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Abstract Nosocomial transmission of viral and bacterial infections is a major prob-
lem worldwide, affecting millions of patients (and causing hundreds of thousands
of deaths) per year. Rotavirus infections affect most children worldwide at least once
before age five. We present here deterministic and stochastic models for the transmis-
sion of rotavirus in a pediatric hospital ward and draw on published data to compare
the efficacy of several possible control measures in reducing the number of infections
during a 90-day outbreak, including cohorting, changes in healthcare worker-patient
ratio, improving compliance with preventive hygiene measures, and vaccination. Al-
though recently approved vaccines have potential to curtail most nosocomial rotavirus
transmission in the future, even short-term improvement in preventive hygiene com-
pliance following contact with symptomatic patients may significantly limit transmis-
sion as well, and remains an important control measure, especially where resources
are limited.
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1 Introduction

Nosocomial or hospital-acquired, infections encompass almost all clinically evident
infections that do not originate from a patient’s original admitting diagnosis. These
infections are often caused by breaches of infection control practices and procedures,
unclean and nonsterile environmental surfaces, and/or ill employees (Gleizes et al.
2006). In the United States, it has been estimated that as many as one hospital patient
in ten acquires a nosocomial infection, or 2 million patients a year (Weinstein 1998).
Nosocomial infections contributed to 88,000 deaths in the US in 1995. In France,
6.9% of hospitalized patients acquire nosocomial infections; the overall prevalence
of 7.5% comes from an average 1.1 infections per patient. The rate is up to 30%
in intensive care units. These patients must stay in the hospital 4–5 additional days.
About 9,000 people die with a nosocomial infection each year in France, about 4,200
of whom were admitted with non-life-threatening diagnoses (Vasselle 2006).

The causal agents of nosocomial infections include viruses, bacteria, parasites,
and yeast, but the most frequently encountered are rotavirus, astrovirus, or calicivirus,
which account for a third of the acute gastroenteritis risk. Among high-risk patients,
children under 5 years are of particular concern to health authorities, as it is believed
that most children throughout the world experience at least one episode of acute gas-
troenteritis due to rotavirus before reaching 5 years of age. One study of three hos-
pital systems in Avon, England in 2002–2003 found that outbreaks of nosocomial
gastroenteritis cost over US$1 million (including lost bed-days and staff absence),
and extrapolated to estimate a cost of nearly US$200 million for all of England dur-
ing the same time period (Lopman et al. 2004). A review of nosocomial rotavirus
outbreaks reported overall prevalence ranging from 1% to 27.7% (Chandran et al.
2006).

Many studies have already dealt with the need for safe and effective vaccines to
reduce morbidity and mortality caused by rotavirus gastroenteritis in children (An-
gel et al. 2007; Ruiz-Palacios et al. 2006; Vesikari et al. 2006). But few studies have
focused specifically on other simple preventive measures which could be applied to
control nosocomial epidemic risk for pediatric rotavirus outbreaks, like hand wash-
ing or disinfection, although their effectiveness has been proven (Fruhwirth et al.
2001). Studies have shown that it is nearly impossible to maintain compliance lev-
els for such measures above about 50% among health care workers (HCWs) without
an ongoing, continually renewed education/reminder campaigns in which the HCWs
have direct ownership (Pittet et al. 2000), as the effects of limited-term campaigns
tend to be transient (Avila-Agüero et al. 1998). Rotavirus is not transmitted exclu-
sively via contaminated individuals serving as vectors: one study of 31 pediatric
wards in French hospitals identified having fewer than 20 beds per ward, keeping
patients in their rooms, and keeping patients’ doors closed as other measures that
had strong correlations with lower incidences of diarrheal infections (Jusot et al.
2003) (other measures may not have shown significant as predictors because all the
wards in the study followed them). However, many notable rotavirus outbreaks have
occurred in wards for very young children (including infants) (Cone et al. 1988;
Ringenbergs et al. 1989; Rodrigues et al. 2007), where patients are largely restricted
to their rooms and isolation from other patients is simpler to arrange. These same
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studies showed a significant proportion of asymptomatic infections (Gleizes et al.
2006), where transmission is unlikely except through direct contact with bodily ex-
cretions. Although rooms in such wards are often shared, the literature on infection of
roommates provides mixed results at best (Cone et al. 1988; Ringenbergs et al. 1989;
Ryder et al. 1977). Some studies have also cited patient contact with HCWs’
hands as an important transmission route (Chandran et al. 2006; Maille et al. 2000;
Nakata et al. 1996; Ryder et al. 1977). For these reasons, the present study focuses
on the role of indirect transmission.

Mathematical modeling has already been used to address control of nosocomial
infections. Two groups of researchers in particular have published extensively on
control measures for bacterial hospital-transmitted infections. D’Agata, Magal, Ruan,
Webb, and collaborators used vector infection models (with HCWs as carriers) based
upon classical systems of nonlinear differential equations to study the emergence
and persistence of antibiotic-resistant bacterial infections in hospital settings, espe-
cially vancomycin-resistant enterococci, with a focus on optimizing antibiotic treat-
ment regimens to minimize the prevalence of antibiotic-resistant infections (D’Agata
et al. 2005, 2006, 2007, 2008; Webb et al. 2004, 2005). Their results suggested, for
example, beginning treatment as early as possible and reducing its duration. Chow
et al. (2007) developed a similar but more complicated framework to study the ef-
fects of antimicrobial drug cycling programs on the emergence of dual-resistant in-
fections.

Austin, Bonten, Lipsitch, and collaborators, working in the same area, focused
instead on the effects of preventive measures such as hand-washing, cohorting,
and other barrier precautions, drawing extensively upon stochastic models to sim-
ulate transmission within a single ward, more often than not as direct patient-
to-patient contact (Austin et al. 1999; Boldin et al. 2007; Bonten et al. 2001;
Lipsitch et al. 2000). Stochastic models (including agent-based models (ABMs) or
individual-based models) are important tools for capturing variability in pathogen
transmission due to individual differences and fluctuations in the environment, which
is especially important to consider in small populations like a single hospital ward
(Cooper et al. 1999). These studies especially emphasized the role of cohorting in
infection control, assuming that nursing staff, associated with a single ward, can be
assigned to specific disjoint subsets of patients, so as to restrict the spread of pathogen
contamination, while physicians and other medical staff which serve the entire hos-
pital cannot be so restricted, creating potential for infection spread across cohorts.
Temime et al. also used an ABM to study the effects of heterogeneity in HCW con-
tact structures and compliance levels with preventive measures (Temime et al. 2009),
concluding that a noncompliant, uncohorted HCW may function as an infection “su-
perspreader.”

Sébille et al. (1997a, 1997b) extended the notion of vector-type transmission of
nosocomial infections to consider not only HCWs but also contaminated instruments
and hospital equipment; in the case of pediatric infections, this may include play
equipment for children old enough to use toys.

Our study considers the transmission of rotavirus between patients and HCWs in a
single pediatric ward, with a focus on preventive hygiene measures and their likely ef-
fects in an environment where differences among individuals (of both types) can have
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an important impact, here measured through stochasticity. In particular, we focus in
part on the extent to which stochastic models predict mean prevalence that diverges
from that of the corresponding deterministic models while at the same time account-
ing for the variability observed between clinical studies, and in part on distinguishing
the effects of hygiene compliance before and after HCW-patient contacts, including
both universal and targeted (to symptomatic patients) compliance. In the following
section, we present a simple compartmental framework describing the basic infection
process within a single ward. Section 3 presents the analysis of the resulting deter-
ministic model, the results of which are extended in Sect. 4 by considering the effects
of stochasticity, via both a continuous-time Markov chain (CTMC) model to describe
the stochasticity inherent in the overall process and a study of the effects of variation
in the parameters with greatest uncertainty, upon key output quantities (the control
reproductive number and 90-day endemic prevalence). Section 5 focuses on the effi-
cacy of various control measures necessary to limit nosocomial transmission, and the
final section presents some conclusions.

2 Model Framework

We now propose a simple modeling framework for nosocomial transmission of gas-
trointestinal rotavirus infection between patients and HCWs in a single pediatric
ward. We describe the framework initially in terms of a mean-field (deterministic)
model, in order to illustrate the basic underlying assumptions. All model parame-
ters are defined in Table 1. In practice, there may be several different causes of
nosocomial gastroenteritis present simultaneously (Jusot et al. 2003; Ringenbergs
et al. 1989), but we will here assume that all diarrheal infections are caused by
rotavirus, as has also often been observed (Cone et al. 1988; Maille et al. 2000;
Thuret et al. 2004).

