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Abstract In drug treatments of cancer, cyclic treatment strategies are characterized
by alternating applications of two (or more) different drugs, given one at a time. One
of the main problems of drug treatment in cancer is associated with the generation
of drug resistance by mutations of cancerous cells. We use mathematical methods to
develop general guidelines on optimal cyclic treatment scheduling, with the aim of
minimizing the resistance generation. We define a condition on the drugs’ potencies
which allows for a relatively successful application of cyclic therapies. We find that
the best strategy is to start with the stronger drug, but use longer cycle durations
for the weaker drug. We further investigate the situation where a degree of cross-
resistance is present, such that certain mutations cause cells to become resistant to
both drugs simultaneously. We show that the general rule (best-drug-first, worst-drug-
longer) is unchanged by the presence of cross-resistance. We design a systematic
method to test all strategies and come up with the optimal timing and drug order. The
role of various constraints in the optimal therapy design, and in particular, suboptimal
treatment durations and drug toxicity, is considered. The connection with the “worst
drug rule” of Day (Cancer Res. 46:3876, 1986b) is discussed.

Keywords Stochastic modeling of cancer · CML

1 Introduction

Mathematical modeling of cancer therapy performed by Goldie and Coldman (1979,
1983b, 1998), Goldie et al. (1982), Coldman and Goldie (1985) and Day (1986b)
in the late 1970s and the 1980s had a widespread impact on the design of new
chemotherapy regimens for testing in clinical trials (Norton and Day 1985). This was
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an exciting time in the history of mathematical modeling in medicine. Stochastic
models applied to generation of drug resistance and treatment optimization have been
used in scheduling chemotherapy treatments. In particular, wet lab oncologists under-
took the task of testing a specific, purely theoretical rule proposed by Day (1986b):
the “worst drug rule.”

The worst drug rule is a general optimization principle which states that if two
non-cross-resistant drugs are used intermittently in treatment, then the drug with the
weaker killing rate has to be applied first and/or for a longer period of time. This
rule has been derived computationally, in the context of non-cross-resistant drugs, by
considering 16 different treatment strategies listed below:

AAAAAAAAAAAA BBBAAAAAAAAA BABABABABABA ABBBABBBABBB
AAAAAAAAABBB AAAAAABBBBBB BBBAAABBBAAA BBBABBBABBBA
AAABAAABAAAB AAABBBAAABBB BBBBBBAAAAAA BBBBBBBBBAAA
BAAABAAABAAA ABABABABABAB AAABBBBBBBBB BBBBBBBBBBBB

Here, each letter “A” or “B” denotes a single course of treatment with drug A or B

respectively; a course is assumed to last one month. Each treatment strategy consists
of the total of 12 courses (which fixes the length of treatment). The parameters were
chosen such that the total length of treatment is sufficient to eradicate all the suscepti-
ble mutants. For each of the treatment strategies, the probability of treatment success
was calculated for different coefficient values, using the methodology developed by
Day (1986a). In particular, the mutation rates, the killing rates and the proliferation
rates were varied. The conclusion of the study was that, with a few exceptions, the
most successful strategies are the ones where the “worst” drug (that is, the drug with
a weaker killing rate) was applied earlier, or for a longer duration, compared to the
better drug. The authors distinguish two variants of the worst drug rule (Norton and
Day 1985): (a) “use more of the worst drug” and (b) “use the worst drug early.”

In this paper, we pose a question similar to that raised by Day (1986b): What is the
optimal timing of treatment in the context of cyclic therapy? Our analysis employs a
wider variety of methods and is more general and systematic. In particular, instead
of testing a subset of 16 treatment strategies, we test all cyclic treatment strategies
to find the optimal cycle duration and the drug sequence. In addition, we extend the
studies to drugs with cross-resistance.

We distinguish two different characteristics of the drugs: their potency and their
activity spectrum. By potency, we mean how effectively a drug kills cells that are
susceptible to the drug; this is similar to the killing rate discussed by Day (1986b).
We will say that a drug is characterized by a broad activity spectrum if it is effective
against a large spectrum of mutant cells. On the other hand, a drug with a narrow
activity spectrum is a more specific agent, which is active against a relatively small
number of cell variants.

The main findings of this paper are the following:

• In order for a cyclic treatment to be effective, the drugs’ potencies must satisfy
a certain condition (condition (33) in the paper), which we call the condition of
“mutual strength.” For realistic parameters, drugs which are not mutually strong
will yield very poor probabilities of treatment success, if applied cyclically.

• The general rule for cyclic treatments with mutually strong drugs of similar activity
spectra is: use the best drug first, but use the worst drug for longer.
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• This “best drug first” rule becomes more important if the treatment time is subop-
timal.

• The presence of cross-resistance does not change this rule.
• Toxicity considerations can change this rule, in particular, when the worst drug is

more toxic.
• The general rule for cyclic treatments with mutually strong drugs of similar po-

tency and different activity spectra is: use the less active drug first, and use the
more active drug for longer. This rule only applies for short-term treatments.

• The optimal cycle durations for given parameters such as drug strengths and the
mutations rates, can be calculated, and do not depend on the tumor size. They do
depend on other parameters, and in particular, on the total treatment duration.

In this paper, we use stochastic and deterministic modeling of cancer growth and
treatment. The last four decades are characterized by significant developments in the
field of anticancer therapy modeling, see e.g. the following recent reviews: Sanga
et al. (2006), Byrne et al. (2006); Bellomo et al. (2008a, 2008b); Swierniak et al.
(2009); Deisboeck et al. (2009). Cancer therapy can be modeled on several spatial
scales. Molecular processes, such as mutations or chromosomal changes, happen on
the subcellular scale. They are responsible for malignant transformations that turn a
healthy cell into a malignant one. Intracellular signaling and drug-cell interactions
are also described on the subcellular scale. Cells in an organ interact by means of
direct cell-to-cell signaling as well as through the process of selection; they compete
for space and nutrients. The action of the drugs influences the population dynam-
ics of cells. The resulting dynamics happen on the cellular level. The macroscopic
description, or the organismal scale, is appropriate when studying a larger popula-
tion of cancerous cells, which can be viewed as a continuum. The largest scale is
the inter-organismal, or population scale. There, the epidemiology and statistics of
cancer, and in particular, the population-level effects of various cancer therapies, are
studied. Some modelers restrict their consideration to a particular scale, while others
use multi-scale modeling, see e.g. Preziosi (2003).

In this paper, we concentrate on an intermediate, cellular scale of modeling, and
use both stochastic and deterministic methodologies to study the effects of cyclic
therapy on cancer. For the existing literature on this type of modeling, see e.g. Wodarz
and Komarova (2005).

The rest of the paper is organized as follows. In Sect. 2 we outline the stochastic
model of cyclic drug treatment in the presence of cross-resistance. In Sect. 3 we
design a simple deterministic model capable of describing the case of mutually strong
drugs, both non-cross-resistant and cross-resistant. In Sect. 4 we present a numerical
analysis of probabilities of treatment success for various drug potencies and show
that mutually strong drugs yield the best probabilities of treatment success. Section
5 first presents an analysis for mutually strong drugs of different potencies and equal
activity spectra, and subsequently handles the drugs of equal potencies and different
activity spectra. Section 6 extends our considerations to short treatments. Section
7 addresses the problem of toxic drugs and shows how our methods apply to such
situations. Section 8 contains discussion and conclusions.
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2 Stochastic Modeling for Cyclic Treatments

2.1 Review of the General Framework

The basic mathematical framework described here was developed by Komarova and
Wodarz (2005); Komarova (2006) and goes back to early works of Goldie and Cold-
man (1979, 1983a, 1983b, 1998); Coldman and Goldie (1985, 1986). We denote by
is the number of cells of resistance class s. Here, s is a binary number that goes from
0 to n = 2m, where m is the number of different drugs used. In this paper we deal
with two-drug treatments, therefore we set m = 2, which leads to the existence of
four separate resistance classes, see Fig. 1(a): s = 00, fully susceptible; s = 10, resis-
tant to drug 1 and susceptible to drug 2; s = 01, resistant to drug 2 and susceptible to
drug 1; and s = 11, resistant to both drugs (or, fully-resistant). Let ϕi0,...,in (t) denote
the probability that at time t there are is cells of resistance class s, for all classes s.
Suppose that cancerous cells divide with rate ls , and die with rate Ds . Coefficients
can depend on the treatment protocol. In particular, the death rate of cells, Ds , is
comprised of the “natural” rate of cell death in an untreated tumor and the action of
the drug(s), if any, upon the cells. Therefore, in general, this quantity is a function of
time.

The mutation rates are defined for all edges of the diagrams in Fig. 1 and de-
noted by u with the corresponding indices. In particular, in Fig. 1, u1 denotes the
rate at which mutations resistant to drug 1 (and not to drug 2) are generated. Simi-
larly, the rate u2 describes the generation of mutations conferring resistance to drug
2 only. The possibility of mutations conferring resistance to both drugs simultane-
ously (the so-called cross-resistance) is captured by the rate u12; in the absence of
cross-resistance, u12 = 0. The mathematical formalism for studying cross-resistance
in cancer drug treatments was introduced recently by Komarova et al. (2009); some
additional details on the modeling can be found in Katouli (2009).

We assume that the timing of separate kinetic events is exponentially distributed,
and construct a linear birth–death process (for a review of biological applications of
the theory of birth–death processes, see Novozhilov et al. (2006)). Its Kolmogorov
forward equation can be written as

ϕ̇i0,...,in =
n∑

s=0

Qs, (1)

where Qs is the contribution obtained from considering probabilities of reproduction
and death of resistance type s,

Qs = ϕi0...is−1...in (is − 1)ls

(
1 −

∑

j

us→j

)
+ is ls

∑

j

ϕi0...is ...ij −1...us→j

+ ϕi0...is+1...in (is + 1)Ds − ϕi0...in is(ls + Ds); (2)

here, symbols us→j denote the mutation rates for all arrows originating at s. The
first group of terms above represents cell divisions of class s without mutations, the
second group is all cell reproductions of class s with mutations, the third term has
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Fig. 1 Cyclic two-drug treatments. (a) The mutation diagrams and drug-induced death rates for treat-
ments with drug 1 and drug 2. The resistance types are represented by circles with binary indices; the
drug-induced death rates are marked next to the circles; the mutation rates are indicated next to the arrows.
(b) A cyclic treatment protocol. (c) The average combination treatment

the meaning of cell death in class s, and the last term is “no change.” The probability
generating function can be defined in a usual way (Gardiner 2004):

Ψ
(�ξ ; t) =

n∑

s=0

ϕi0,...,in (t)ξ
i0
0 . . . ξ in

n ,

with �ξ = (ξ0, . . . , ξn). The above transformation maps an infinite number of unknown
functions, ϕi0,...,in (t), onto one function of a continuous variable, Ψ (�ξ ; t). This func-
tion satisfies the partial differential equation, derived by standard methods (see e.g.
Bailey 1964):

∂Ψ

∂t
=

n∑

s=0

∂Ψ

∂ξs

(
ls

(
1 −

∑

j

uout
s→j

)
ξ2
s +

[∑

j

lsu
out
s→j ξ

out
j − (ls + Ds)

]
ξs + Ds

)
.

