ 	= i] ≤ ε/2, (2)

for all q > R and all T = (V ,E, [n], ρ; τ) ∈ HY
0,g . The proof in Mossel (2001) ac-

tually assumes that all τe’s are equal to g. However, the argument still holds when
τe ≤ g for all e since smaller τ ’s imply smaller δ’s which can only strengthen in-
equalities (1) and (2) by a standard domination argument. (For (2), see the original
argument in Mossel (2001).)

Therefore, we have

M
ρ,l

ii = P[i ∈ Bl | sρ = i]P[X = i] + 1

q − 1
P[X /∈ Bl | sρ = i,X 	= i]P[X 	= i]

≥ ε

(
1

q

)
+ 1

q − 1
(1 − ε/2)

(
q − 1

q

)

= 1

q
+ ε

2q
.

Also, by symmetry, we have for i 	= j

M
ρ,l

ij = 1

q − 1

(
1 − M

ρ,l

ii

)

≤ 1

q
− ε

2q(q − 1)
.

Hence, the channel M
ρ,l

is of the form ebρQ with bρ ≤ b̄ where, by the relation
between δ and τ given in Example 2, we can take

b̄ = − ln

(
1 − q

(
1

q
− ε

2q(q − 1)

))

= − ln

(
ε

2(q − 1)

)
.

This concludes the proof. �
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3.2 Reconstruction Algorithm

Our reconstruction algorithm is based on standard distance-based quartet techniques.
Let T = (V ,E, [n], ρ; τ) ∈ HY

f,g be a homogeneous phylogeny that we seek to
reconstruct from k samples of the corresponding Potts model at the leaves (si[n])ki=1 ∈
([q][n])k .

Distances For two nodes u,v ∈ V , we may relate their distance to the probability
that their states agree

τ(u, v) =
∑

e∈Path(u,v)

τe = − ln

(
1 −

(
q

q − 1

)
P[su 	= sv]

)
,

and so a natural way to estimate τ(u, v) is to consider the estimator

τ̂ (u, v) = − ln

(
1 −

(
q

q − 1

)
1

k

k∑

i=1

�
{
si
u 	= si

v

})
.

Of course, given samples at the leaves, this estimator can only be used for u,v ∈ [n].
Instead, when u,v are internal nodes we first reconstruct their sequence using Propo-
sition 1. We will then over-estimate the true distance by an amount not exceeding 2b̄
on average. For u,v ∈ V − [n], let

τb(u, v) = τ(u, v) + bu + bv,

using the notation of Proposition 1. We also let {s̄i
u}ki=1, {s̄i

v}ki=1 be the reconstructed
states at u,v. By convention, we let

τb(a, b) = τ(a, b),

and

s̄i
a = si

a, ∀i = 1, . . . , k,

for a, b ∈ [n]. Note that, at the beginning of the algorithm, the phylogeny is not
known, making it impossible to compute {s̄i

u}ki=1 for internal nodes. However, as we
reconstruct parts of the tree, we will progressively compute the estimated sequences
of uncovered internal nodes.

By standard concentration inequalities, τb(u, v) can be well approximated with
k = O(logn) as long as τb(u, v) = O(1). For u,v ∈ V let

τ̂ (u, v) = − ln

(
1 −

(
q

q − 1

)
1

k

k∑

i=1

�
{
s̄i
u 	= s̄i

v

})
.

Recall the notation of Example 1.

Lemma 1 (Distorted Metric: Short Distances (Erdös et al. 1999)) Let 0 ≤ h′ < h

and let u,v ∈ L
(h)

h′ be distinct leaves. For all D > 0, δ > 0, γ > 0, there exists c =
c(D, δ, γ ) > 0, such that if the following conditions hold:



1638 E. Mossel et al.

• [Small Diameter] τb(u, v) < D,
• [Sequence Length] k = c′ logn for c′ > c,

then
∣∣τb(u, v) − τ̂ (u, v)

∣∣ < δ,

with probability at least 1 − n−γ .

Lemma 2 (Distorted Metric: Diameter Test (Erdös et al. 1999)) Let 0 ≤ h′ < h and
u,v ∈ L

(h)

h′ . For all D > 0, W > 5, γ > 0, there exists c = c(D,W,γ ) > 0, such that
if the following conditions hold:

• [Large Diameter] τb(u, v) > D + lnW ,
• [Sequence Length] k = c′ logn for c′ > c,

then

τ̂ (u, v) > D + ln
W

2
,

with probability at least 1 − n−γ . On the other hand, if the first condition above is
replaced by

• [Small Diameter] τb(u, v) < D + ln W
5 ,

then

τ̂ (u, v) ≤ D + ln
W

4
,

with probability at least 1 − n−γ .