Patients are admitted to the ward at a rate Δ(t), a proportion (α) of whom are
admitted with community-acquired diarrhea (CAD); for a proportion εc of these, the
CAD is symptomatic and thus the primary diagnosis (reason for admission). The rest
((1 − εc)α + (1 − α)) of the patients (including those with asymptomatic CAD) are
admitted with some other primary diagnosis.

Patients in the ward are classified as having symptomatic CAD (C), symptomatic
hospital-acquired diarrhea (HAD) (Is ), asymptomatic infection (Ia), or no rotavirus
infection (S). Patients in these classes are discharged after respective mean stays of
1/γc, 1/γi , 1/γ , and 1/γ units of time (patients with asymptomatic HAD infections
are assumed to recover from their primary diagnoses at the same rate as patients
without rotavirus infections). Patients with symptomatic HAD may also clear the
rotavirus at a mean per capita rate of γd (but remain hospitalized pending recovery
from the primary diagnosis); recovered patients are assumed susceptible to repeat
infections based on data (e.g., Cone et al. 1988) showing that infants may sustain
more than one during a single stay. By assumption γd < γc (since those admitted
with CAD have already progressed through much of the infectious period prior to
hospital admission) and γi < γ (since HAD complicates recovery from the primary
diagnosis).
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Table 1 Parameters for model (1)–(6). con. = contact(s), pat. = patient(s), inf. = infected. Parameter
estimates and sources are discussed in Sect. 3.2

Parm Definition Est. Units

Δ(t) Patient admission rate – pat./day

α Proportion of patients admitted with 0.134 –

[community-acquired] gastroenteritis

ε Proportion of symptomatic HAD infections 0.71 –

εc Proportion of symptomatic CAD admissions 0.76 –

1/γ Mean duration of hospital stay for patients 8.0 days

not diagnosed with gastroenteritis

1/γi Mean duration of hospital stay for patients 8.0 days

diagnosed with nosocomial gastroenteritis

1/γc Mean duration of hospital stay for patients 4.9 days

diagnosed with community-acquired gastroenteritis

1/γd Mean time to clear nosocomial gastroenteritis 5.4 days

1/φ Mean infectious period for a contaminated HCW 1/γd days

bs Number of contacts per S-class patient per day 3 con./pat./day

bi Number of contacts per Is -class patient per day 6 con./pat./day

ba Number of contacts per Ia-class patient per day 3 con./pat./day

bc Number of contacts per C-class patient per day 6 con./pat./day

p Proportion of HCW-patient contacts 0.0387 [inf.] pat./con.

which result in infection or contamination

δ Proportion of HCW prevention compliance with 0.5 –

measures reducing HCW contamination

δ̃ Proportion of HCW prevention compliance with 0 –

measures reducing patient infection

η Proportion of viral shedding rate of asymptomatics 0.16 –

(carriers) relative to symptomatics

B Number of beds in the ward (and occupied at t = 0) 21 [pat.]

W Number of HCWs on the ward 5 [HCWs]

The patient-HCW contact rate is assumed to be determined by the needs of the
patients, which may be affected by rotavirus infection status, and is therefore set at
bc, bi , ba , and bs contacts per patient per day, respectively, for patients in classes C,
Is , Ia , and S. The number of contacts per HCW per day is therefore not in general
constant. By assumption bc = bi ≥ ba = bs since diarrheal infections require more
frequent attention from HCWs. In this initial framework, contacts are assumed to be
made homogeneously between patients and HCWs; the context can therefore be taken
as the smallest hospital unit for which strict cohorting is not in place. In practice,
only nursing staff may be cohorted, as physicians and other specialists visit patients
throughout a given ward and indeed across wards. Incorporation of multiple (say n)
cohorts into a model therefore requires further subdivision of the HCW class (into at
least n + 1 subclasses) and will be left for a more detailed model.
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HCWs are classified as uncontaminated (Sw) or contaminated (Pw) with the
pathogen; there is assumed to be no staff turnover, so the total number of HCWs
Sw + Pw = W is assumed constant. HCWs are assumed to become contaminated
from rotavirus exposure through contact with infected patients (in classes C, Is , and
Ia) at respective rates of βc, βi , and βa HCWs per contacted patient per day, for a
total contamination rate of (βcC + βiIs + βaIa)Sw/W HCWs/day. Rotavirus conta-
mination wears off, or is washed off, at a per capita rate of φ.

Patients (S) uninfected with rotavirus are assumed to become infected primarily
through contact with contaminated HCWs (the definition of HCW can easily be ex-
tended, as done by Sébille et al., to include hospital equipment that can also become
contaminated through patient contact and insufficient sterilization), at a rate βs poten-
tial infections per day, leading to a total infection term of βsSPw/W . A proportion ε

of these HAD infections are symptomatic (and hence more severe). We note that liter-
ature indicates a significant number (66% in Ringenbergs et al. 1989, 30% in Thuret
et al. 2004) of HAD cases develop after patient discharge; these cases are not taken
into account in our model, but can easily be estimated from the number identified in
the hospital, using the proportions (such as those cited above) given in the literature.

The infection rates (β) can be written as the product of the number of (potentially)
infectious contacts b per patient per day and the proportion (intuitively, probability)
π of infection per contact;1 the π can in turn be written in terms of the base pro-
portion (probability) p of a contact transmitting rotavirus between patient and HCW,
the compliance proportion (coefficient) δ of HCWs with preventive measures that re-
duce HCW contamination (such as washing hands after patient contact), the compli-
ance proportion (coefficient) δ̃ of HCWs with preventive measures that reduce patient
infection (such as washing hands before patient contact), and the proportion (coef-
ficient) η of viral shedding of asymptomatic infectives (carriers) relative to symp-
tomatics. In these terms, πs = p(1− δ̃), πi = πc = (1− δ)p, and πa = η(1− δ)p. By
assumption πc = πi > πa since η < 1, but note that πa �= πs since one deals with con-
taminating HCWs and the other with infecting patients. Thus, e.g., βa = baη(1−δ)p.

Finally, in specifying the patient admission rate Δ(t), we must make an assump-
tion regarding the ward’s (or hospital’s) policy for use of its resources. In particular,
are patient admissions to the ward controlled so as to maintain constant occupancy
(assumed 100%), in which case other patients are sent elsewhere and/or discharge
criteria are adjusted? Or, instead, are all patients who arrive at the hospital admit-
ted (at a rate assumed constant over the study period)? Under a constant occupancy
hypothesis (henceforth CO), there is effectively a waiting list, and every patient dis-
charge is accompanied by the immediate arrival of a new patient to occupy the newly
freed bed; thus the number of occupied beds S + Is + Ia + C is assumed equal to the
normal capacity B (beds) of the ward, the total patient population remains constant
at B , and the admission rate becomes Δ(t) = γ S(t) + γiIs(t) + γ Ia(t) + γcC(t).
Under a constant admissions hypothesis, however (henceforth CA), we assume that
patients arrive at a constant rate which is independent of current occupancy but tends
to maintain 100% occupancy (i.e., the ward was designed to accommodate average
community needs), so that Δ(t) = γB . Constant admissions implies that occupancy

1Subscripts are omitted here for simplicity.
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Fig. 1 Flowchart for model
(1)–(6), labeled with per capita
transition rates

will fluctuate (sometimes below 100% and sometimes above it) since different classes
of patient are discharged at different rates. Our analysis will consider both of these
hypotheses (the difference in prevalence turns out to be minimal). We note that sea-
sonal fluctuations in Δ (or α) could easily be incorporated with a periodic multiplier
if needed.

The resulting dynamical system framework is described by the flow chart in Fig. 1
and by the following system of differential equations:

dSW

dt
= −(βcC + βiIs + βaIa)SW/W + φPW , (1)

dPW

dt
= (βcC + βiIs + βaIa)SW/W − φPW , (2)

dC

dt
= εcαΔ(t) − γcC, (3)

dS

dt
= (1 − α)Δ(t) − βsSPW/W − γ S + γdIs, (4)

dIs

dt
= εβsSPW/W − (γi + γd)Is, (5)

dIa

dt
= (1 − εc)αΔ(t) + (1 − ε)βsSPW/W − γ Ia. (6)

If CAD cases are considered isolated (sporadic) arrivals, we can let α = 0.