To obtain the above equation, the master equation (1) is multiplied by ξ
i0
0 . . . ξ

in
n and

summed over all the indices; the terms containing is can then be rewritten as partial
derivatives of Ψ with respect to ξs (Komarova 2006). The coefficients, such as Ds ,
on the right-hand side can be functions of time.

Following the standard technique for hyperbolic equations, we have the following
system of equations for characteristics:

ξ̇s = −Fs

(�ξ ; t),
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where

Fs

(�ξ ; t) = ls

(
1 −

∑

j

uout
s→j

)
ξ2
s +

[∑

j

lsu
out
s→j ξ

out
j − (ls + Ds)

]
ξs + Ds.

The dependence on time on the right-hand side comes from the fact that the kinetic
rates such as birth and death rate can in general be functions of time. In order to
evaluate the function Ψ (�ξ ′; t ′) at some point �ξ ′ = (ξ ′

0, . . . , ξ
′
n), we “reverse the time”

by the change of variables, t → t ′ − t , and solve the following initial value problem:

ξ̇s = Fs

(�ξ ; t ′ − t
)
, (3)

ξs(0) = ξ ′
s . (4)

Note that the coefficients on the right-hand side can be time-dependent. The proce-
dure of time-reversal in the particular case relevant for this paper is described in the
next section. The probability generating function is obtained by

Ψ
(�ξ ′; t ′) =

n∏

s=0

[
ξs(t

′)
]Ms , (5)

where on the right-hand side the functions ξs(t) are solutions of system (3) and the
constants Ms are the initial abundances of mutants of type s. In the rest of this paper
we will assume for simplicity that initially there are M0 cells of type s = 00 and zero
cells of any other type.

In our particular case of four mutant classes, we have four equations:

ξ̇00 = l00(1 − u1 − u2 − u12)ξ
2
00 + (

l00(u1ξ10 + u2ξ01 + u12ξ11)

− (l00 + D00)
)
ξ00 + D00, (6)

ξ̇10 = l10(1 − u2 − u12)ξ
2
10 + (

l10(u2 + u12)ξ11 − (l10 + D10)
)
ξ10 + D10, (7)

ξ̇01 = l01(1 − u1 − u12)ξ
2
01 + (

l01(u1 + u12)ξ11 − (l01 + D01)
)
ξ01 + D01, (8)

ξ̇11 = l11ξ
2
11 − (l11 + D11)ξ11 + D11, (9)

where the time-dependence of the coefficients is implicit.

2.2 Modeling Treatment Strategies

Different treatment strategies define the values of the death rates, Ds , at different
moments of time:

Ds = ds + hs(t),

where the coefficients ds are natural death rates of the cancer cells, and hs(t) are the
drug-induced cell death rates. The functions hs(t) depend on the particular protocol
used. As different drugs are applied, the “strength” of each drug, which depends on
the concentration of the drug in the patient’s blood, changes as some smooth function
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of time. The exact shape of these functions, and therefore, the shape of hs(t), depends
not only on the treatment strategy (that is, whether drugs are applied in combination,
or cyclically), but also on the way the drugs are administered, and on how quickly
they are absorbed. For example, it can be assumed that hs(t) for a susceptible class
reaches a maximum sometime after the drug is taken, and decays until the next ad-
ministration of the drug. However, in this paper we simplify this picture by assuming
that the functions hs(t) are piecewise-constant. They are assumed to have a constant
nontrivial value for all the susceptible classes as long as the patient is treated with a
given drug, and they become zero after the drug is discontinued. For the effects of
pharmacokinetics on the dynamics of treatment, see Gaffney (2005).

We proceed to describe a cyclic two-drug treatment protocol, see Fig. 1(b). Let us
suppose that treatment starts at time t∗. Then, for 0 < t < t∗, we have Ds = ds ; nor-
mally, ds < ls , that is, the cancer is assumed to grow stochastically before treatment.
At time t∗, the first drug is applied for a length of time �t1. During this time, we have

D00 = d00 + h1, D10 = d10, D01 = d01 + h1, D11 = d11, (10)

where h1 is the drug-induced death rate for drug 1; see Fig. 1(a), on the left. After
time t∗ + �t1, drug 2 is applied for the duration �t2, resulting in

D00 = d00 + h2, D10 = d10 + h2, D01 = d01, D11 = d11, (11)

for t∗ + �t1 < t < t∗ + �t1 + �t2 (Fig. 1(b), on the right). Here, h2 denotes the
drug-induced death rate of drug 2. After that, treatment is again switched to drug 1
for duration �t1, and so on, for a total time duration Ttreat, with a total of 2N cycles.

In this paper we assume that the division rates, ls , and the death rates, ds , of cells
are time-independent. We will further assume that some of the coefficients in (6)–(9)
are the same, namely, that ls = l and ds = d .

2.3 Probability of Treatment Success

In our analysis we will be concerned with the probability of treatment success, which
is assumed to be the same as the probability of extinction of the colony as a result of
treatment.

To begin with, let us consider the quantity

ϕ0,...,0(t) = Ψ
(�0; t).

It has the meaning of having zero cells of all types at time t . To evaluate this function,
we will use the general formula (5) with Ms = 0 for s �= 00:

Ψ
(�0; t) = ξ

M0
00 (t),

where ξ00 is the solution of system (6)–(9) with the initial conditions

ξ00 = ξ10 = ξ01 = ξ11 = 0. (12)

The function ϕ0,...,0 is related to the probability of treatment success. It includes the
scenario where the colony goes extinct spontaneously (this happens with probability
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(d/ l)M0 ), as well as the scenario where the tumor grows and is subsequently treated
successfully. The latter process has the meaning of the probability of treatment suc-
cess. In other words, we have

ϕ0,...,0 = (d/ l)M0 + (
1 − (d/ l)M0

)
Psuccess(t).

The quantity Psuccess(t) is the focus of our study; it excludes the scenarios where the
colony goes extinct spontaneously. We have

Psuccess(t) = ξ
M0
00 (t) − (d/ l)M0

1 − (d/ l)M0
. (13)

The solution ξ00(t) is obtained from system (6)–(9). It consists of coupled nonlin-
ear equations of the Riccati type, and will be solved numerically. This system is char-
acterized by piecewise-constant coefficients, and as a consequence, the time-reversal
procedure involved in the solution requires the following approach. Suppose for sim-
plicity that the total duration of treatment equals N (�t1 + �t2), N ∈ I ; that is, it
includes an integer and equal number of cycles of each drug. We start by solving sys-
tem (6)–(9) with constant coefficients given by (11) and with initial conditions (12),
and find the solution corresponding to the time �t2. Then we plug these values as
initial conditions for system (6)–(9) with coefficients (10) and solve the equations for
time duration �t1. Next, we use the resulting functions as the initial conditions and
repeat the process for the total of 2N alternating cycles. This procedure corresponds
to the (“reversed”) time-variable changing from the end of treatment (physical time
t∗ + N (�t1 + �t2)) back to time t∗. Finally, we plug the obtained values in the same
system with coefficients corresponding to the pre-treatment conditions (Ds = ds for
all s) and find the solution at t = t∗. The obtained function ξ00 is used in formula (13).

The limiting value of the probability of treatment success,

lim
t→∞Psuccess(t), (14)

is of a particular interest. This approximation corresponds to long-term treatment
strategies where the drugs are used long enough for all the susceptible types to be
eliminated. The limiting procedure in our simulations corresponds to the number of
cycles, 2N , increasing to infinity. In practical terms, we perform the numerical pro-
cedure described above until the solution of the system corresponding to odd (even)
cycles stops changing (within a prescribed precision).

The time of the start of treatment, t∗, can be related to the initial colony size, N ,
by the deterministic relationship,

N = M0e
(l−d)t∗ . (15)

This is an approximation (Komarova et al. 2007), by which we replace a “fixed-size
problem” (a problem where we know the tumor size at the start of treatment) with a
much easier “fixed-time problem” (a problem where we know the time that elapsed
from the beginning of tumor growth until the start of treatment). We will use formula
(15) throughout the paper for simplicity.



The Worst Drug Rule Revisited: Mathematical Modeling of Cyclic 557

We will discuss two characteristics of drugs, their potency and their activity spec-
tra. In terms of our modeling approach, drug potency is reflected in the drug-induced
cell death rate characteristic of each drug, where higher potencies are correlated with
higher values of hs for susceptible mutant classes. Drugs with broader activity spec-
tra will be characterized by smaller mutation rates, u, with which mutants resistant
to the drugs are generated. The more specific, or narrow, drugs correspond to larger
mutation rates associated with the generation of resistant mutants.

2.4 Finding the Optimal Strategy

The optimal strategy is the pair (�t1,�t2) which corresponds to the highest proba-
bility of treatment success for a given set of parameters. In order to find the optimal
strategy for given parameters, we need to solve system (6)–(9) with initial conditions
(12), and obtain the value ξ00(t), which is then used in formulas (13) or (14). Once
this is done for a number of choices (�t1,�t2), we have to find the pair of cycle
durations that give the maximum probability of treatment success.

The numerical values of the probabilities of treatment success will depend on the
parameters such as l − d (the net growth of untreated cells), the mutation rates, and
N (the tumor size at the beginning of treatment). However, in the model presented
here, the optimal strategy (that is, the optimal choice of �t1 and �t2) turns out to be
independent on the tumor size, N .