Quartet Tests Let 0 ≤ h′ < h and Q0 = {a0, b0, c0, d0} ⊆ L
(h)

h′ . The topology of
T (h) restricted to Q0 is completely characterized by a bipartition or quartet split q0
of the form: a0b0|c0d0, a0c0|b0d0 or a0d0|b0c0. In words a0b0|c0d0 indicates that
it is possible, by removing an appropriate edge, to split the tree into two subtrees
with a0 and b0 on one side and c0 and d0 on the other. The most basic operation
in quartet-based reconstruction algorithms is the inference of such quartet splits. In
distance-based methods in particular, this is usually done by performing the so-called
four-point test: letting

F (a0b0|c0d0) = 1

2

[
τ(a0, c0) + τ(b0, d0) − τ(a0, b0) − τ(c0, d0)

]
,

we have

q0 =

⎧
⎪⎨

⎪⎩

a0b0|c0d0 if F (a0, b0|c0, d0) > 0,

a0c0|b0d0 if F (a0, b0|c0, d0) < 0,

a0d0|b0c0 o.w.

Note that adding “extra edges” at the nodes a0, b0, c0, d0 as implied in Proposition 1
does not affect the topology of the quartet.
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Since Lemma 1 applies only to short distances, we also perform a diameter test.
We let F̂ (a0b0|c0d0) = −∞ if maxu,v∈Q0 τ̂ (u, v) > D + ln W

4 and otherwise

F̂ (a0b0|c0d0) = 1

2

[
τ̂ (a0, c0) + τ̂ (b0, d0) − τ̂ (a0, b0) − τ̂ (c0, d0)

]
.

Finally, we let

FP(a0, b0|c0, d0) = �
{

F̂ (a0b0|c0d0) > f/2
}
.

Proof of Theorem 1 The algorithm is summarized in Fig. 1. The basis of the algo-
rithm was also used in Mossel (2004) in the setting of the two-state symmetric chan-
nel where a simpler ancestral reconstruction algorithm (that is, recursive majority)
could be used. The key idea is to recursively reconstruct the tree one layer at a time
from the leaves up to the root. In the first step, this involves pairing leaves according
to cherries, that is, pairs of leaves with a common ancestor. A similar procedure is
applied to each layer of the tree consecutively.

Given g, the upper bound on the edge lengths, choose l,R, and b̄ such that Propo-
sition 1 holds. Now take c′ large enough so that, using k = c′ logn samples and setting
D = 10g + 2b̄,W = 10, δ = f

20 , and γ = 10, we have that Lemmas 1 and 2 hold.
We begin with the first level of the tree. We apply the quartet test to every 4-tuple

of leaves. By a union bound over all such 4-tuples it follows that with high probability

• If maxu,v∈Q0 τ(u, v) ≤ D and the quartet splits as a0, b0|c0, d0 then FP(a0, b0|c0,
d0) = 1.

• If a0, b0|c0, d0 is not displayed by the tree then FP(a0, b0|c0, d0) = 0.

In other words, the algorithm correctly identifies the splits of all quartets with small
enough diameter and does not identify any false splits. Following the procedure in
Fig. 1, we may then pair up vertices which never appear on opposite sides of a split,
thus identifying all cherries. We thus accurately reconstruct the first level of the tree.
Having correctly identified the bottom level (h′ = 0) of the tree the algorithm now
repeats the procedure to iteratively reconstruct the remainder of the tree from layer
h′ = 1 to h′ = h − 1. More precisely, since the first h′ levels are known correctly by
induction, we may treat the internal vertices at level h′ as being leaves of a short-
ened tree of depth h − h′. The key difference of course is that we are not given the
sequences for these internal vertices but instead have to estimate them. Here lies the
importance of our ancestral sequence reconstruction algorithm from Proposition 1,
which we apply to the reconstructed subtrees below each vertex on level h′. The er-
rors of these estimators are independent and depend only on the subtrees below the
vertex. It follows that they can be treated as coming from an adjusted Markov process
on the shortened tree, where the edges from the vertices in level h′ + 1 to level h′ are
extended according to the error channels which by Proposition 1 are at most b̄. With
the estimated sequences on the vertices lying on level h′, we may proceed as we did
with the leaves by estimating the quartets and determining which vertices form cher-
ries, thus reconstructing the next level. A global union bound (i.e., over the success of
all events described above) ensures the success of the algorithm with high probability.
This concludes the proof of Theorem 1.
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Algorithm
Input: Sequences (si[n])ki=1 ∈ ([q][n])k ;