3 Deterministic Analysis

In this section, we perform both qualitative and quantitative analyses of the simple
deterministic framework described in the previous section, to serve as a baseline for
interpretation of stochastic results in later sections. Although rotavirus outbreaks are
typically of limited duration, demographic renewal in a hospital context (admissions
and discharges) actually occurs on a faster timescale than the epidemic, justifying not
only their inclusion but a qualitative study of steady states, which, as the quantitative
results indicate, are approached relatively quickly.
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3.1 Equilibria and Rc

As long as community-acquired cases continue to arrive in a ward (α > 0), noso-
comial transmission will continue to occur, because of the ongoing potential for
infection (except under the unrealistic assumption of perfect hygiene compliance,
δ = δ̃ = 1). In this case, we expect model analysis to predict a unique, stable, endemic
steady state. In order to develop a measure of the purely nosocomial (re)production of
cases, we must also consider the arrival of a single isolated infective in the ward (thus
α = 0), in which case the deterministic model (1)–(6) exhibits traditional threshold
behavior, namely, the outbreak dies out if Rc ≤ 1 but persists if Rc > 1, where Rc

is the control reproductive number: the average number of secondary infections pro-
duced by a single infected (HAD) individual in an otherwise completely susceptible
population, in the presence of control measures (here, preventive hygiene measures).
In this section, we treat both cases, under the alternate hypotheses of constant occu-
pancy and constant admissions for the ward.

3.1.1 Constant Occupancy, α > 0

For α > 0, there can be no disease-free equilibrium (and hence no Rc). In general,
one can show that there always exists a unique endemic equilibrium (EE). We begin
with the constant-occupancy case:

The equilibrium condition dIs/dt = 0 for (5) can be written

I ∗
s = εβs

γi + γd

P ∗
w

W
S∗. (7)

Expanding Δ in (3), we can write the equilibrium condition dC/dt = 0 as

C∗ = εcα

1 − α

[
γ

γc

(
S∗ + I ∗

a

) + γi

γc

I ∗
s

]
.

Likewise expanding Δ in (6), we write

I ∗
a = (1 − εc)α(S∗ + γi

γ
I ∗
s )

1−(1−εc)α
1−α

+ (1 − ε)(βs/γ )(P ∗
w/W)S∗

1 − (1 − εc)α
1−(1−εc)α

1−α

.

We now replace I ∗
s with (7) in the expressions for I ∗

a and C∗, and use the results to
replace I ∗

a in the expression for C∗, so that all patient variable equilibrium values
are functions of S∗. Then we use the fact that S + Is + Ia + C = B is constant to
obtain an expression for S∗ of the form S∗(k0 + k1ρ

∗) = B , where ρ = Pw/W . We
back-substitute to obtain expressions of the form

S∗ = B

k0 + k1ρ∗ , I ∗
s = s1ρ

∗

k0 + k1ρ∗ , I ∗
a = a0 + a1ρ

∗

k0 + k1ρ∗ ,

C∗ = c0 + c1ρ
∗

k0 + k1ρ∗ ,
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which can be substituted into the equilibrium condition derived from (2) to obtain(
βi

s1ρ
∗

k0 + k1ρ∗ + βa

a0 + a1ρ
∗

k0 + k1ρ∗ + βc

c0 + c1ρ
∗

k0 + k1ρ∗

)(
1 − ρ∗) − φWρ∗ = 0,

whence

m0 + m1ρ
∗

k0 + k1ρ∗
(
1 − ρ∗) − φWρ∗ = 0,

with m0,m1, k0, k1 > 0 since s1, a0, a1, c0, c1 > 0. We then find a quadratic equation
for ρ∗,

f
(
ρ∗) = (m1 + φWk1)ρ

∗2 + (m0 − m1 + φWk0)ρ
∗ − m0 = Ãρ∗2 + B̃ρ∗ − m0 = 0.

By inspection f (0) = −m0 < 0 while f (1) = φW(k0 + k1) > 0, so (since f is
quadratic) there is a unique solution ρ∗ ∈ (0,1), namely

ρ∗ = −B̃ +
√

B̃2 + 4Ãm0

2Ã
,

which we can bound as follows:

max

(−B̃ + |B̃|
2Ã

,

√
m0

Ã

)
< ρ∗ <

−B̃ + |B̃|
2Ã

+
√

m0

Ã
.

Verification of the asymptotic stability of this equilibrium via the Jacobian is dif-
ficult as the matrix is not at all sparse. Consequently (and since our interest is in
prevalence during a single season), we address the issue numerically (Sect. 3.3).

3.1.2 Constant Admissions Rate, α > 0

If instead we consider the admissions rate to be a constant Δ = γB , the equilibrium
analysis proceeds as follows (with the same eventual result):

The equilibrium condition for (5) yields (7) for I ∗
s , as before. From (3), however,

we instead obtain C∗ = εcαΔ/γc . (6) likewise yields

I ∗
a = (1 − εc)αΔ/γ + (1 − ε)

βs

γ
S∗ P ∗

w

W
.

Substituting (7) into the equilibrium condition for (4) then yields

S∗ = (1 − α)Δ/γ

1 + (1 − ε
γd

γi+γd
)
βs

γ

P ∗
w

W

.

Substituting all of this into the equilibrium condition for (2) and letting ρ = Pw/W

as before, we finally obtain

f
(
ρ∗) = βs

γ

[
(k4k1α + 1)k3 + k4k2(1 − α)

]
ρ∗2

+
[

1 + k4k1α

(
1 − k3

βs

γ

)
− k4k2(1 − α)

βs

γ

]
ρ∗ − k4k1α = 0, (8)
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where

k1 = βc

γc

εc + βa

γ
(1 − εc), k2 = βi

γi + γd

ε + βa

γ
(1 − ε),

k3 = 1 − ε
γd

γi + γd

, k4 = γ

ωφ
,

and ω = W/B is the HCW-patient ratio. By inspection f (0) = −k4k1α < 0 while
f (1) = k3βs/γ + 1 > 0, so since f is quadratic it has precisely one root in [0,1].

3.1.3 Constant Occupancy, α = 0

If we assume that CAD cases are isolated rather than ongoing, we can set the para-
meter α to zero and model CAD arrivals in the initial conditions. This will generate
a disease-free equilibrium (DFE) and allow a calculation of Rc .

In this case, we find from (3), (6) C∗ = 0, I ∗
a = (1 − ε)(βs/γ )S∗ρ∗,

S∗ = B

1 + (
βs

γi+γd
ε + βs

γ
(1 − ε))ρ∗ ,

and then from (2) either ρ∗ = 0 (DFE) or

ρ∗ = k2
βs

ωφ
− 1

k2
βs

ωφ
+ (

βs

γi+γd
ε + βs

γ
(1 − ε))

< 1

(EE), with the latter positive iff k2
βs

ωφ
> 1.

From the DFE, we use the next-generation operator method (Diekmann et al.
1990) to calculate the control reproductive number (details given in Appendix A),

Rc =
√

βs

ωφ

[
ε

βi

γi + γd

+ (1 − ε)
βa

γ

]
. (9)

This expression can be read as the geometric mean of the average number of patients
infected per HCW and the average number of HCWs contaminated per patient, with
the latter term a weighted average of contributions from symptomatic and asymp-
tomatic patients. The DFE is locally asymptotically stable iff Rc < 1. We can also
now see that the condition given above for existence of the EE simplifies to Rc > 1.

It is also possible to estimate Rc or, as the outbreak evolves, the effective repro-
ductive number R(t), heuristically from time series data on new cases (Wallinga and
Lipsitch 2007), but in cases where such daily incidence rates are not known (or pub-
lished), the above approach can be used to estimate it from summary statistics over
an extended period of time.
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3.1.4 Constant Admissions Rate, α = 0

Setting α = 0 in the equilibrium conditions when Δ = γB makes C∗ = 0 and sim-
plifies (8) to

f (ρ∗) = βs

γ
[k3 + k4k2]ρ∗2 +

[
1 − k4k2

βs

γ

]
ρ∗ = 0,

which has solutions ρ∗ = 0 (DFE) and

ρ∗ = k4k2
βs

γ
− 1

k4k2
βs

γ
+ k3

βs

γ

< 1

(EE), with the latter positive iff k4k2
βs

γ
> 1. Since k4 = γ

ωφ
, this is the same condition,

and nearly the same expression for ρ∗, as in the constant-occupancy case above (the
expressions for ρ∗ are the same if γ = γi ). The basic reproductive number Rc in this
case is thus the same as that given in (9) above, and the EE exists iff Rc > 1.

3.2 Parameter Estimation

Most of the parameter estimates (means) given in Table 1 are derived from data given
in Table 2, using that of Ringenbergs et al. (1989) except as follows. In order to better
reflect a typical ward, and the HCW-patient ratio ω given in Cone et al. (1988), we
used the mean ward size given by Thuret et al. (2004) which surveyed dozens of
hospitals. Since Ringenbergs et al. (1989) did not differentiate discharge rates, we
used its estimate for 1/γ as a lower bound for 1/γi (the result is close to the mean
of the estimates given in Ryder et al. 1977 and Thuret et al. 2004); the average of the
rotavirus figures of Cone et al. (1988) and Maille et al. (2000) for γc, and the sole γd

estimate given by Ryder et al. (1977). For δ, we used the mean given in Avila-Agüero
et al. (1998), which fits well within the ranges given by Pittet et al. (2000) and Slota
et al. (2001).