The tumor size, N , enters the calculations of the probability of treatment success
through formula (15), and defines the time t∗ of the pre-treatment stage of the solu-
tion. This stage is defined by the following initial value problem:

ξ̇i = Gi

(�ξ)
, 0 ≤ i ≤ n, 0 < t ≤ t∗, (16)

ξi(0) = yi, (17)

where the first equation is system (6)–(9) with Di = d and li = l, and the initial con-
ditions yi are obtained by solving system (6)–(9) the appropriate number of times
with the coefficients defined by the cyclic treatment stages. We need to find the prob-
ability of treatment success, which is a monotonically increasing function of ξ00, as
a function of �t1 and �t2. The information about �t1 and �t2 is contained only in
the initial conditions, �y = (y0, . . . , yn). Therefore, we need to study the behavior of
the quantity ξ00 as a function of �y; we will denote this as ξ

�y
00. Let us pick two initial

vectors, �y1 and �y2. We would like to show that if for some time t1, ξ
�y1
00 (t1) > ξ

�y2
00 (t1),

then for any other time, t2, we also have: ξ
�y1
00 (t2) > ξ

�y2
00 (t2). In other words, the time-

evolution prescribed by the system preserves the sign of the derivative of the solutions
with respect to the initial conditions.

In order to show that this is indeed the case, let us denote λik = ∂ξi/∂yk , and write
down the initial value problems for these quantities:

λ̇ik =
∑

j

∂Gi

∂yj

λjk, (18)

λik(0) = δik, (19)



558 A.A. Katouli, N.L. Komarova

where we simply differentiated (16)–(17) with respect to yk , and used the nota-
tion δik for the Kronecker’s delta. Equations for λik comprise a homogeneous lin-
ear system with nonnegative initial conditions. It follows that the solutions of this
system remain nonnegative. Therefore, if a given strategy (�t1,�t2) corresponds
to the maximum probability of treatment success for a given value N (and the cor-
responding time t∗ before treatment), the same strategy is optimal for any tumor
size N .

2.5 The Limit of Very Short Cycles: The Average Combination Treatment

Let us assume that �t2 = α�t1 with α > 0, and consider the limit where �t2 → 0.
We can show that the cyclic treatment corresponds to the following continuous treat-
ment:

h00 = h1 + αh2

1 + α
, h10 = h2α

1 + α
, h01 = h1

1 + α
, h11 = 0. (20)

This is equivalent to a simultaneous (combination) treatment with two drugs of indi-
vidual strengths h2α

1+α
and h1

1+α
, and combined strength equal to the sum of the two in-

dividual strengths. We will refer to this treatment regime as the “average combination
treatment.” In the case where �t1 = �t2, the values of the drug-induced death rates in
the limiting combination treatment are h00 = (h1 + h2)/2, h01 = h1/2, h10 = h2/2,
h11 = 0; the corresponding diagram is presented in Fig. 1(c).

3 Deterministic Modeling of Cyclic Treatments

Here we create a simplified, deterministic framework for studying the effects of cyclic
drug treatments. We start by writing down the equations for the expected numbers of
different types of resistant mutants, which we call xs :

ẋ00 = (
l(1 − u1 − u2 − u12) − d − h00

)
x00, (21)

ẋ01 = (
l(1 − u1 − u12) − d − h01

)
x01 + lu2x00, (22)

ẋ10 = (
l(1 − u2 − u12) − d − h10

)
x10 + lu1x00, (23)

ẋ11 = (l − d)x11 + l
[
(u2 + u12)x10 + (u1 + u12)x01 + u12x00

]
, (24)

where l and d are the division and death rates of the cells, and hs is the drug-induced
death rate for resistance type s; the coefficients hs change depending on the treatment
phase.

We are interested in the production of fully-resistant mutants, because (for long-
term treatments) such mutants are the reason for treatment failure. These mutants
are produced by mutations of partially-resistant mutants, and also, in the presence
of cross-resistance, by mutations of fully-susceptible mutants. This happens both
before the treatment starts and after it starts. The former process is treatment-
independent. Therefore, in order to evaluate the effectiveness of different treat-
ment protocols, it is sufficient to only consider the latter process. The production
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of fully-resistant mutants is described by the second term on the right-hand side of
(24). The total amount of doubly-resistant mutants produced after treatment starts is
given by

F =
∫ Ttreat

t∗
l
[
(u2 + u12)x10 + (u1 + u12)x01 + u12x00

]
dt,

where t∗ is the time-point where therapy is first applied, and Ttreat is the total treat-
ment duration.

3.1 Production of Fully-Resistant Mutants from Partially-Resistant Mutants

Let us find the functions x10(t) and x01(t) by solving (22) and (23) for t > t∗. In
our calculations, we will only consider the highest-order contributions in terms of the
mutation rates.

Let us denote by A(u1) and A(u2) the expected number of mutants of types (10)

and (01) at the start of treatment. These quantities can be calculated from equations
similar to system (21)–(24), formulated for the pre-treatment period. In the limit of
small mutation rates, we have

A(u) ≈ N logNu,

where N = M0e
(l−d)t∗ is the number of cells at the beginning of treatment. Suppose

that at the start of treatment, we have A(u2) mutants of type (01) and A(u1) mutants
of type (10). Starting at t = t∗, we treat with drug 1 for time duration �t1. This is
followed immediately by treatment with drug 2 for time duration �t2, then again by
treatment with drug 1 for time duration �t1, and so on, for an infinite number of
cycles.

Let us denote γ = l − d . Then the average numbers of partially resistant mutants,
x10(t) and x10(t), can be found as follows. We define quantities x

(i)
10 and x

(i)
01 for

i = 1,2, . . . by means of the differential equations:

ẋ
(0)
01 = (γ − h1)x01, t∗ < t < t∗ + �t1, x01(t∗) = A(u2);

ẋ
(0)
10 = γ x10, t∗ < t < t∗ + �t1, x10(t∗) = A(u1);

ẋ
(1)
01 = γ x01, t∗ + �t1 < t < t∗ + �t1 + �t2, x01(t∗) = x

(0)
01 (t∗ + �t1);

ẋ
(1)
10 = (γ − h2)x10, t∗ + �t1 < t < t∗ + �t1 + �t2, x10(t∗) = x

(0)
10 (t∗ + �t1);

. . .

To write down the equations for the general cycle i, it is convenient to define the
intervals

Ui =
{ [t∗ + i

2 (�t1 + �t2), t∗ + i
2 (�t1 + �t2) + �t1), i is even,

[t∗ + i−1
2 (�t1 + �t2) + �t1, t∗ + i+1

2 (�t1 + �t2)), i is odd.
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Each interval equals a single cycle of a drug; even values of i correspond to cycles
of drug 1 and odd values of i—to cycles of drug 2 (more precisely, interval Ui cor-
responds to the (i/2 + 1)th application of drug 1 for even values of i, and to the
((i − 1)/2 + 1)th application of drug 2 if i is odd). The dynamics of cells types are
described by an initial value problem within each interval, Ui . We have, if i is even:

ẋ
(i)
01 = (γ − h1)x01, ẋ

(i)
10 = γ x10, t ∈ Ui,

x01

(
t∗ + i

2
(�t1 + �t2)

)
= x

(i−1)
01

(
t∗ + i

2
(�t1 + �t2)

)
, (25)

x10

(
t∗ + i

2
(�t1 + �t2)

)
= x

(i−1)
10

(
t∗ + i

2
(�t1 + �t2)

)
;

and if i is odd:

ẋ
(i)
01 = (γ )x01, ẋ

(i)
10 = (γ − h2)x10, t ∈ Ui,

x01

(
t∗ + i − 1

2
(�t1 + �t2) + �t1

)
= x

(i−1)
01

(
t∗ + i − 1

2
(�t1 + �t2) + �t1

)
,

x10

(
t∗ + i − 1

2
(�t1 + �t2) + �t1

)
= x

(i−1)
10

(
t∗ + i − 1

2
(�t1 + �t2) + �t1

)
.

(26)

For any given value of t > t∗, we can find i such that t ∈ Ui . Then x10(t) = x
(i)
10 (t)

and x01(t) = x
(i)
01 (t). The quantity of interest is the total amount of the fully resistant

types produced, which, after 2N cycles, is given by

F1→2(N ) = l

2N∑

i=0

∫

t∈Ui

[
(u1 + u12)x

(i)
01 (t) + (u2 + u12)x

(i)
10 (t)

]
dt,

where the subscript 1 → 2 indicates that the mechanism of resistance generation
considered here is a mutation of cells resistant to only one drug, into cells resistant to
two drugs. Solving (25) and (26) and integrating, we obtain:

F1→2(N )/ l

= A(u2)(u1 + u12)(1 − eN [(γ−h11)�t1+γ�t2])
γ

(
(eγ�t1 − eh1�t1 )h1

(eh1�t1 − eγ (�t1+�t2))(γ − h1)
− 1

)

+ A(u1)(u2 + u12)(1 − eN [γ�t1+(γ−h2)�t2])
h2 − γ

(
eh2�t2h2(e

γ�t1 − 1)

γ (eh2�t2 − eγ (�t1+�t2))
+ 1

)
.

(27)

Let us consider the limit of long treatments, N → ∞. For convergence, we need to
assume that (γ − h1)�t1 + γ�t2 < 0 and γ�t1 + (γ − h2)�t2 < 0 (see Sect. 3.4 for
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an explanation of these assumptions). Then we have:

F1→2/l = A(u2)(u1 + u12)

γ

(
(eγ�t1 − eh1�t1)h1

(eh1�t1 − eγ (�t1+�t2))(γ − h1)
− 1

)

+ A(u1)(u2 + u12)

h2 − γ

(
eh2�t2h2(e

γ�t1 − 1)

γ (eh2�t2 − eγ (�t1+�t2))
+ 1

)
. (28)

3.2 Production of Fully-Resistant Mutants from Fully-Susceptible Cells

Let us next consider the production of cells of type x11 directly from the cells of
type x00 by means of mutations with the rate u12. The equations for x00 are ẋ00 =
(γ − h1)x00 and ẋ00 = (γ − h2)x00 for odd and even cycles, respectively. Solving
these equations and integrating, we can calculate the additional contribution to the
function F coming from cross-resistance. The result in the limit of long treatments
is:

F0→2/l = u12

∫ ∞

0
x00(t) dt

= u12N
eh1�t1+h2�t2 (γ − h2) − eγ (�t−1+�t2)(γ − h1) + eγ�t1+h2�t2 (h2 − h1)

(eγ (�t1+�t2) − eh1�t1+h2�t2 )(γ − h1)(γ − h2)
,

(29)

where N is the number of cells at the beginning of treatment; as before, we assume
that the mutation rates are small.