Output: Estimated tree T̂ ;

• Initialize the output T̂ to the set of isolated leaves.
• Let Z0 be the set of leaves.
• For h′ = 0, . . . , h − 1,

1. Four-Point Test. Let

Rh′ = {q = ab|cd : ∀a, b, c, d ∈ Zh′ distinct such that FP(q) = 1}.
2. Cherries. Identify the cherries in Rh′ , that is, those pairs of vertices that only appear

on the same side of the quartet splits in Rh′ . Let

Zh′+1 = {a(h′+1)
1 , . . . , a

(h′+1)

2h−(h′+1)
},

be the parents of the cherries in Zh′ .
3. Growing the Tree. Add the cherries identified in the previous step to T̂ .
4. Reconstructed Sequences. For all u ∈ Zh′+1, compute (s̄i

u)k
i=1.

• Output T̂ .

Fig. 1 Algorithm

4 General Lower Bound

Here, we prove the following statement which implies Theorem 2:

Theorem 3 (Polynomial Lower Bound on PTR) Consider the phylogenetic recon-
struction problem for homogeneous trees with fixed edge length τ(e) = τ > 0 for all
edges e ∈ E. Assume further that the ASR problem for edge length τ and matrix Q is
not solvable and that moreover τ > g


Lin. Then there exists α = α(τ) > 0 such that the
probability of correctly reconstructing the tree is at most O(n−α) assuming k ≤ nα .

For general mutation rates Q, it is not known if there is a unique reconstruc-
tion threshold gML(Q) such that ASR is possible for τ < gML(Q) and impossible
for τ > gML(Q). For models for which such a threshold exists, Theorem 3 above
shows the impossibility of phylogenetic reconstruction for τ > gML(Q). The exis-
tence of the threshold gML(Q) has been established for a few models, e.g., for so-
called random cluster models, which include the binary asymmetric channel and the
Potts model (Mossel 2001).

The proof of Theorem 3 is based on the following two lemmas. It is useful to write
n = 2� for the number of leaves of a homogeneous tree with � levels.

Lemma 3 (Reconstructing a Deep Subtree) Consider the PTR problem for homoge-
neous trees with fixed edge length τ . Let μ

�,i
Q denote the distribution at the leaves

on a homogeneous �-level tree with fixed edge length τ , root value i, and rate ma-
trix Q. Suppose there exists a number 0 < α < 1 such that for every � and all i one
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can write μ
�,i
Q = (1 − ε)μ̄ + εμ′i for some probability measures μ′i , i ∈ [q], μ̄, and

ε = O(2−α�). Then the probability of correctly reconstructing homogeneous phylo-
genetic trees with edge length τ assuming k ≤ nα/10 is at most O(n−α/2).

Lemma 4 (Leaf Distribution Decomposition) Consider the ASR problem for homo-
geneous trees with fixed edge length τ . Assume further that the ASR problem for Q

with edge length τ is not solvable and further τ > g

Lin. Then there is an α = α(τ) > 0

for which the following holds. There exists a sequence ε� = O(2−α�) such that for
all i ∈ [q] one can write μ

�,i
Q = (1 − ε)μ̄ + εμ′i for some probability measures

μ′i , i ∈ [q] and μ̄.

Proof of Lemma 3 Let r be chosen so that 2r−1 < nα/20 ≤ 2r . (Note that r < �.)
Consider the following distribution: first, pick a homogeneous tree T on � levels,
where the first r levels are chosen uniformly at random among r-level homogeneous
trees and the remaining levels are fixed (i.e., deterministic); second, pick k samples
of a Markov model with rate matrix Q and fixed edge length τ on the resulting tree.

Let A be a phylogenetic reconstruction algorithm. Our goal is to bound the success
probability of A on the random model above. We may assume that the bottom � − r

levels are given to A (as it may ignore this information) and that A is deterministic (as
a simple convexity argument shows that deterministic algorithms achieve the highest
success probability).