We estimated parameters for which no data were given in the literature as follows.
In the absence of data on the rate at which HCWs clear contamination, we take a
conservative estimate of φ = γd , the same rate at which patients clear the infection.
(In practice, HCWs contaminated but not infected may wash the virus particles off
much sooner, but contaminated hospital equipment and facilities may go longer with-
out disinfection.) The average per-patient contact rates bs = ba and bi = bc are taken
from estimates for pediatric wards in a set of French hospitals (J.F. Jusot, unpub-
lished data). We assumed that HCW hand-washing or disinfecting occurred following
(rather than prior to) patient contacts, so as to prevent HCW contamination (and ex-
portation of rotavirus particles from patient rooms), in accordance with studies (e.g.,
Ontario Ministry of Health and Long-Term Care 2009) which found compliance no-
ticeably higher after than before patient contact, thereby concentrating preventive
measures in δ rather than δ̃ (but see Sect. 5.2 for further discussion). Finally, esti-
mates for p and η were obtained by fitting prevalence (I ∗

s + I ∗
a ) levels after 90 days

to observed final prevalences reported in each of three references, as indicated in Ta-
ble 3. In each case, parameter estimates in Table 1 were replaced with data from the
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Table 2 Data used to derive parameter estimates and distributions

Parm. Min. Median Max. Mean SD Ref.

B 29 0 Avila-Agüero et al. (1998)

36 0 Cone et al. (1988)

3 45 19.52 Jusot et al. (2003)

26 0 Ringenbergs et al. (1989)

28 32 30 1 Ryder et al. (1977)

10 21 45 22.33 7.89 Thuret et al. (2004)

ω = W/B 1/4 0 Cone et al. (1988)

α 0.076 0 Cone et al. (1988)

0.134 0 Ringenbergs et al. (1989)

0.303 0 Ryder et al. (1977)a

0 0.195 0.394 0.193 0.109 Thuret et al. (2004)

αεc 0 0.393 0.221 0.005 Jusot et al. (2003)

ε 0.81 0 Cone et al. (1988)

0.71 0 Ringenbergs et al. (1989)

εc 0.79 0 Cone et al. (1988)

0.76 0 Ringenbergs et al. (1989)

1/γ 0 133 10.2 1.0 Cone et al. (1988)

3 33 8.0 5.5 Ringenbergs et al. (1989)

7.17 8.10 Ryder et al. (1977)a

3.9 1.6 Thuret et al. (2004)

1/γi 13.9 Ryder et al. (1977)a

4.5 Thuret et al. (2004)

1/γc 6.2 0.8 Cone et al. (1988)

1 11 3.6 Maille et al. (2000)

7.2 Ryder et al. (1977)a

1/γd 5.4 Ryder et al. (1977)a

δ 0.50 Avila-Agüero et al. (1998)

0.476 0.662 Pittet et al. (2000)

0.22 0.82 Slota et al. (2001)

aNote Ryder et al. (1977) studied reovirus, not rotavirus
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given study when available: in particular, for Thuret et al. (2004) the given values of
α, γ and γi , as well as a value of ε = 0.76 taken from the mean of those given in
Table 2; and for Cone et al. (1988) the given values for α, ε, εc , γ (and thereby γi ),
and γc (and thereby γd ). (The values in Table 1 already follow Ringenbergs et al.
(1989) where possible.)

3.3 Numerical Analysis

As the data from Ringenbergs et al. (1989) falls roughly in the middle of the ranges
seen in Table 2, and as the estimates for the parameter η in this study varied least
(between the CO and CA scenarios) of the three studies used (see Table 3) while
falling in between the estimates given for the other studies, we chose to use Rin-
genbergs et al. (1989) as our primary reference for simulations (hence its dominance
in the estimates given in Table 1). Numerical solution of the system (1)–(6) for a
wide range of parameter values and initial conditions consistently suggested that the
unique endemic equilibrium was (globally) asymptotically stable, so in keeping with
our interest in studying an outbreak that lasts a single season, we use cumulative
prevalence of nosocomial cases over 90 days as a key epidemiological index (rather
than Rc, since we assume α > 0).

Graphs of the numbers of infected patients of each type (CAD/HAD) in the ward
during each of the first 90 days, as well as of the cumulative prevalence, are given in
Fig. 2 for both the CO and CA models. Since the results obtained for the two sce-
narios (CO/CA) are similar, we chose to keep only the CO model for many of the
subsequent stochastic analyses, based on realism (resource constraints tend to keep
reported occupancy at 100% with admission and discharge criteria adjusted accord-
ingly) as well as the greater proximity of the resulting estimates for p and η to the
estimates obtained for the other studies. In practice, however, the results obtained for
the two scenarios continued to parallel each other closely.

The parameter estimates obtained from Ringenbergs et al. (1989) yield a control
reproductive number of Rc ≈ 0.870 for the outbreak. This indicates that an ongoing
influx of CAD cases is required to sustain such an outbreak (since Rc < 1), although
the fact that Rc is close to 1 means that such outbreaks will be slow to wind down
(once CAD admissions cease), and variations in individual patients’ recovery times
and individual HCWs’ compliance with preventive measures may have the poten-
tial to sustain an outbreak—a potential that can only be measured by incorporating
stochasticity in the model, as will be done in the following section.

Table 3 Data fitting for the three rotavirus studies used to estimate p and η

Study Prevalence p (CO) p (CA) η (CO) η (CA)

Thuret et al. (2004) 0.033 0.0198 0.0194 0.090 0.165

Cone et al. (1988) 0.086 0.0340 0.0340 0.010 0.245

Ringenbergs et al. (1989) 0.14 0.0387 0.0396 0.160 0.125
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Fig. 2 Deterministic model (system (1)–(6)) results for parameters from Ringenbergs et al. (1989) and
Table 1. Left: incidence of both HAD (solid curves) and CAD (dotted curves) cases over time. Right:
cumulative prevalence. In both cases, results for the CO (black curves) and CA (gray curves) hypotheses
are close to each other

4 Stochastic Analysis

4.1 Continuous-Time Markov Chains

One way to simulate the variations in the infection process, as well as patient admis-
sions and discharges, due to individual differences is to describe them using stochas-
ticity. There are multiple ways to construct a stochastic model of population dynam-
ics, of which arguably the most appropriate compartmental structure for describing
epidemic outbreaks in small populations is to use a continuous-time Markov chain
(CTMC) (Allen 2003; Allen and Allen 2003). In a CTMC, interclass transition rates
from the deterministic model are used to calculate event probabilities and waiting
times, so that time remains continuous, but the events themselves are discrete, and
hence so are the populations (in contrast with a deterministic model such as (1)–(6),
which uses continuous state variables). Markov chains have, in addition, the Markov
property that the events and their timing depend at each moment only upon the present
values of the state variables, and not upon past values. Class transitions in CTMCs
constitute a Poisson process, for which the interevent waiting times are exponentially
distributed, with parameter λ (the reciprocal of the mean waiting time) equal to the
sum of all the transition rates in the system ((1)–(6) or Fig. 1). For large numbers of
simulations, in general, the results of each stochastic model converge in the mean to
those of the corresponding deterministic model. (Further technical details are given
in Appendix B.)

To develop a stochastic model which corresponds to the deterministic model
(1)–(6), one must address the ward size constraint. For the constant occupancy (CO)
case, patient discharges must be associated with arrivals of new patients (i.e., they are
not separate events), since a literal implementation of the admission rate Δ(t) as a
separate event from the various patient discharge events leads to a stochastic model
in which, unrealistically, the patient population size has no particular carrying ca-
pacity. For the constant admissions (CA) case, however, patient admissions occur as
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Fig. 3 Daily HAD incidence and cumulative prevalence given by the deterministic (dotted curves) and sto-
chastic (CTMC) models, using parameters from Ringenbergs et al. (1989). 95% quantiles (2.5%–97.5%)
for the stochastic model are given in dash-dotted curves

separate events from discharges, with their own rate; note that this has the effect of
increasing the total rate of occurrences, relative to the constant occupancy case, and
thus decreasing the average waiting time (although the mean frequency of each event
type remains the same).