3.3 Optimization of Treatment Strategies

The deterministic method of finding the optimal treatment strategy is based on the
minimization of the objective function,

F = F1→2 + F0→2, (30)

with respect to parameters �t1 and �t2. In the absence of cross-resistance, fully resis-
tant mutants are produced only by partially-resistant mutants, and we have F = F1→2

with u12 = 0. In the presence of cross-resistance, both mechanisms of fully-resistant
mutant production are in place.

The objective function F is correlated with the probability of treatment failure.
Its minimum, as a function of �t1 and �t2, optimizes the treatment protocol. Find-
ing this minimum is a much easier task compared to that of the stochastic method,
where we need to maximize the probability of treatment success, which can only be
calculated numerically (e.g. by means of the Runge–Kutta method of solving ordi-
nary differential equations for the characteristics). Some interesting properties of the
objective function are discussed in Appendix A.
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3.4 Method Applicability and Mutually Strong Drugs

The deterministic method described here is very intuitive and easy to implement com-
pared to the stochastic method. While it does not work well for short treatments (see
Sect. 6), in the limit of long treatments it describes reality remarkably well.

To find the conditions of applicability of the deterministic method, let us solve
linear differential equations (25) and (26) to find the dynamics of partially-resistant
mutants under treatment conditions. After 2N cycles, that is, for tN = N (�t1 +�t2),
we have

x01(tN ) = A(u2)e
N [(γ−h1)�t1+γ�t2], x10(tN ) = A(u1)e

N [γ�t1+(γ−h2)�t2].
(31)

Therefore, in order for the treatment in the absence of doubly-resistant mutants to
work, we need to require that

h1, h2 > γ and
γ

h2 − γ
<

�t2

�t1
<

h1 − γ

γ
. (32)

If conditions (32) are satisfied, functions x10(t) and x01(t) will on average decay.
Conditions (32) are equivalent to condition

1

h1
+ 1

h2
<

1

γ
, (33)

which can be viewed as a requirement for the two drugs to be sufficiently strong
(compared to the colony growth-rate γ ) such that they can eliminate a population
of partially resistant mutants. We will refer to drugs that satisfy condition (33) as
mutually strong drugs.

We conclude that the deterministic method as described by (28)–(30) is applicable
if the drugs have a sufficient potency to satisfy condition (32). By construction, the
present framework handles only the cases where treatment failure occurs because of
the production of doubly-resistant mutants. In the following sections we will further
demonstrate the power of the deterministic method, and also show how it can fail.

4 Optimal Treatment Strategies for Different Choices of Drugs

We start the analysis by a numerical exploration of treatment strategies for cyclic
treatments with two drugs of different strengths. For each pair of drug-induced death
rates, (h1, h2), we use the stochastic method of Sect. 2 to evaluate the probability of
treatment success for different values of �t1 and �t2, in the limit of long treatments.
We then find the optimal strategy for each pair (h1, h2), and calculate the correspond-
ing maximum probability of treatment success. The results are presented in Fig. 2,
which shows schematically several regions on the h1 − h2 diagram whose relatively
sharp boundaries are defined by the difference in the treatment success probability
for the optimal strategy. In what follows, we will use the notation

α = �t2

�t1
.
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Fig. 2 Optimal cyclic
treatments for two drugs with
different drug potencies and
equal activity spectra. The two
axes are the strengths of the
drugs, h1 and h2. The lines
correspond to h1 = γ , h2 = γ ,
h1 = h2 and h−1

1 + h−1
2 = γ −1.

The regions in the diagram
marked by A, B, C, D, E, and F
are characterized by different
optimal treatment strategies, and
different maximal probabilities
of treatment success. See text
for more details. The parameters
are l = 1, d = 0, h12 = 0,
u = 10−6, N = 1010,
Ttreat → ∞

Regions A and B are characterized by the highest probabilities of treatment suc-
cess, which for the particular choice of parameters in Fig. 2 are of the order one.
There, we have h−1

1 + h−1
2 < γ −1, that is, the two drugs are mutually strong, see in-

equality (33). This condition means that one can design a cyclic treatment such that
both types of partially-resistant mutants will be driven extinct, and the only reason for
treatment failure is the production of fully-resistant, double-hit mutants. Parameters
that correspond to the highest probability of treatment success in regions A and B
satisfy

γ

h2 − γ
< α <

h1 − γ

γ
,

see condition (32). Outside this region, the probability of treatment success drops by
orders of magnitude.

For mutually strong drugs, region A corresponds to h2 > h1 (Worst Drug First,
WDF) and region B to h2 < h1 (Best Drug First, BDF). In the following section
we will show that in region A, the optimal treatment strategy corresponds to �t1 = 0,
and α < 1 (treat with the worst drug longer); in region B we have an optimal, nonzero
�t1, and α > 1 (again, treat with the worst drug longer). Regions A and B are the only
ones where condition (33) holds, and we can apply the deterministic method; most of
the rest of the paper is devoted to studying this regime. In regions C, D, E, and F the
deterministic method predicts treatment failure. Consistently with that, the stochastic
method demonstrates that the probability of treatment success for regions outside A
and B is significantly lower than that for regions A and B. A qualitative description
of numerical findings for regions outside A and B is presented below; some analysis
of the system’s behavior outside regions A and B is given in Appendix B.

Let us consider region C in Fig. 2, where h1, h2 > γ , but h−1
1 + h−1

2 < γ −1. In
this region, each drug is strong enough to eliminate the mutants susceptible to it,
if we apply the drug continuously (this is because each drug-induced death rate is
larger than γ ). However, in a cyclic treatment, we cannot reach extinction of both
partially-resistant types, because condition (33) is violated. The maximum probabil-
ity of treatment success in region C is several orders of magnitude smaller than that
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in regions A and B; for the particular parameter values of Fig. 2 it is between 10−4

and 10−2. In this regime, the probability of treatment success strongly depends on
h1, the strength of the first drug, and is much less sensitive to h2. We observe that
treatment strategies starting from the stronger of the drugs are always characterized
by a higher probability of treatment success. When we start with the stronger of the
drugs, the optimal strategy is to have only two cycles: during the fist interval �t1, we
try to drive the number of type-x01 mutants to low numbers (to increase the probabil-
ity of their stochastic extinction); during the subsequent interval α�t1, we eliminate
the other mutant type. This strategy is quite different from the optimal strategies in
regions A and B, and typically the outcome is a much poorer success probability.

In regions D and E, the probability of treatment success again drops by a couple
of orders of magnitude (it is between 10−6 and 10−5 in Fig. 2). These regions are
characterized by very weak drugs. Only the second drug in region D is capable of
eliminating mutants susceptible to it (because there, h1 < γ , h2 > γ ). Similarly, in
region E, only the first drug is strong enough to eliminate the susceptible cells. The
best strategy in region D is therefore to keep the application of the first (weaker)
drug as short as possible (�t1 = 0), and treat with the second (stronger) drug for
longer (α → ∞). In region E, the class of the most successful strategies includes
those where we treat with the first (stronger) drug for a long time (large �t1), such
that the mutants susceptible to this drug are eliminated. In this case, the duration of
the treatment with the second (weak) drug is unimportant (the value of α does not
affect the probability of treatment success). All the strategies described for regions C,
D and E are essentially one-drug treatment strategies where we only use the stronger
of the drugs; the only way in which treatment can be successful for such strategies is
if there are no mutants resistant to the stronger drug. In region E, if the strength of the
second drug is not too low, there is another class of strategies where the second drug
is utilized at an optimal duration. A rigorous analysis of such strategies is beyond the
scope of this paper.

Finally, in region F we have h1, h2 < γ , that is, neither of the drugs is capable of
eliminating susceptible mutants. In this region, the probability of treatment success is
practically zero (and equals to the probability of tumor’s spontaneous extinction). The
only way to achieve better treatment success is to combine the two drugs (Komarova
and Wodarz 2005).

We can see that for all practical purposes, the drugs can be considered effective in
the context of a cyclic treatment if they satisfy condition (33). Moreover, condition
(32) should be satisfied to achieve a reasonable treatment schedule. The rest of this
paper’s analysis is therefore devoted to regions A and B.

5 Analysis of Drug Treatments with Mutually Strong Drugs

5.1 Drugs of Different Potencies

Here we examine the case where the two mutually strong drugs have equal activity
spectra, and differ by their potency. Therefore, in this section we will assume that
condition (33) holds; we will further set u1 = u2, and study the production of fully
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resistant mutants depending on the values h1 and h2. We will address the following
questions:

1. In a cyclic treatment, which of the two drugs should be applied first?
2. What are the optimal durations of the cycles, �t1 and �t2?

We will first consider systems without cross-resistance by setting u12 = 0, and then
study the effects of cross-resistance.

To gain some understanding of the two-drug system, we first apply the determin-
istic approach, in the absence of cross-resistance, under the assumption of long treat-
ment protocols. We would like to find the global minimum of the objective function,
F1→2, given by (28) with u1 = u2 = u and u12 = 0, as a function �t1 and �t2. It
turns out that the objective function F is discontinuous as �t1 → 0 and �t2 → 0. To
see this, let us take

�t2 = α�t1,

where γ
h2−γ

< α <
h1−γ

γ
, see condition (32). The limiting value,

lim
�t1→0

F/
(
lA(u)u

) =
(

h1

(1 + α)γ
− 1

)−1

+
(

αh2

(1 + α)γ
− 1

)−1

,

depends on α. This is because the “average” treatment corresponding to drug
strengths given by (20), depends on α. Therefore, to visualize F , we will plot it
as a function of �t1 and α.

Figure 3(a) presents contour plots of the objective function F (scaled) with re-
spect to the length of the first cycle, �t1, and the ratio of the two cycle lengths, α.
The dashed contours represent the worst drug first (WDF) strategy, and the solid
contours—the best drug first (BDF) strategy. The dots indicate the location of the
minima of the function F . We observe that for the WDF strategies, the absolute min-
imum is reached at �t1 = 0 and α < 1, and corresponds to the average combina-
tion treatment. On the other hand, for the BDF strategies, the absolute minimum is
achieved for a positive value of �t1 and α > 1. The value of the latter minimum is
lower than the former one. Therefore, the optimal strategy, as predicted by the deter-
ministic approximation, is to start treatment with the better drug, but to arrange for
the worse drug to have a longer cycle.