Note that the assumption of the lemma implies that, for a single sample, we can
simultaneously couple the distribution at the leaves of all the given subtrees of � − r

levels—except with probability O(2r2−α(�−r)) = O(n−9α/10). This can be achieved
by starting the coupling at level r (from the root) of the tree. Repeating this for the
nα/10 samples we obtain the following. Let μT denote the measure on the nα/10

samples at leaves of T . Then there exists measures μ,μ′
T and ε = O(n−8α/10) such

that μT = (1 − ε)μ + εμ′
T .

Write Nr for the number of leaf-labelled complete binary trees on r levels. Write
E (s, A, T ) for the indicator of the event that the k samples are given by s and that A
recovers T . The success probability of A is then given by

∑

T

N−1
r

(∑

s

μT

(
E (s, A, T )

))

= (1 − ε)N−1
r

∑

s

∑

T

μ
(

E (s, A, T )
) + εN−1

r

∑

T

∑

s

μ′
T

(
E (s, A, T )

)
. (3)

For the second term note that
∑

s

μ′
T

(
E (s, A, T )

) ≤
∑

s

μ′
T (s) = 1,

and, therefore, the second term in (3) is bounded by ε. Furthermore, for each s,∑
T μ(E (s, A, T )) = μ(s) by definition and

∑
s μ(s) = 1 so the first term in (3) is

bounded by (1 − ε)N−1
r .
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Thus overall, the bound on the probability of correct reconstruction is ε +
(1 − ε)N−1

r . Using the facts that Nr = Ω(22r
) = Ω(2n0.1α

) = Ω(nα/2) and ε =
O(n−8α/10) concludes the proof. �

Proof of Lemma 4 For δ > 0 and r ′ > 0, let μ
�−r ′,i
Q (δ) be the same measure as μ

�−r ′,i
Q ,

except that, for each leaf, independently with probability 1 − δ, the state at the leaf is
replaced by ∗ (which does not belong to the original alphabet). The key to the proof
is the main result of Janson and Mossel (2004) where it is shown that if τ > g


Lin then
the following holds: There exist fixed δ > 0, α > 0 such that

μ
�−r ′,i
Q (δ) = (1 − ε)μ̄(δ) + εμ′i (δ), (4)

where ε = O(2−α(�−r ′)) for some probability measures μ′i (δ) and μ̄(δ).
The fact that there is no reconstruction (ASR) at edge length τ implies that there

exists a fixed r ′ and measures ν̄ and ν′i such that

μ
r ′,i
Q = (1 − δ)ν̄ + δν′i .

This implies in particular that we can simulate the mutation process on an �-level tree
by first using the measure μ

�−r ′,i
Q (δ) and then applying the following rule: for each

node v at level � − r ′ independently

• If the label at v is ∗ then generate the leaf states on the subtree rooted at v according
to the measure ν̄.

• Else if it is labeled by i, sample leaf states on the subtree below v from the mea-
sure ν′i .

The desired property of the measures μ
�,i
Q now follows from the fact that the measures

μ
�−r ′,i
Q (δ) have the desired property by (4). �

Proof of Theorem 3 Lemma 4 guarantees the existence of measures μ′i , i ∈ [q], and
μ̄ with the desired property. By Lemma 3, the existence of such measures immedi-
ately implies the required bound on the probability of reconstruction. This concludes
the proof. �

5 Concluding Remarks

The ultimate aim of the line of work discussed in this paper is to establish the follow-
ing central conjecture—which we call Steel’s Program.

Conjecture 1 (Steel’s Program) Whenever the Ancestral Sequence Reconstruction
problem is solvable, Phylogenetic Tree Reconstruction can be achieved with se-
quences of logarithmic length.

A key feature of our reconstruction algorithm is that the ancestral reconstruction
procedure does not depend on edge lengths. It is thus robust to uncertainty in the
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knowledge of the edge lengths which, in practice, can only be estimated to some
precision. Achieving this robustness is a major challenge. In particular, a significant
simplification arises when the edge lengths are assumed to be discretized. In this
setting, it is possible to recursively estimate the edge lengths exactly, as was shown by
Daskalakis et al. in the case of the CFN model (Daskalakis et al. 2010). We conjecture
that the results of Daskalakis et al. can be extended to more general error channels
by using a maximum likelihood ancestral estimator, although the analysis of such an
estimator may be somewhat complex. This would establish Steel’s Program in the
discretized setting. An important direction for future research is to remove the above
assumption of discretized edge lengths. To this end, a better understanding is needed
of how likelihood-based estimators are affected by uncertainty in the edge lengths.
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