Figure 3 compares sample results for the CTMC (based on a set of 1,000 simula-
tions) to those for the corresponding deterministic model, under the CO hypothesis
using parameter values based on Ringenbergs et al. (1989) and Table 1. Graphs give
the number of HAD cases in the ward each day during the first 90 days of an out-
break, and the cumulative prevalence of HAD among patients; the dashed lines at the
bottom and top of each graph represent the 2.5%ile and 97.5%ile marks, respectively;
although the former curve is flat in the first graph, signifying that on any given day
there were no HAD cases present in the ward in at least 2.5% of the simulations, it
lifts up around t = 50 days in the second, signifying that almost all the simulations
had experienced at least one HAD case by day 50.

A slight deviation can be observed between the stochastic mean number of in-
fected patients and the deterministic prediction, leading to a gradual separation be-
tween the stochastic and deterministic cumulative prevalence over time. This phe-
nomenon has been observed before, e.g., in D’Agata et al. (2007), where the authors
noted that their deterministic model for nosocomial transmission of a bacterial infec-
tion gave “a slight overestimation” of the incidence in their stochastic (in their case,
individual-based) models. It is interesting that our CTMC performs comparably to
their individual-based model (relative to the respective deterministic/mean-field re-
sult). The authors’ conclusion in D’Agata et al. (2007) is simply that extinction of the
particular infection in the deterministic model, measured via the reproductive num-
ber R0 or Rc , implies extinction in the mean in the stochastic model. The discrepancy
here may be due to the discreteness of the state variables (and events) in the CTMC,
given the small population size.

In partial support of this last conjecture, we also compared the solutions to a de-
terministic model where patients are discharged continuously but admitted only once
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a day (synchronously), which corresponds mathematically to setting Δ(t) = 0 in (1)–
(6) and introducing discontinuities of total size Δ × 1 day at integer values of t .
Results for this model (not shown) fell in between those for the original deterministic
model and those for the corresponding CTMC. Results for CO and CA versions of
all three models were comparable.

In practice, CAD infections tend to be seasonal, concentrated in the winter months
(e.g., Maille et al. 2000; Ringenbergs et al. 1989). Here we have represented, in both
the deterministic and stochastic models, a CAD arrival rate which is constant in the
mean, but the 90-day timeframe used here fits well within the length of typical sea-
sonal rotavirus epidemics. The 95% quantile interval depicted in Fig. 3 clearly in-
cludes the range of prevalences reported in the literature (e.g., roughly 3% reported
in Thuret et al. 2004 to 17% in Ryder et al. 1977), and suggests significant interepi-
demic variability even under similar conditions.

4.2 Individual Variability

A more static snapshot of the effects of variability in individual factors can be derived
by representing the relevant parameters with probability distributions instead of sin-
gle values (means) and observing the corresponding distributions for model outputs.
We chose different subsets of the parameters in Table 1 to represent in this way and
made repeated random draws from each distribution, using each set of draws (one
value for each parameter) to compute the reproduction number Rc and the cumula-
tive prevalence after 90 days using the model framework (1)–(6) under both the CO
and CA hypotheses. Focusing the study in this way allows not only an evaluation of
which variability sources are most likely to cause significant fluctuations in model
outputs, but also the incorporation of different distributions for different parameters,
reflecting the distinct ways in which each contributing factor may vary. The two clus-
ters of parameters analyzed in this way were selected for two reasons: First, they were
the only ones (with the exception of one report of B , cf. Table 2) for which enough
data was available to estimate distributions, as opposed to merely means. Second, the
remaining parameters (except for p and η, for which no direct measures of any kind
were available) are those which control policy might target, and as such their im-
pact on outbreaks is investigated in a different way in Sect. 5. Finally, the parameters
were clustered into two groups based on the type of event they govern: arrival of new
rotavirus cases, or patient discharge/recovery rates.

4.2.1 Variations in CAD Arrivals and Symptomaticity (α, ε, and εc)

We first considered variations in local environmental conditions that govern the ar-
rival of CAD cases to the hospital and the proportion of infections which are symp-
tomatic, described in the model via the dimensionless parameters α, ε and εc , all
proportions between 0 and 1. As Thuret et al. (2004) gave α with mean α̃ = 0.193
and standard deviation σ̂α = 0.109, we used a beta distribution:

α ∼ Beta(a, b) (10)
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Table 4 Variation in Rc and cumulative prevalence after 90 days, as a function of variability in α, ε and εc

Index 2.5% quantile 50% quantile 97.5% quantile

Rc 0.855 0.892 0.929

CumPrev (CO) 0.068 0.160 0.181

CumPrev (CA) 0.067 0.152 0.170

with a = α̃(
α̃(1−α̃)

σ̂ 2
α

− 1) and b = (1 − α̃)(
α̃(1−α̃)

σ̂ 2
α

− 1). Concerning ε and εc , only two

fixed values for each were available (ε1, ε2 and εc1, εc2 respectively; see Table 2), so
uniform distributions were used:

ε ∼ U(x,y) (11)

with x = ε1 − 5% and y = ε2 + 5%, and

εc ∼ U(v,w) (12)

with v = εc1 − 5% and w = εc2 + 5%. The ±5% interval extension was chosen arbi-
trarily in the absence of further data.

Results obtained after n = 1000 simulations are given in Table 4. Predictably, vari-
ation in these parameters has minimal effect on Rc (95% of the distribution is within
4.15% of the median value) since Rc measures only HAD transmission, not CAD
cases. The variation in cumulative prevalence is greater (+13% to −57% from the
median) but still considerably less than that exhibited by the CTMC. The relatively
small impact of variation in a parameter set containing α and εc, the key parameters
measuring the intensity of the CAD epidemic in the community, suggests that short-
term fluctuation in CAD arrivals within the timeframe of a single epidemic (that is,
given that some CAD cases are continuing to arrive) are not likely the dominant fac-
tor in the severity of an HAD outbreak within a hospital, a conclusion supported by
the absence of α and εc from Rc.

4.2.2 Variations in Recovery Times

As parameters of the “γ ” family represent [reciprocals of] waiting times, they were
randomized with gamma distributions, which are often used for this purpose (Hogg
and Craig 1978, Sect. 3.3). In keeping with the assumptions introduced in Sect. 2,
γ and γi were randomized from the same distribution (in the absence of data on the
distribution of γi ) under the constraint γi ≤ γ , by making two independent draws and
assigning the lesser to γi . In the same way, γc, γd , and φ were also randomized from
the same distribution as each other (namely that given for γc), under the constraints
γd < γc and φ < γc.

Several means and standard deviations were available for γ , but we continue to
privilege that of Ringenbergs et al. (1989), as before. Hence, the gamma distribution
was calibrated from 1/γ̃ = 8.0 days and σ̂(1/γ ) = 5.5 days (cf. Table 2):

1/γ ∼ �(u, v) (13)

with u = 1/γ̃ 2

σ̂ 2
(1/γ )

and v = σ̂ 2
(1/γ )

1/γ̃
.
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Table 5 Variation in Rc and cumulative prevalence after 90 days, as a function of variability in γ , γi , γc ,
γd , and φ

Index 2.5% quantile 50% quantile 97.5% quantile

Rc 0.484 0.876 1.189

CumPrev (CO) 0.092 0.169 0.286

CumPrev (CA) 0.093 0.157 0.262

The gamma distribution for 1/γc was calibrated from Cone et al. (1988) since it
provides our only estimate for the standard deviation, thus with 1/γ̃c = 6.2 days and
σ̂(1/γc) = 0.8 days:

1/γc ∼ �(m,n) (14)

where m = 1/γ̃ 2
c

σ̂ 2
(1/γc)

and n = σ̂ 2
(1/γc)

1/γ̃c
.

Results obtained after n = 1000 simulations are given in Table 5. The variations
in the output epidemiological indices are clearly greater than those observed when
the parameters related to CAD arrivals and symptomaticity (α, ε, εc) are allowed to
vary. Within the 95% of the results closest to the median, the cumulative prevalence
after 90 days varied from 44% below the mean (comparable to that in Table 4) to
65% above it. The upper bound extends beyond that observed in the CTMC, and
the reason can be seen in the variation in Rc , where 22.8% of the simulations pro-
duced an Rc greater than 1, leading to a sustained endemic state (at least in the short
term) of HAD infection in the ward. These results suggest that fluctuations in the
rates at which patients recover or are discharged (and HCWs and hospital equipment
are decontaminated) have significant potential to extend outbreaks while preventive
hygiene compliance remains at estimated levels.