The results presented above were obtained by using the deterministic method of
Sect. 3. For more details of the analysis of the objective function, see Appendix A,
and also Katouli (2009). In Appendix C we show that the predictions obtained by the
deterministic method are in good agreement with the stochastic results.

Next, we include cross-resistance by setting u12 > 0, and explore how this affects
results such as those presented in Fig. 3(a). Examining the term F0→2 (29), we can
see the following patterns:

• If h1 > h2, then F0→2 is minimized by increasing �t1 and setting α = 0; for suffi-
ciently large �t1, the dependence of α becomes weak.

• If h1 < h2, then F0→2 is minimized by setting �t1 = 0 and increasing α.
• The lowest minimum corresponds to the h1 > h2 case.
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Fig. 3 Different drug potencies, equal activity spectra. Using the deterministic approximation, we present
contour plots of the objective function F/(lN logNu1u2), (29), for the alternating strategies with the WDF
(dashed lines), and the BDF (solid lines). The black dots indicate the minima (corresponding to the best
(�t1, α) pair). (a) Without cross-resistance; (b) in the presence of cross-resistance. The parameters are
l = 1, d = 0, u12 = 5000u1u2, and the drug-induced death rates are 3γ and 4γ

Clearly, if we want to decrease the production of fully-resistant cells by means of
mutations of x00, we need to treat the fully-susceptible population with the stronger
of the drug. If the constraint of cyclic treatments is imposed, then the best option is
to start with the better of the drugs and keep the cycle duration of the better drug
as high as possible; for sufficiently long �t1, the duration of the weaker drug cycle
does not matter anymore, because most of the susceptible population will be extinct.
However, if we start from the worse of the drugs, then it is optimal to keep the first
cycle as short as possible, and the cycle corresponding to the better drug as long as
possible.

These trends reinforce the result of Fig. 3(a) that the best strategy must start with
the better drug, see Fig. 3(b). Further, the optimal cycle duration �t1 is expected to
increase with respect to that of Fig. 3(a), solid lines, while the optimal α will not
decrease (see Fig. 3(b)). On the other hand, if we start with the worse of the drugs
(Fig. 3(a,b), dashed lines), then, if the effect of the cross-mutations is sufficiently
strong, we expect the optimal α to become greater than 1, that is, the duration of the
better drug cycle should be longer.

All these results were obtained by using the deterministic approximation, and they
have been confirmed by numerical simulations of the stochastic model (not shown).
We obtained a good agreement between the two methods regarding the predicted
optimal parameters �t1 and α. A further analysis of the stochastic results shows
that the difference between the best BDF protocol and the best WDF protocol in the
limit of long treatment times is not large (usually, within 1%). However it would be
misleading to think that there is no real difference between BDF and WDF strategies.
Firstly, in order to achieve an optimal treatment timing, the treatment parameters
�t1 and α have to be optimized, and the choice of these parameter values strongly
depends on whether we use a BDF or a WDF protocol. Secondly, the advantage of
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BDF protocols is not only that they yield a higher treatment success probability. They
are also characterized by a finite (nonzero) optimal cycle duration, �t1. On the other
hand as we have shown, WDF protocols have a zero optimal cycle duration, which is
very difficult to implement in reality. Finally, as we will show in Sect. 6, the advantage
in the probability of treatment success for BDF protocols increases significantly as
the treatment durations become shorter.

5.2 Drugs of Equal Potencies and Different Activity Spectra

In this section we examine the case where the two mutually strong drugs have equal
potencies (h1 = h2) but differ by their activity spectra, which corresponds to non-
equal mutation rates, u1 �= u2. The drugs with broader (narrower) activity spectra
correspond to the lower (higher) values of the mutation rate. We first consider the
scenario without cross-resistance and then add the effect of cross-resistance.

Consider the deterministic method developed in Sect. 3, by setting h1 = h2 and
using different values for the mutation rates. In (28) which represents the average
production of doubly-resistant mutants, the mutation rates enter in combinations
A(u1)u2 and A(u2)u1, where A(u) is the expected number of mutants generated
at rate u by the time the untreated colony grows to size N . The quantity A(u1) is
obtained by solving the equations,

ẋ00 = (
l(1 − u1) − d

)
x00, ẋ10 = (

l(1 − u2) − d
)
x10 + lu1x00,

x00(0) = M0, x10(0) = 0,

such that A(u1) = x10(t∗), and M0e
(l−d)t∗ = N . A similar algorithm applies for

A(u2). Expanding the solution into the Taylor series in terms of the small mutation
rates, we obtain,

A(u1) = u1N logN, A(u2) = u2N logN,

and therefore A(u1)u2 = A(u2)u1. This means that the objective function F in (28)
is symmetric with respect to the interchange of u1 and u2, and thus it follows that
according to the deterministic method, the BDF and WDF strategies are equivalent.
In other words, it does not matter which drug we start with. A contour plot of the
objective function for a particular parameter set is presented in Fig. 4(a). The expla-
nation is as follows. The mutants resistant to the drug with a higher mutation rate
are created faster, so they are more abundant, but during the treatment they produce
fully-resistant mutants with a lower intensity. The mutants resistant to the drug with
a lower mutation rate are less abundant at the start, but they generate fully-resistant
mutants faster. In the deterministic system, the two effects balance each other out,
leading to the observed symmetry.

Our numerical results based on the stochastic model of Sect. 2 with u12 = 0 are il-
lustrated in Fig. 4(b). Shown are contour plots of the probability of treatment success,
when the treatment starts with the drug with the higher mutation rate (solid lines) and
the lower mutation rate (dashed lines). We observe that the two sets of contours are
not identical in the stochastic method. In fact, if u1 > u2, then the optimal treatment
regime corresponds to �t = 0, and if u1 < u2, then there is an optimal cycle duration
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Fig. 4 Equal drug potencies, different activity spectra. (a) The contour plots of the objective function for
the deterministic method. (b) Contour plots of the probability of treatment success (using the stochastic
method) for the alternating strategies with the drug with a narrower activity spectrum first (solid contours),
and the broader drug first (dashed contours). The mutation rates are 10−5 and 10−8, and the rest of the
parameters are l = 1, d = 0, h1,2 = 4, N = 1011

�t∗ > 0. The probability of treatment success is higher in the case where u1 < u2.
That is, it is better to start with the drug with a broader activity spectrum.

The general conclusion is that for drugs of equal potency, the optimal treatment
starts with the drug for which resistance is generated slower. In other words, it is best
to start with the drug which is effective against the more abundant resistant mutants.
The optimal cycle duration is nonzero, and the cycle length of the drug with the
narrower activity spectrum is smaller than that of the drug with the broader activity
spectrum.

Note that the difference between the two maxima in Fig. 4(b) is very small (in
the third digit); this is a general trend for drugs of equal potency. Therefore, the
deterministic result stating that the order of drugs is not important is correct to a
certain approximation. However, the calculation of the optimal strategy (that is, the
best values for �t1 and �t2) cannot be made by using the deterministic method. For
an explanation of the slight asymmetry leading to the advantage of using broader-
activity drugs first, see Appendix D.

Next, we explore how cross-resistance influences the above results. For equal drug
potencies, we apply the deterministic method of Sect. 3 in the context of cross-
resistance. The term F0→2, (29), under the assumption h2 = h1, equals F0→2 =
Nu12/[l(h1 − γ )], that is, it does not depend on the cycle durations of the two drugs.
This makes sense, because the production of fully-resistant mutants directly out of
susceptible cells is unaffected by the mutation rates u1 and u2, and therefore, it does
not matter which drug is used first, and what the cycle durations are. Computer sim-
ulations of the stochastic model with cross-resistance confirm that the influence of
cross-resistance in the case of equal potency, different activity drugs is negligible
(not shown). We predict that the optimal strategy is to start with a broader drug, and
use it for longer periods of time. The only difference which cross-resistance makes
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is the weakening of the effect, that is, the flattening of the maximum of the treatment
success probability. For high values of u12, the primary reason for treatment failure
becomes the creation of double mutants by cross-resistance, and therefore the exact
treatment strategy (the timing and duration of the drugs) becomes less important, as
it only affects the (secondary) process of double-mutant creation by two independent
mutations.

6 Short Treatment Times

So far, we have been focusing on studying the limit of long treatments. This means
that in the deterministic model, we considered the limit of an infinite number of cy-
cles, N → ∞ in expressions such as (27), which yields the objective functions in
(28), (29). In the stochastic simulations, we performed cycles of numerical integra-
tion of ODEs until the result did not change any longer. In this section we will address
the situation where the treatment time is suboptimal. In other words, an increase in
treatment time would lead to a sizable improvement in the chance of treatment suc-
cess.

Let us fix a certain treatment time, Ttreat, and vary the number of cycles, 2N , used
in the protocol. This is similar to varying the cycle duration in the case of “infinite”
treatments. First we consider drugs of different potencies. We would like to know
(i) what drug should be used first, (ii) what number of cycles, 2N , should be imple-
mented within the allocated treatment time, and (iii) what is the optimal cycle ratio
for the two drugs. In Fig. 5 we considered two drugs: drug A has potency h = 5γ and
drug B has potency h = 3γ ; the two drugs have the same activity spectra. The con-
tour plots show the levels of the probability of treatment success calculated by using
the stochastic methodology. Solid contours correspond to BDF strategies, and dashed
contours—to WDF strategies. In Fig. 5(a), the treatment time is taken essentially in-
finite; in other words, doubling the treatment times does not change the probabilities
of treatment success. In agreement with our previous results, treating with BDF is
a better strategy; it corresponds to a finite number of cycles. If treating with WDF,
the optimum corresponds to an “infinite” number of cycles. In Fig. 5(b) we decrease
the treatment time by approximately a factor of 3. The effect is very noticeable. First
of all, we can see that the maximum probability of treatment success achieved by
shorter protocols is significantly lower than that for longer protocols. Further, we ob-
serve that treating with BDF now has a larger advantage compared to treating with
WDF. Also, the contour plot of the probabilities changes its shape significantly: for
BDF treatments, the optimal treatment consists of only 2 cycles of each of the drugs,
and for WDF treatments—of 3 cycles.

Figure 6 demonstrates the effects of decreasing the total treatment time in a
systematic way. As Ttreat decreases, the probability of treatment success decreases
(Fig. 6(a)), and the difference between the optimal BDF and WDF treatment proto-
cols increases. The BDF strategy remains advantageous. The optimal number of cy-
cles (Fig. 6(b)) decreases as the treatment time decreases. The optimal BDF protocol
usually requires fewer cycles than the optimal WDF protocol. Very short treatment
times require the optimal protocol to have only one cycle of drug application. For
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Fig. 5 Drugs of different potencies in protocols of long and short durations. Drug A has h = 5, drug B

has h = 3. (a) The treatment time is Ttreat = 74.83, (b) Ttreat = 25. The other parameters are l = 1, d = 0,
u = 10−8, N = 1013. Solid lines correspond to BDF strategies, and dashed lines to WDF strategies

Fig. 6 Drugs of different potencies in protocols of different durations. Drug A has h = 5, drug B has
h = 3. (a) The optimal probability of treatment success as a function of treatment time. (b) The opti-
mal number of cycles as a function of treatment time. The graphs are presented for the WDF and BDF
strategies. The other parameters are l = 1, d = 0, u = 10−8, N = 1013

BDF treatments, the probability of treatment success experiences a slowing down in
its growth as a function of Ttreat. This corresponds to the regime where having only
one cycle is no longer optimal, and the optimal strategy requires using more than one
cycles.

Next we will assume that the two drugs have an equal potency and only differ by
their activity spectra. In Fig. 7, we consider two drugs with highly different muta-
tion rates, drug A with u = 10−5 and drug B with u = 10−9. In Fig. 7(a), we fix the
treatment time to be approximately 16.49 time units, which for the parameter val-
ues chosen is comparable with the time it takes on average to eliminate the colony
of susceptible cells with one of the drugs (approximately 12.66 units). The contour
plots of the probability of treatment success obtained by the stochastic method are
presented for the two cases: drug A first (solid lines) and drug B first (dashed lines).
We observe that the optimal probabilities of treatment success in the two scenarios
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Fig. 7 Drugs of different activity spectra in protocols of different duration. Drug A has u = 10−5,
drug B has u = 10−9. (a) The contour plots of the probability of treatment success for treatment time
Ttreat = 16.46; solid lines correspond to u1 > u2 (drug A first), and dashed lines to u1 < u2 (drug B first).
(b) The optimal probability of treatment success as a function of treatment time. The other parameters are
l = 1, d = 0, h1 = h2 = 3, N = 1011

differ significantly. If we start with drug B , the optimal strategy is to use 2 cycles,
and the corresponding success probability is about 0.12. If, on the other hand, we
start treatment with drug A, then the best strategy is to use only one cycle, and the
corresponding success probability is about 0.39, which is significantly higher. In both
cases, the drug with the lower mutation rate must be used for longer.

In Fig. 7(b), we show that for most finite treatments protocols, it is advantageous
to start with the drug characterized by a higher mutation rate, but use the other (more
active) drug for longer cycle durations. The difference between the two types of pro-
tocols decreases as the treatment length increases, and for very long treatments, the
two lines in Fig. 7(b) cross over. As was described in the previous section, in the limit
of long treatments, it becomes slightly advantageous to treat with the broader drug
first.

We can see that while the deterministic model works well for infinite treatments,
it fails to explain the observations for short treatments. Incorporating the finite treat-
ment time effects (27) does not help explaining why as the total treatment length
becomes shorter, using only one or two cycles becomes the optimal strategy. The
intuition behind this is as follows.

If the treatment time is long, the extinction of the susceptible colony as well as both
partially-resistant colonies is a certainty, and the probability of treatment success is
defined by the dynamics of partially-resistant mutants, which are well described by
the deterministic model. On the other hand, the dynamics of drug resistance for short
treatment times has a purely stochastic component. If the treatment time is short, the
probability of treatment success largely depends on the chance of the extinction of
the susceptible and the partially susceptible colonies by the end of the treatment. For
example, if the time Ttreat is so short that even the elimination of the fully-susceptible
colony is unlikely, then the probability of treatment success is extremely low. This
corresponds to the regime in Figs. 5(a) and 7(b) with treatment time below approxi-
mately 9; a rough estimate for this minimum treatment time which leads to clinically
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meaningful treatment probabilities is lnN/(h + d − l). For treatment times longer
that this threshold, the main reason for treatment failure becomes the non-extinction
of partially resistant mutants. While the fully-susceptible colony is killed by the drugs
continuously, the two partially-resistant colonies are killed intermittently. The opti-
mal treatment protocol maximizes the chances of eliminating these colonies by the
end of the treatment.

7 Protocols Involving Drugs of High Toxicity

So far we assumed that the objective for treatment protocol optimization is to max-
imize the number of cancer cells killed. This is a reasonable strategy given that the
drugs’ side effects are relatively mild. The question of optimization has to be ap-
proached differently for treatments with drugs of high toxicity. In this context, the
optimization problem has two objectives: (1) maximize the probability of cancer
eradication, and (2) minimize the side effects of the treatment.

The framework developed in this paper is applicable in such situations, but the
rules (such as the BDF rule) derived without considerations of toxicity, may not hold.
In what follows we describe how to apply our framework to drugs of high toxicity.

By optimizing the probability of cancer eradication, we can produce contour plots
such as the ones in Fig. 3. Let us consider a particular example where two drugs
are used: drug A has potency hA = 5 and drug 2 has potency hB = 3. In Fig. 8 we
present the contour plots of the objective function F/(lN logNu1u2), with the axes
�tB (the cycle duration of the worse drug) and �tA/�tB . Note that for the purposes
of this section it is more convenient to use the duration of one of the drugs’ cycle
(drug B) as the horizontal axis. This is different from Fig. 3 where the horizontal
axis was the cycle duration of the first drug used. Treatment starting with the best
drug corresponds to the solid contours, and treatment with the worst drug first—to

Fig. 8 Contour plots of the objective function for the BDF (solid lines) and the WDF (dashed lines)
strategies, for drugs of high toxicity. The axes are �tB (the cycle duration of the worse drug) and �tA/�tB
(the ratio of the best-to-worst cycle durations). (a) Drug A is more toxic, (b) drug B is more toxic. The
unrestricted optima for BDF and WDF strategies are marked by black dots; the optima under the toxicity
assumptions are marked by stars. The parameters are: l = 1, d = 0, hA = 5, hB = 3, u1 = u2 = 10−5,
u12 = 100u1u2, N = 1010
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dashed contours. Without considerations of toxicity, we simply find the minima of the
functions plotted (recall that it is the minimum of function F that optimizes treatment
in the deterministic approach). For the BDF and the WDF scenarios these minima are
indicated by black dots in the figure. The BDF treatment (solid contours) has a lower
minimum, and the optimum strategy requires using drug B for duration �tB ≈ 0.55
and drug A for duration �tA ≈ 0.40. The percentages of time when drugs A and B

are administered are given by 42% and 58% respectively.
To prepare for further optimization restrictions coming from the drug toxicity, in

Fig. 8 we compared the two types of treatments (BDF and WDF) for each point
(�tA,�tB). The thick black line near the top of the contour plot separates the region
where the BDF protocols are better (below the line), from the region where WDF
protocols are better (above the line). The line corresponds to the points where the
functions F/(lN logNu1u2) calculated for the two regimes are equal to each other
(we can see that the same-level, solid and dashed, contours intersect on that line). If
for some reason toxicity restrictions require us to use protocols corresponding to the
cycle lengths above this line, then a WDF treatment will be preferable.

There are several ways in which the optimization problem can be formulated in
the presence of drug side effects. One way is to assign different weights to differ-
ent optimization goals, and formulate the new objective function to be minimized.
For example, the new objective function can be the weighted sum of the function F

discussed before, and another function representing the side effects, which is an in-
creasing function of cycle durations and/or percentages of time a drug is used. The
difficulty with this approach is a certain arbitrariness of the choice of the weighting
coefficients. For this reason, here we adopt a simpler approach. We will identify all
possible protocols which are acceptable from the point of view of side effects. This is
equivalent to separating the (�tA,�tB) space into regions of high and low toxicity.
Then, we will perform the minimization of the original objective function restricted
to the region of low toxicity. Below we consider two examples of application of this
method (Fig. 8(b,c)).

First, let us assume that drug A (the stronger of the drugs) is very toxic. To mini-
mize side effects experienced by the patient, one must minimize (i) the cycle lengths
of drug A, and (ii) the percentage of time that drug A is administered. Let us denote
ν = �tA/�tB (the vertical axes in Fig. 8). The above two requirements can be written
as follows:

(i) �tA < c1, where c1 is some constant. This inequality can be rewritten as ν <

c1/�tB , and corresponds to the region below the hyperbola in Fig. 8(a).
(ii) The percentage of time that drug A is administered is given by ν/(1 + ν). Re-

quirement ν/(1 + ν) < c2, where c2 < 1 is some constant, leads to the inequality
ν < c2/(1− c2). This corresponds to the region below the straight horizontal line
in Fig. 8(a).

From the above considerations, the relatively low toxicity region corresponds to the
bottom left corner in Fig. 8(a). Obviously, the protocol previously identified as op-
timal cannot be used, and the optimization procedure must happen within the low
toxicity region. Since this region is below the thick black line, a BDF protocol will
still be the strategy of choice. Minimizing the function F under these constraints,
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we find the new optimum, which is indicated by a star in Fig. 8(a). It corresponds
to �tA = 0.36 and �tB = 0.8; the percentages of time when drugs A and B are ad-
ministered are given by 31% and 69% respectively. As we can see, the new optimum
treatment has a shorter cycle duration for drug A and a lower percentage of time when
it is used, compared to the old, unrestricted optimum.

In the second example, let us assume that drug B is more toxic than drug A.
This imposes the following requirements: (i) the cycle lengths of drug B should be
minimized, and (ii) the percentage of time that drug B is administered should be
restricted. In our notations, this leads to the following restrictions:

(i) �tB < c3, where c3 is some constant. This corresponds to the region to the left
of a straight vertical line in Fig. 8(b).

(ii) The percentage of time that drug B is administered is given by 1/(1 + ν). Re-
quirement 1/(1 + ν) < c4, where c4 < 1 is some constant, leads to the inequality
ν > (1 − c4)/c4. This corresponds to the region above the straight horizontal line
in Fig. 8(b).

It follows that the relatively low toxicity region corresponds to the top left corner in
Fig. 8(b). Now this region is above the thick black line, and therefore a WDF strategy
is preferable. The new optimum is indicated by a star in Fig. 8(b), and corresponds to
short (mathematically, zero-length) cycles of both drugs, such that the percentage of
time when drug B is administered is below 50%, which is lower than the 58% of the
original optimum.