5 Control

The analyses presented in the prior two sections provide a broad description of noso-
comial transmission dynamics within a single hospital ward, including the range of
most likely behavior for a default scenario with parameter values representative of
reference conditions described in the literature. Specific measures may be put in place
to contain the spread of HAD cases during times when rotavirus outbreaks have been
identified in the community. Since nosocomial transmission will continue as long as
CAD cases continue to arrive, the nosocomial control reproductive number Rc can-
not serve as a unique epidemiological index; rather, we may measure changes from
the above baseline in cumulative prevalence levels (as well as in Rc) in response to
several different possible control measures, such as changes in the HCW-patient ratio
ω (including cohorting), compliance with preventive hygiene measures (as measured
by δ and δ̃), and vaccination. This section provides a comparison of the effects of
such measures.
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5.1 HCW-Patient Ratio and Ward Size

Because the deterministic model analyzed in Sect. 3 uses continuous state variables,
it is effectively scale-invariant, so changes in both W and B that preserve their ratio ω

do not affect the prevalence of infection, nor other proportional behavior. Therefore,
cohorting which preserves ω by partitioning a ward into smaller parts, for each of
which the HCW-patient ratio is the same as the average for the entire ward, will
under the deterministic model yield the same prevalence as no cohorting, as long
as CAD cases admitted to the ward are distributed evenly to all cohorts, which is
likely to be true in the mean as long as ward occupancy rates are near 100%, as
assumed. In this case, it will make no difference whether the cohorting is perfect or
not (that is, whether all staff are restricted to contacting patients in a single cohort,
or whether some staff, typically physicians and diagnosticians, make contact with
patients in several cohorts). Of course, if all diagnosed CAD cases are admitted to a
cohort reserved for this purpose, it would significantly limit nosocomial transmission,
but the fact that a quarter or more of CAD patients are admitted with asymptomatic
infections would require specific testing (as done in some studies) in order for such a
designated cohort to be efficient, a move that could be expensive.

The deterministic model can therefore only measure the likely effect of controlling
B and W via changes in their ratio ω. As seen in (9), Rc is inversely proportional to ω

since the HCW-patient contact rate is determined entirely by patient need: a constant
number of total contacts per patient per day means that the more HCWs there are,
the fewer contacts per day each of them has with patients, and therefore the less
frequently has the chance to receive or pass on rotavirus exposure. Adding a single
HCW to the default scenario of 5 HCWs for a 21-bed ward reduces Rc from 0.870
to 0.794, mean cumulative prevalence after 90 days (henceforth CumPrev90) from
14.0% to 11.6%, and the mean number of HAD cases present at 90 days from 2.9
to 2.5. If one instead doubles the number of HCWs to 10 (thereby doubling ω), these
indices reduce further, to 0.615, 6.73%, and 1.76 cases, respectively. Doubling the
number of HCWs to halve the number of HAD cases, however, may not be especially
cost-effective, and healthcare facilities are generally already operating with as many
staff as they can afford.

On the other hand, the CTMC model analyzed in Sect. 4 already showed signs
there of the effects of discretization and small population size, and suggests that ward
(or cohort) size does affect overall prevalence. Figure 4 illustrates the effects of popu-
lation size by superposing the mean and 95% interval of cumulative HAD prevalence
over time for 10,000 simulations each of the stochastic model with ω fixed at 1/4 and
a ward size of 4, 20, or 40 beds, as well as the results for the deterministic model.
(We use 20 beds as a reference case here, as it is the closest possible size to the re-
ported mean of 21 which allows scaling down with ω preserved.) As can be seen, the
larger the ward size, the closer the stochastic mean is to the deterministic solution,
and the smaller the 95% interval. Perfect cohorting (complete isolation of HCWs in
each cohort from patients assigned to other cohorts) is therefore likely to result in a
lower mean HAD prevalence than no cohorting, due to this discretization effect. Per-
fect cohorting also means, however, that when a cohort does receive a patient infected
with rotavirus, the other patients in that cohort receive a higher concentration of con-
tacts with HCWs who contact the infected patient than they might without cohorting.
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Fig. 4 Means (solid lines) and 2.5%/97.5% quantiles (dashed lines) for cumulative prevalence using the
CTMC with ω = 1/4 and 4 beds (black), 20 beds (dark gray), and 40 beds (light gray), compared to the
deterministic model (dotted line)

Consequently, the proportion of patients in that cohort who become infected may be
markedly higher than it would be otherwise (as evidenced by the higher top quantile
for the 4-bed case).

The CTMC model also shows a similar convergence of the mean cumulative preva-
lence to that of the deterministic model as the number of HCWs increases for a fixed
ward size B; in addition to the reduction in the number of cases observed in the
deterministic model as ω increases, CumPrev90, expressed as a proportion of the
prevalence in the deterministic model, increases from 74% for 1 HCW to 80% for
5 HCWs to 90% for 10 HCWs.

In short, increasing the HCW-patient ratio reduces infection when the amount of
attention each patient receives is based on his/her needs rather than the number of
available staff, but this factor alone is unlikely to justify the high marginal operating
costs thereby incurred. Cohorting, which involves a significantly lower cost, is likely
to have a positive but small effect on reducing infection as long as newly-arrived
CAD cases (asymptomatic as well as symptomatic) are assigned to every cohort as
beds open up. A designated CAD cohort would require both money (for testing all
incoming patients, in order to detect asymptomatic infections) and resources (holding
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beds open in the CAD cohort while CAD-negative patients wait for beds in other
cohorts) that will typically prove prohibitive.

5.2 Hygiene Compliance

A primary aim of this article is to investigate the role played by preventive hygiene
compliance in nosocomial rotavirus infection among children young enough to re-
main effectively isolated from each other within a ward. In estimating parameter val-
ues for our model, we chose somewhat arbitrarily to identify the roughly 50% maxi-
mal compliance level found in the literature (Avila-Agüero et al. 1998) with measures
that reduce HCW contamination, such as washing hands after contacts with patients
(incorporated through the parameter δ), rather than with measures that reduce patient
infection directly, such as washing hands immediately before contact with patients
(incorporated through δ̃). Before investigating the effects of changing these parame-
ters it is important to make two observations: first, that interchanging the values of δ

and δ̃ has no effect on the value of Rc (since a term (1 − δ)(1 − δ̃) can be factored out
of the product of the β’s); and second, that changes in the default (assumed) values
of these two parameters more generally (based upon data that would distinguish the
two) necessitate a recalibration of the estimates for p and η, which were chosen em-
pirically to fit the cumulative prevalence observed in Ringenbergs et al. (1989) and
the estimates δ = 0.50, δ̃ = 0 given in Table 1. For example, if we assume instead that
δ = δ̃ = 0.5, as consistent with one baseline estimate in Avila-Agüero et al. (1998),
the a posteriori data fitting described in Sect. 3.2 produces estimates of p = 0.0576
and η = 0.154 but the same infection rates, as it is based on known final prevalence.
The objective of considering changes in prevention-related parameters is instead to
evaluate changes in compliance levels from the levels currently commonly observed.

Although estimates of compliance with preventive hygiene measures in the litera-
ture vary, they generally agree that sustained baseline levels typically do not surpass
our default estimate of about 50%. In a study of transplant patients in a US pediatric
hospital, Slota et al. (2001) measured 22% overall compliance before announcing
the study, 76% compliance during a performance feedback period during the study,
and residual 52% compliance six weeks later. Another study (Avila-Agüero et al.
1998) which measured compliance as a function of perceived pressure in a Costa
Rica hospital found a baseline compliance of δ̃ = 0.52, δ = 0.49 (using covert obser-
vation), which rose minimally to δ̃ = 0.56, δ = 0.52 when the observation was overt
(and announced), and to δ̃ = 0.74, δ = 0.69 during a public education campaign (in-
cluding overt observation), but returned to baseline levels δ̃ = 0.49, δ = 0.52 some
weeks after the campaign had ended (under covert observation again). An Australian
study gave similar estimates of δ̃ = 0.124, δ = 0.106 (baseline before campaign);
δ̃ = 0.683, δ = 0.648 during the campaign; and δ̃ = 0.546, δ = 0.549 some time after
(Tibballs 1996). A Swiss team (Pittet et al. 2000) reported a sustained rise in overall
compliance (timing relative to patient contact was not reported) from 0.476 to 0.662
achieved via a combination of two specific mechanisms: a HCW-organized, ongoing
public awareness campaign in which posters and other announcements were changed
every few months using designs by the HCWs at that hospital, and the installation
of disinfectant gel dispensers beside every patient’s bed (compliance was then with
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gel use rather than hand washing). Both of these measures are moderate in cost and
require HCWs taking collective ownership of them.

Given the potential for significant short-term improvements illustrated by Avila-
Agüero et al. (1998), we may consider a short-term compliance increase during a
rotavirus epidemic in which the noncompliance level for both pre-contact and post-
contact hygiene drops by half (say, from 100% to 50% (1 − δ̃), or from 50% to 25%
(1 − δ)). In such a scenario, both the deterministic and stochastic models predict
a drop in CumPrev90 of a factor of between 4 and 5 (the deterministic prevalence
is reduced to 21% of its default value, and the stochastic mean prevalence to 24%
of its default value). A more modest drop of 1/3 in noncompliance, such as that
seen in Pittet et al. (2000), reduces CumPrev90 to 40% of its default value. Finally,
even a 1/4 drop in noncompliance (raising δ from 0.50 to 0.625 and δ̃ from 0 to
0.25) cuts CumPrev90 in half. Thus, significant reductions in rotavirus spread by
contamination can be achieved for even modest improvements in use of preventive
hygiene, if sustained over the course of an outbreak.

One may also imagine that during a rotavirus outbreak HCWs use preventive hy-
giene more often after contacting a patient known to be infected than when contacting
a patient without symptoms of gastroenteritis. In this case we may define a parameter
δs which describes the mean compliance level after contact with patients in the C

and Is classes, while δ continues to describe compliance levels after contacts with
patients in the S and Ia classes (and δ̃ to measure compliance before all patient con-
tacts). Under such a hypothesis the analytical results of Sect. 3.1 remain unchanged,
since compliance ratios are implicit in the β’s, and it is only the values of βc and
βi which change. Reducing (1 − δs) by 1/3 also reduces CumPrev90 by 1/3, and
reducing it by 1/2 results in nearly the same proportional reduction in prevalence. It
is worth noting that since asymptomatics are considerably less infectious than symp-
tomatics (η 	 1), improving compliance levels post-contact with all patients (that is,
reducing (1 − δ) by the same amount as (1 − δs)) gives only minimally better re-
sults than improving compliance levels post-contact with symptomatic patients, even
though a fairly large proportion of infections are asymptomatic. Thus, although uni-
form and regular compliance with preventive hygiene is preferable, improvements in
post-contact decontamination prompted only by observation of symptoms can still
reduce nosocomial transmission significantly.

Figure 5, which graphs reductions in CumPrev90 for all three compliance im-
provement scenarios using the deterministic model, illustrates this trend (the stochas-
tic mean prevalence gives similar results). For comparison purposes, compliance im-
provement h in this graph is defined as 1 − h = (1 − δ)/(1 − δ0), where δ0 is the
reference compliance level (Table 1) and δ the improved level, so that h = 0 when
δ = δ0 and h = 1 when δ = 1.

5.3 Vaccination

Efforts have been underway for a number of years to develop and distribute an effec-
tive vaccine for rotavirus infection, including one vaccine which was removed from
the market in 1999 over concerns for a potential rare side effect. With the recent
development of two vaccines (by different companies), international efforts (largely



Modeling Nosocomial Transmission of Rotavirus in Pediatric Wards 1435

Fig. 5 Reduction in CumPrev90 as a function of compliance improvement h (as defined in the text)
in: both pre-contact (δ̃) and post-contact (δ) compliance [solid curve]; only post-contact (δ) compliance
[dotted curve]; and only compliance following contact with symptomatic patients (δs ) [dashed curve]

under the auspices of the Rotavirus Vaccine Program collaborative) are underway to
get them approved in countries across the world and distributed to children in devel-
oping countries, where mortality rates are highest.

Data on vaccine coverage, efficiency, and effects at the population level remain at
present severely limited. Some preliminary data are available from the US, where a
live, oral pentavalent rotavirus vaccine (RV5) was introduced in 2006: Vaccine cover-
age has been estimated at 58% for children aged 3 months (1 dose) and 31% for chil-
dren aged <2 years (≥1 dose) as of the end of 2007. The annual number of positive
rotavirus test results reported during the 2007–2008 and 2008–2009 seasons dropped
by more than half relative to the median annual number during the period 2000–2006
(Centers for Disease Control and Prevention 2009). The pentavalent vaccine RotaTeq
has been estimated to have an efficacy over the first season post-inoculation of 98%
against severe forms of rotavirus gastroenteritis (Vesikari et al. 2006). For another
vaccine, Rotarix, which was the first approved for use in Europe, approximately 96%
of severe infections were prevented in the first year (information from the Rotarix
drug label).

In modeling the effects of a vaccination program on a nosocomial outbreak, we as-
sume that any vaccination occurs prior to hospital admission; in addition, for simplic-
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ity we assume the vaccine provides all-or-nothing protection (Halloran et al. 1992). If
we then suppose effective vaccination of a proportion ν of the population from which
incoming patients are admitted (in this case, young children), then the Δ(t) patients
who would, in the absence of a vaccination program, be admitted to the ward in unit
time can be classified into one of five groups:

• ναεc of them would have been hospitalized for symptomatic CAD infections but
now, being effectively vaccinated, will contract no infection for which to seek treat-
ment.

• ν(1 − αεc) of them will still be hospitalized for a non-CAD diagnosis, but, being
effectively vaccinated, will enter a protected class V upon admission, from which
they will be discharged at per capita rate γ .

• (1 − ν)(1 − α) of them will, as before, be hospitalized for a non-CAD diagnosis,
and enter the S class upon admission, vulnerable to nosocomial rotavirus infection.

• (1 − ν)αεc of them will, as before, be admitted (into the C class) for a (symp-
tomatic) CAD infection.

• (1 − ν)α(1 − εc) of them will, as before, be admitted (into the Ia class) for a non-
CAD diagnosis, with an undiagnosed asymptomatic CAD infection as well.

Thus, the total rate at which patients from the community will seek treatment is re-
duced by a proportion ναεc . Under a CA hypothesis, where all who seek treatment are
admitted, the total admissions rate will also be reduced, from γB to (1 − ναεc)γB;
under a CO hypothesis, where patients are only admitted to the ward as bed space
frees, the total admissions rate Δ(t) remains tied to the total discharge rate, and it is
merely the proportions of patients admitted into each class that are adjusted according
to the above quantities (so that, for example, the rate entering the C class becomes
(1−ν)αεc

1−ναεc
Δ(t)).

Under either hypothesis (CO or CA), the dynamics of HAD infection remain de-
coupled from the dynamics of the V class

dV

dt
= ν(1 − αεc)

1 − ναεc

Δ(t) − γV,

because of the assumption that HCW-patient contact rates are determined purely by
patient needs. Thus the qualitative behavior of the deterministic model as adapted
to incorporate vaccination remains unchanged. In the special case α = 0 of isolated
(sporadic) CAD admissions, the proportion S∗/B at the DFE is reduced by a factor of
(1 − ν) under both the CO and CA hypotheses, and the value of Rc is thus multiplied
by

√
1 − ν.

To simulate the quantitative effects of a rotavirus vaccination program, we use the
data cited above from the literature to estimate effective vaccine coverage ν: an es-
timated 31% of young children vaccinated, for whom an average of 97% of severe
infections are prevented (based on the 96% and 98% statistics given), thus provid-
ing effective coverage of ν = 0.31 × 0.97 ≈ 0.30. (We assume only severe infections
will lead to hospitalization; in fact, vaccination may prevent closer to 100% of in-
fections severe enough to require hospitalization, but it prevents much less than 97%
of mild cases, including asymptomatic ones.) Under a CO scenario with this level
of coverage, CumPrev90 drops by slightly more than half, from 14% to 6.8% (95%
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of stochastic simulations with ν = 0.30 yielded values between 0.5% and 14%). In-
creasing ν to 0.60 reduces the expected prevalence to 1.9% (corresponding stochastic
interval 0–6.8%), and for ν = 0.90 (near-universal coverage) it is reduced to 0.096%
(effectively zero, stochastic interval 0–1.2%). These reductions are a result of both
fewer CAD admissions and a reduced pool of patients susceptible to HAD infection.
As vaccine coverage rises, nosocomial rotavirus infections will become rarer, but
in developing countries vaccination remains a tool for the future, and less technical
measures the tools of the present.

6 Discussion

This study uses multiple models to describe the nosocomial transmission of rotaviral
gastroenteritis at the level of a single ward, particularly those treating very young
children, in which transmission occurs primarily via contact with contaminated sur-
faces and health care workers (HCWs) exposed to the virus. A deterministic frame-
work allows one to understand the basic underlying dynamics, which in this case
follow classical threshold behavior, although the control reproductive number Rc

which describes the efficiency of purely nosocomial transmission cannot be the ex-
clusive epidemiological reference index for an outbreak when community-acquired
cases (CAD) continue to arrive at the hospital. Data fitting in the deterministic model
using observed prevalences and parameters from multiple studies yielded estimates
for the probability (proportion) p of HCW-patient contacts causing infection or con-
tamination between 2% and 4% (and remaining under 6% even under the assumption
of significant HCW compliance with pre-contact preventive hygiene measures), and
estimated the relative infectivity η of patients with asymptomatic infections to be
between 9% and 25% that of patients with symptomatic infections.