The examples above describe the following general trend. If the best drug is also
more toxic, then the optimal protocol under the toxicity restrictions still starts with
the best drug (but uses it for a shorter cycle duration, and at a smaller percentage of
time). If however the worst drug is more toxic, then the optimal treatment strategy
may start with the worst drug. This is the only case we found where the BDF rule
could be overturned. In this case, the better drug must be used for relatively longer
durations, and the total cycle durations must be kept short.

To explain this we note that both BDF and WDF optimal strategies require a longer
cycle duration for the worst drug; however, the ratio of the best to worst cycle length
is smaller in the BDF case. If the best drug is more toxic, we impose a requirement
that it should be used at a smaller percentage of time; the corresponding region of the
parameter space (the lower left corner) is closer to the BDF optimum, and thus will
require a BDF strategy. On the other hand, if the worst drug is more toxic, the low
toxicity subspace corresponds to the upper left corner, and may happen in the region
where WDF strategies are optimal. For more details on the theoretical aspects of the
objective function shape, we refer the reader to Appendix A.

8 Discussion and Conclusions

In this paper we studied cyclic drug therapies with the aim to develop general guide-
lines on optimal treatment scheduling. Our work continues earlier studies of Day
(1986b) and extends the results to cross-resistant drugs.

The main idea behind treatment with multiple drugs is as follows. One of major
causes of cancer drug treatment failure is the development of drug resistance, which
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is often associated with genetic events that modify cellular phenotype inside the tu-
mor. Drug resistance can potentially be overcome by the combination of multiple
drugs, where a mutation that confers resistance against one drug does not confer re-
sistance against any of the other drugs in use. Cyclic drug therapies consist of several
alternating treatment courses, such that each of the drugs gradually eradicates the
population of susceptible cells, and the net effect of the alternating cycles of treat-
ment is the decline of the tumor. We find that in order for a cyclic treatment to be
feasible, the drugs’ strengths must satisfy a certain condition, which we call the con-
dition of “mutual strength.” Our results suggests that for mutually strong drugs, the
success of cyclic treatments depends on the exact scheduling, and in particular, on
the following factors: (i) which drug is administered first, and (ii) the durations of the
treatment courses.

The methodology used in this paper can be applied directly to cancer drugs with
relatively mild side effects, such as small molecule kinase inhibitors (Zhang et al.
2009). Kinases are currently one of the most promising and most intensively pursued
drug targets (Arkin and Wells 2004), because of their high efficiency and low toxicity.
One example is Imatinib (O’Dwyer et al. 2002; Deininger and Druker 2003), the first
selective tyrosine kinase inhibitor targeting Bcr-Abl protein, which has shown clini-
cal efficacy in the treatment of Chronic Myeloid Leukemia (CML). Small molecule
inhibitors such as Imatinib, have the ability to bind specifically to cancer cells, and
spare healthy, non-cancerous cells. Currently, there are 11 kinase inhibitors that have
received US Food and Drug Administration approval as cancer treatments, and there
are many more that are at different stages of development (Zhang et al. 2009).

Because of relatively mild side effects of these drugs, the main objective of pro-
tocol optimization is a maximal efficiency in killing cancer cells. In this context, our
main findings in the absence of cross-resistance can be summarized as follows:

• For a cyclic therapy to be effective, the two drugs must be mutually strong (condi-
tion (33)).

• Variant (a) of the worst drug rule of Day (1986b) (“use more of the worst drug”) is
confirmed for all scenarios in the absence of cross-resistance. For each parameter
combination, we can find the most successful cyclic strategy, characterized by the
optimal cycle durations for both drugs. The duration for the worse drug is always
longer.

• Variant (b) of the worst drug rule (“use the worst drug early”) does not hold in
general. In other words, the optimal cyclic strategy usually starts with the better of
the drugs.

• If the two drugs have equal strengths, but different activity spectra, then the best
strategy depends on the length of treatment. For very long treatments that ensure
a complete eradication of all the susceptible mutants, the best protocol starts with
the drug with a broader activity spectrum. Note however that the relative gain in
starting with the “best” drug compared with starting with the “worst” drugs is very
small in this situation. For suboptimal treatment durations it becomes advantageous
to start treatment with the narrower drug. In both scenarios, the optimal cycle du-
ration of the narrower drug is shorter than that of the broader drug, so in this sense,
we have a “use less of the worst drug” rule in place.
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Most chemotherapeutic agents used to treat cancer are not as selective as small
molecule inhibitors at killing cancerous cells. Their efficiency against cancerous cells
has a side effect of a high killing rate of healthy cells, and thus a prolonged admin-
istration of such drugs cannot be tolerated by patients. Our methodology can also be
applied, with some modifications, to drugs of high toxicity. We find that unless the
worst drug is also more toxic than the better drug, the “best drug first, worst drug for
longer” rule holds even in the presence of side effects. The parameters for the optimal
protocol can be calculated by the method described in Sect. 7, and will differ from
the optimal protocols for drugs with relatively mild side effects.

In the next section we continue our discussion of small molecule inhibitors and
summarize the role of cross-resistance for optimal treatment design. The above re-
marks about toxic drugs hold true in the presence of cross-resistance.

8.1 The Role of Cross-Resistance

Currently there are three small molecule inhibitors approved for treatment of CML:
Imatinib (O’Dwyer et al. 2002; Deininger and Druker 2003), Dasatinib, and Nilotinib
(Bradeen et al. 2006; Weisberg et al. 2007). These drugs are all inhibitors of the
BCR-ABL gene product. It has been shown that these three drugs are cross-resistant
because of one mutation (T315I) which confers resistance against all those drugs.
In addition to this one mutation, more than 50 mutations have been identified that
confer resistance against one of the drugs (in particular Imatinib), but not against
the others (Deininger 2007; Quints-Cardama et al. 2007). Given this situation, the
question arises whether a cyclic therapy with cross-resistant drugs can be optimized
to produce the best results.

We found that in the presence of cross-resistance, the tendency is that the better
drug (the drug with a stronger potency) must be used first and for longer periods of
time. This reinforces our previous result that the optimal strategy should start with
the better drug. However, this tendency is in conflict with the rule that the worst drug
should be used for longer periods of time. The trade-off works out to be the following:
if we start with the better (stronger) drug, then, in the presence of cross-resistance,
the cycles for the worse drug should still be longer than those for the better drug.
However, if we start with the worse drug, the duration of the cycles for the better
drug should be longer.

When we are dealing with drugs of similar potency but different activity spectra,
the presence of cross-resistance does not change the results qualitatively, but it makes
the effect observed in the absence of cross-resistance weaker. In other words, the
optimal strategy is still to start with a broader activity drugs and have its cycles longer
than those for the narrower drug, but the difference between the success rate of the
optimal strategy and other, suboptimal strategies, is small.

8.2 Testing the Theory

Since the publication of the papers by Goldie and Coldman (1979, 1983b, 1998),
Goldie et al. (1982), Coldman and Goldie (1985) and Day (1986b), there have been
several attempts by clinical oncologists to verify the theoretical results, and in par-
ticular, the famous “worst drug rule.” Several papers concluded that the worst drug
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Fig. 9 Same as Fig. 3(a); the BDF (thick solid lines) and the WDF (dashed lines) strategies are super-
imposed, and the axes are �tB (the cycle duration of the worse drug) and �tA/�tB (the ratio of the
best-to-worst cycle durations). The values of function F1→2 ((28), scaled) are marked next to the con-
tours. Lower numbers correspond to more successful strategies

rule does not hold, see papers Colucci et al. (1997), Gebbia et al. (2003), Fulfaro et al.
(2003), Grossi et al. (2007) in the context of non-small-cell lung cancer. These results
may seem discouraging, but a careful examination of the methods reveals that a more
subtle approach must be used for experimental verification/rejection of the theoreti-
cal predictions. Let us consider the following example. Suppose the theory predicts
that the optimal strategy for cyclic treatments with drugs A and B starts with drug A

and requires cycle durations �t∗A and �t∗B ; see Fig. 9 for illustration. Let us consider
two treatment strategies where drugs A and B are alternated with cycle durations
�tA �= �t∗A and �tB �= �t∗B respectively (in other words, the cycle durations are cho-
sen to be suboptimal; in Fig. 9 this corresponds to the black dot with �tB ≈ 0.28
and �tA/�tB ≈ 0.9). An experiment can be set up where strategy ABABABAB is
compared with strategy BABABABA with the given values for cycle durations. It
is possible that out of these two strategies the one starting with drug B leads to a
better treatment success rate (in Fig. 9 we can see that the black dot belongs to the
3.0 contour of the best-drug-first strategy, and the 2.9 contour of the worst-drug-first
strategy, suggesting that it is better to use the worst drug first). An outcome of this
kind is consistent with the theory, but at the same time it may lead to a wrong con-
clusion that the theory is wrong, because the theoretical optimal treatment starts with
drug A (and corresponds to the star in Fig. 9), and the experimentally found best
treatment (out of the two suboptimal treatment strategies) starts with drug B .

This simple example illustrates the point that in order to apply the theory devel-
oped here, one needs to have more information about the system parameters. In par-
ticular, the knowledge of the drugs’ potencies and activity spectra, as well as the rate
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at which cross-resistant mutants are generated, can help optimizing cyclic treatment
strategies.

In general, the methodology developed here can help creating more detailed the-
ories of cyclic drug treatments with non-symmetric rates, and different activities and
potencies of the two drugs. It can also be extended to more than two drugs. Another
important extension is to create a complete theory of short (suboptimal) treatments in
the context of toxic drugs. The objective is to optimize the protocol which has to be
kept short because of drugs’ side effects. This is a subject of current research.
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Appendix A: Some Properties of the Objective Function

Let us refer to the two drugs used as drug A and drug B . We suppose that they
have potencies hA and hB , and cycle durations �tA and �tB . Further we assume
that drug A is stronger: hA > hB . In order to find the best treatment protocol, we
need to evaluate the objective function F (28)–(30), and find the minimum over the
space (�tA,�tB). The function F depends on parameters h1, h2,�t1,�t2. The BDF
and the WDF treatments can be parameterized according to Table 1. The objective
functions corresponding to the two regimes are denoted as FWDF and FBDF. Let us
denote by ν the ratio ν = �tA/�tB . It is possible to prove that

FWDF(�tB, ν) = FBDF(−�tB, ν). (34)

The reason for this symmetry is that the initial-value problem (25)–(26) is invari-
ant under the transformation h1 ↔ h2, �t1 ↔ �t2, t → −t . This statement remains
true even if we include cross-resistance. One immediate consequence of (34) is that
FWDF(0, ν) = FBDF(0, ν); in other words, in the limit of a zero cycle duration, it
does not matter what drug we start the treatment with. Another consequence of sym-
metry property (34) is that the function FWDF(�tB, ν) for −∞ < �tB < ∞ and

1
hA−1 < ν < hB − 1 comprises all the information about the minima of the objective
function, where positive values of �tB correspond to WDF protocols, and the nega-
tive values—to BDF protocols. Thus, the optimization task is reduced to finding the
minimum of only one function, FWDF. If this minimum happens at a negative value
of �tB , then a BDF strategy is optimal.