Stochastic models allow observation of the effects of variation in relevant epi-
demiological parameters due to individual differences as well as fluctuations in the
environment. The primary stochastic model used in this study exhibits significant
interepidemic variability (even with parameters fixed), which is in accordance with
reported outbreaks where the overall prevalence ranged over an order of magnitude
(e.g., 2% to 20%). Exploring the effects of variations limited to certain subsets of the
parameters suggested that short-term fluctuations in admissions of CAD cases may
not be the dominant factor in nosocomial (HAD) transmission; on the other hand,
variations in discharge and recovery rates from patient to patient (and corresponding
decontamination rates in HCWs) showed a nontrivial (22.8%) probability of making
nosocomial transmission self-sustaining (Rc > 1) for short periods of time, extending
the duration of the outbreak.

Several different control measures showed significant potential to reduce noso-
comial transmission, but may not all be equally feasible to implement in a given
setting. Cohorting (assigning HCWs to disjoint groups of patients on the ward, rather
than allowing them to treat any patient) can slow the large-scale spread of infection,
but the uniform (random) assignment of CAD cases to cohorts and the presence of
asymptomatic CAD cases limit its effectiveness (as does the fact, not addressed in our
models, that physicians and other specialized HCWs cannot be cohorted). In general,
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however, stochastic discretization effects tend to reduce the overall mean prevalence
among patients when the cohort size (or the ward size) is reduced. A second measure,
increasing the HCW-patient ratio, dilutes the spread of infection when HCW-patient
contact rates are determined by patient needs, but is cost-intensive and therefore not
realistic in many settings. Vaccination against rotavirus infection has obvious poten-
tial to reduce or eliminate nosocomial transmission almost entirely once coverage
among patients at risk is high, but at present such vaccines are not yet widely avail-
able in developing countries. Finally, although studies have shown that it is difficult
to raise compliance with common preventive hygiene measures beyond about 50%
on a long-term basis, our models suggest that even targeted short-term improvements
in hygiene compliance may reduce prevalence by 1/3, 1/2 or more during a single
outbreak.

As a sample comparison among these control measures, adding a single HCW to
a typical ward with 5 HCWs and 21 beds reduces Rc by about 9% (from 0.870 to
0.794) and the (deterministic) 90-day mean cumulative prevalence (CumPrev90) by
about 21.5% (from 14% to 11%). Reducing cohort (or ward) size by 60% effects a
similar (about 19%) proportional reduction in the stochastic 90-day mean cumulative
prevalence (but has no effect on Rc). Reducing hygiene noncompliance both before
and after patient contact by 10% (δ̃ = 0.10, δ = 0.55) makes similar reductions in
both Rc and CumPrev90, as does reducing noncompliance by 22% after contact-
ing patients with symptomatic infections (δs = 0.61). Vaccination coverage of about
12% also produces this same value of CumPrev90 (but a smaller reduction of about
6% in Rc). Of these measures, adding a HCW to the staff of each ward clearly has
the highest cost; the next highest cost is incurred by vaccinating enough children to
achieve 12% coverage, although the cost is presumably not incurred by the hospital
itself. Cohorting may incur costs if the workspaces, equipment, and instruments used
by each HCW were previously common to the entire ward staff but must now be
duplicated for each cohort in order to avoid cross-contamination. Improved hygiene
compliance has no direct cost but that of the awareness campaign used to remind
HCWs to disinfect, and therefore remains an important tool in fighting nosocomial
infections.

Any theoretical study such as this one has obvious limitations introduced by sim-
plifying assumptions in the models. One such limitation is the assumption of homo-
geneity among patients, whereas some studies (e.g., Thuret et al. 2004) have found
higher rates of nosocomial rotavirus infection in certain types of patients such as those
suffering from bronchitis or recovering from organ transplants. In addition, studies of
compliance with preventive hygiene among HCWs have not occurred in conjunction
with reported outbreaks of nosocomial rotavirus (or other gastroenteritis) infections,
so reported levels may differ from those observed during such outbreaks. Studies of
HAD outbreaks also differ on the extent to which they identify HCW-patient contacts
as a primary infection pathway; certainly in wards where patient mobility is unre-
stricted the possibility exists for significant infectious patient-to-patient contact. Fur-
ther research is necessary to address the latter two issues. Finally, this study has not
incorporated the delay typically observed between infection and the onset of symp-
toms, which physicians in the studies cited in this paper identify as between 1 and 3
days (compared to our assumed mean hospital stay of 8 days for most patients); the
latent period may be long enough to affect infection dynamics noticeably.
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Future work already in progress involves a multiscale approach to evaluating the
potential spread of nosocomial infection beyond a single ward via patient contacts
with physicians and other specialized personnel and equipment that interact with
patients hospital-wide. This next project develops a network structure to represent
contacts on a larger scale, using the underlying structure of the present study as a
basis. In addition, if comparable cost bases can be established for the various con-
trol measures, one can consider the possible combinations of these measures which
might make optimal use of available resources, since their use in conjunction with
one another may do better than their use in isolation as considered here.
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Appendix A: Derivation of Rc

Following the next-generation operator method in Diekmann et al. (1990) for calcu-
lating an infection’s basic (here, control) reproductive number, one first linearizes the
time-derivatives of the infectious variables in terms of those same variables, evalu-
ated at the DFE, and then writes the resulting matrix in the form M − D, where M is
a nonnegative matrix and D is a diagonal matrix with positive diagonal entries. Rc is
the dominant eigenvalue of the matrix product MD−1. For system (1)–(6), using the
set of infectious variables {C,Is, Ia,Pw}, we find

M − D =

⎡
⎢⎢⎢⎣

−γc 0 0 0

0 −(γi + γd) 0 εβs/ω

0 0 −γ (1 − ε)
βs

ω

βc βi βa −φ

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 εβs/ω

0 0 0 (1 − ε)
βs

ω

βc βi βa 0

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

γc 0 0 0

0 γi + γd 0 0

0 0 γ 0

0 0 0 φ

⎤
⎥⎥⎥⎦ ,

so that

MD−1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 ε
βs

ωφ

0 0 0 (1 − ε)
βs

ωφ

βc

γc

βi

γi+γd

βa

γ
0

⎤
⎥⎥⎥⎥⎦ .

The eigenvalues of MD−1 are 0, 0, and

±
√

βs

ωφ

[
ε

βi

γi + γd

+ (1 − ε)
βa

γ

]
;

Rc is the only positive one of these.
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Appendix B: CTMC Formulation

A continuous-time Markov chain (CTMC) can be formulated from a system of or-
dinary differential equations (ODEs) under the assumption that the probability of
a given transition from one compartment or state to another is proportional to the
corresponding transition rate in the ODE system, for small periods of time Δt . The
Markov property already stipulates that these probabilities depend only upon present
state values. Thus, for example, since the rate at which patients uninfected with ro-
tavirus (S) are discharged from the hospital is given by γ S(t), the probability of such
a transition occurring during an interval of time Δt is given by γ S(t)Δt + o(Δt),
where o(Δt) → 0 as Δt → 0. If we take the sum of all such transition probabilities,
say p(X(t))Δt + o(Δt), where X(t) is the vector of all state variables at time t , then
the interevent time (the waiting time until the next transition takes place) has an expo-
nential distribution with parameter p(X(t)); that is, the sequence of transition events
forms a Poisson process. For further detail, see Chap. 5 in Allen (2003).

In calculating sample paths for a CTMC, one must make a series of draws from
two distributions. For each event, one first recalculates all the transition probabil-
ities (say pi(X(t)), i = 1,2, . . . , n) and their sum p(X(t)). One then draws from
an exponential distribution with parameter p(X(t)) to determine the time until the
next event, and from a uniform distribution on [0,1] to determine which type of
event occurred. Event type is determined by partitioning the unit interval into n

subintervals (one for each possible transition), each of length pi(X(t))/p(X(t))

(i = 1,2, . . . , n), so that if the draw from the uniform distribution falls between
0 and p1(X(t))/p(X(t)), then the event is of type 1; if the draw falls between
p1(X(t))/p(X(t)) and [p1(X(t)) + p2(X(t))]/p(X(t)), the event is of type 2, etc.
Finally, the time index and state variables are updated.

The CTMC for this study was implemented using the language R; the code is
available upon request.
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