Table 1 Best drug first and worst drug first treatments

Treatment type Objective function notation h1 h2 �t1 �t2

WDF FWDF hB hA �tB �tA

BDF FBDF hA hB �tA �tB
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We observe that the function FWDF(�tB, ν) always has a unique, global mini-
mum corresponding to a negative value of �tB . This means that the optimal strat-
egy is a BDF treatment. The corresponding optimal cycle duration, |�tB |, grows
with the difference in drug potencies, hA − hB . The corresponding optimal value of
ν = �tA/�tB is always less than 1, decreasing with the difference hA − hB . In other
words, for very different drugs, the cycle length of the worse drug is larger, and also
the ratio of the best-to-worst cycle length is smaller. The optimum duration �tB also
increases with the amount of cross-resistance.

From the fact that there is only one global minimum of this function which is
situated in the left half-plane, it follows that for WDF treatments, the optimum occurs
on the domain boundary (that is, it corresponds to �tB = 0, because the value of the
objective function for ν = 1

hA−1 and ν = hB − 1 is infinity).
If we restrict the values of �tB to the positive half-plane (WDF treatments) we

observe that the optimum treatment corresponds to the higher ratios, ν, compared to
those for the global minimum (BDF treatments). This helps explaining the general
trend described in Sect. 7, where we find that under the restrictions of toxicity, the
best protocol starts with the stronger drug, if this drug is more toxic, and it may start
from the weaker drug if the weaker drug is more toxic.

Appendix B: Treatment with Drugs that Are Not Mutually Strong

Let us suppose that the drugs that are used in a cyclic therapy fail condition (33).
There are three cases (see also Fig. 2):

(a) h1 < γ and h2 < γ (region F in Fig. 2);
(b) h1 < γ or h2 < γ , but not both (regions D and E in Fig. 2);
(c) h1 > 0, h2 > 0, but h−1

1 + h−1
2 > γ −1 (region C in Fig. 2).

A qualitative description of the system behavior in these regions is presented in
Sect. 4. Here we present some analytical considerations regarding case (c).

In case (c), let us suppose that h1 > h2. The best treatment strategy is this case
is the following. Start from the stronger of the drugs and try to eliminate the mu-
tants susceptible for that drug. Then switch to the second drug and treat indefinitely.
A strategy of this type is characterized by the duration of the first cycle, �t1. We can
show that this quantity has an optimum. The probability of treatment failure in this
case has the following two main contributions: (i) the probability to still have mu-
tants of type x01 after the time �t1 from the start of treatment, and (b) the probability
to produce double-hit mutants out of type x10-mutants (the probability of producing
double-hit mutants out of the x01-type mutants is much smaller than contribution (i)).

Contribution (i) can be calculated analytically by solving the characteristic equa-
tion ẋ = lx2 − (l +d +h1)x + (d +h1), where h1 is assumed to be the stronger drug,
and the initial condition is x(0) = 0. The probability of having mutants of type x01
after time �t1 is given by 1 − x(�t1)

N1 , where N1 is the initial abundance of type
x01-mutants. This function decays with �t1. This is intuitively clear: the longer we
treat with drug 1, the higher is the chance to get rid of mutants x01.

Contribution (ii) can be calculated by a similar method, assuming that for duration
�t1, the colony of type x10-mutants grows stochastically with rate γ , and after that
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Fig. 10 Treatment with weak drugs. The probabilities of treatment success calculated numerically by
the stochastic method, are presented as contour plots. The axes are �t1 and α. (a) The worst drug first,
h1 = 1.2, h2 = 2.2; (b) The best drug first, h1 = 2.2, h1 = 1.2. The rest of the parameters are l = 1, d = 0,
u1,2 = 10−6, N = 106

it decays indefinitely, with average rate γ − h2. An analytical solution cannot be
obtained in this case, but it is clear that the probability of treatment failure due to x11

production by x10 is a growing function of �t1. This is because the longer we treat
with the first drug, the longer growth phase is experienced by the x10-mutants, and
the higher is the chance that they produce fully-resistant mutations.

It is apparent that we have a trade-off between two failure mechanisms. It turns
out that an intermediate optimal value of �t1 maximizes treatment success proba-
bility in this case. Figure 10 illustrates these findings. We present a contour plot of
the probability of treatment success (calculated numerically by using the stochastic
methodology), as a function of parameters �t1 and α. We can see that there is an
optimal (and comparatively large) value of the first cycle duration, �t1; the optimal
values of α belong to an interval α > α∗, for some α∗ > 1. We observe that for these
values, treating for more than two cycles does not change the probability of treatment
success.

As h2 increases, it may become more efficient to return to treating with the
first drug. In this case, several rounds of the strategy described above are ap-
plied. Even though, on average, one of the partially-resistant mutants (namely,
x01 treated by the first drug) is expected to grow, this strategy maximizes the
chances of its extinction by driving it periodically to low numbers. This corre-
sponds to an appearance of another maximum in the contour plot of Fig. 10 (not
shown). This maximum (which corresponds to values α < 1 and relatively small
values of �t1) grows with h2 while the maximum corresponding to the two-
cycle treatment becomes less pronounced (not shown). The idea is that the ex-
pected growth is slow, such that at the end of each round, the average gain is
small.
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Fig. 11 The optimal cycle duration, �t1, as a function of h1 (with fixed h2 = 2), calculated by different
methods. The thick solid line corresponds to the ODE model (l = 1, d = 0); the thick dashed line—to the
stochastic model with no mutant production (l = 1, d = 0, u = 10−6). The three thin lines correspond to
the full production stochastic model with l = 1, d = 0, u = 10−6 (small dash); l = 5, d = 4, u = 10−6

(solid); l = 1, d = 0, u = 10−5 (long dash). Inset: the optimal values of α calculated by the full production
stochastic model (triangles), the stochastic model with no production (squares) and the ODE estimate
(diamonds); in all cases l = 1, d = 0, u = 10−6. The tumor size is N = 1010.04

Appendix C: Comparison of the Deterministic and Stochastic Predictions

The results in Fig. 3 were obtained by using the deterministic approximation of
Sect. 3. The question is whether this method gives a good agreement with stochastic
simulations of Sect. 2. The comparison of the optimal values of �t1 and α calculated
by the deterministic and stochastic model is presented in Fig. 11. There, we fix the
value h2 and plot the optimal value �t1 as a function of h1 (the plot of the optimal
value α is shown in the inset).

We can see that while the deterministic approximation predicts the optimal α val-
ues extremely well, the calculated optimal cycle duration, �t1, is slightly lower than
that obtained by the stochastic model. One of the reasons is that in the ODE model,
we ignored the production of partially resistant mutants during treatment. The thick
dashed line in Fig. 11 corresponds to a stochastic calculation where we “turned off”
the single-hit mutants after the start of treatment. The agreement between the mod-
ified stochastic and the deterministic model is better. The remaining difference is
attributable to the purely stochastic effects which are not captured by the equations
for the averages; see also Appendix D.

Appendix D: Equal Treatment Strength, Different Mutation Rates

Suppose at the start of treatment the number of mutants resistant to drug 1, x10, equals
N10, and the number of mutants resistant to drug 2, x01, equals N01. Let us calculate
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the probability that no fully-resistant mutants are produced by time t under a one-drug
treatment scenario.

To solve this problem, we will need to consider the following equations for char-
acteristics:

ξ̇1 = l(1 − u)ξ2
1 + (

luξ2 − (l + d + h)
)
ξ1 + d + h, (35)

ξ̇2 = lξ2
2 − (l + d)ξ2 + d, (36)

ξ1(0) = 1, (37)

ξ2(0) = 0. (38)

These equations correspond to the situation where double-hit mutants are produced at
a mutation rate u from one-hit mutants, and the effect of treatment on one-hit mutants
is expressed by h. The probability of non-production of double-mutants is given by

P(u,h,N1; t) = ξ1(u,h; t)N1, (39)

where N1 is the initial abundance of one-hit mutants, and 0 is the initial abundance
of double-hit mutants. The solution can be found exactly if we set d = 0. In this case,
ξ2(t) = 0, and (35) is a Riccati equation with solution

ξ1(u,h; t) = − β1Aeβ1t + β2e
β2t

l(1 − u)(Aeβ1t + eβ2t )
, (40)

where

β1,2 = 1

2

(−(l + h) ±
√

(l + h)2 − 4hl(1 − u)
)
, (41)

A = − l(1 − u) + β2

l(1 − u) + β1
. (42)

In particular, for h = 0, the calculations simplify to give

ξ1(u,0; t) = 1

1 − u(1 − elt )
.

Let us suppose that drug 1 is used for treatment. Then the probability that fully-
resistant mutants are not produced is given by

P1 = P(u2,0,N10) × P(u1, h,N01).

Similarly, under drug 2 treatment we have

P2 = P(u2, h,N10) × P(u1,0,N10).

For the initial mutant abundances we can take the expected values:

N10 = u1N logN, N01 = u2N logN,
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where N is the tumor size at the start of treatment.
It turns out that if u1 < u2, then P1 > P2, that is, the probability of double-mutant

non-production is higher if we start treatment with the drug with the lower mutation
rate.

It is instructive to see that if u1 and u2 are of the order of ε which is small, then
formally we have:

P1 − P2 ≈ N logNu1u2(u2 − u1)e
2lt = O

(
ε3).

That is, the difference between the two probabilities requires third-order terms in
the mutation rate. However, this is misleading because the consecutive terms in this
expansion are not necessarily small, as they involve the exponents elt , and for realistic
parameter values they can be of order one.
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