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Abstract The paper presents a deterministic compartmental model for the transmis-
sion dynamics of swine influenza (H1N1) pandemic in a population in the presence of
an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis
of the model, which stratifies the infected population in terms of their risk of devel-
oping severe illness, reveals that it exhibits a vaccine-induced backward bifurcation
when the associated reproduction number is less than unity. The epidemiological con-
sequence of this result is that the effective control of H1N1, when the reproduction
number is less than unity, in the population would then be dependent on the initial
sizes of the subpopulations of the model. For the case where the vaccine is perfect, it
is shown that having the reproduction number less than unity is necessary and suffi-
cient for effective control of H1N1 in the population (in such a case, the associated
disease-free equilibrium is globally asymptotically stable). The model has a unique
endemic equilibrium when the reproduction number exceeds unity. Numerical simu-
lations of the model, using data relevant to the province of Manitoba, Canada, show
that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the
first (Spring) wave of the pandemic. Further, it is shown that the timely implementa-
tion of a mass vaccination program together with the size of the Manitoban population
that have preexisting infection-acquired immunity (from the first wave) are crucial to
the magnitude of the expected burden of disease associated with the second wave of
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the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it
is projected that at least 60% of Manitobans need to be vaccinated in order for the
effective control or elimination of the H1N1 pandemic in the province to be feasible.
Finally, it is shown that the burden of the second wave of H1N1 is expected to be at
least three times that of the first wave, and that the second wave would last until the
end of January or early February, 2010.

Keywords Swine flu H1N1 · Model

1 Introduction

The emergence of the H1N1 Influenza A (also known as the swine influenza) pan-
demic in the Spring of 2009 (Centers for Disease Control and Prevention 2009d;
El Universal 2009; GenBank Sequences From 2009 H1N1 Influenza Outbreak 2009;
World Health Organization 2009a, 2009b, 2009c) poses major public health chal-
lenges globally (World Health Organization 2009b, 2009c). Since its emergence
in Mexico in April 2009, the novel H1N1 pandemic, which is believed to have
resulted from a recent genetic reassortment involving several influenza virus lin-
eages (Pourbohloul et al. 2009), has so far (as of October 31, 2009) accounted
for 441 661 infections and 5712 H1N1-related deaths worldwide (World Health
Organization 2009d). The most affected region is the Americas (with 174 565
cases and 4175 deaths). Presently, pandemic influenza transmission remains ac-
tive in many parts of the tropical zone of the Americas, most notably in sev-
eral Caribbean countries, and high and increasing rates are reported in the USA
and Canada.1 It is thought that H1N1 spreads in the same way that regular sea-
sonal influenza viruses spread, mainly through coughs and sneezes of people who
are infected with the virus, but it may also be spread by touching contaminated
objects and then touching the nose or mouth. H1N1 infection has been reported
to cause a wide range of flu-like symptoms, including fever, cough, sore throat,
body aches, headache, chills and fatigue. In addition, many people also have re-
ported nausea, vomiting and/or diarrhea (Centers for Disease Control and Prevention
2009a).

One disconcerting aspect of the H1N1 pandemic is the higher rates of mor-
tality and severe illness among young healthy individuals, unlike in the case of
seasonal influenza which tends to affect older individuals (Chowell et al. 2009;
World Health Organization 2009f). In addition, several chronic conditions and be-
havioral and other risk factors have been associated with increased risk of dis-
ease severity among H1N1-infected individuals. Infants and pregnant women (es-
pecially in the third trimester) are at increased risk of hospitalization and ICU ad-
missions (Centers for Disease Control and Prevention 2009c; Jamieson et al. 2009;
United States Centers for Disease Control and Prevention 2009; World Health Or-
ganization 2009g). People with preexisting chronic conditions (such as asthma and

1http://healthmap.org/swineflu/. Accessed 02 November 2009.

http://healthmap.org/swineflu/
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other chronic lung diseases, chronic kidney and heart diseases, obesity and condi-
tions associated with immune suppression) were found in several analyses to have
increased the risk of death and ICU admission (Kumar et al. 2009; United States
Centers for Disease Control 2009). In Manitoba, Aboriginals, especially those resid-
ing in remote and isolated communities, were at increased risk of severe illness due
to pandemic H1N1 infections (Winnipeg Regional Health Authority Report 2009).

Because of the large numbers of those at risk of severe illness and the lack of
preexisting immunity to the pandemic virus in the population at large, concerns have
been raised about the ability of the health care system to cope with large numbers
of patients requiring treatment in intensive care units (ICUs) during the peak period
of the “second wave”. The second wave of H1N1 is currently underway, at least in
Canada (believed to have started around early to mid October, 2009) (Canada Enters
Second Wave of H1N1 2009). Several public health measures, including social exclu-
sion (e.g., school closures, banning large gathering etc.), could be possibly deployed
to contain the pandemic. Other likely effective measures include mass vaccination
and use of antiviral drugs to treat symptomatic individuals during the early phases of
illness (Centers for Disease Control and Prevention 2009b). Mass vaccination against
H1N1 is on-going in various parts of North America, but current vaccine supply is
limited, resulting in prioritization of high-risk groups, which could potentially delay
the achievement of effective levels of herd immunity. While there are two effective
drugs for the treatment of H1N1, oseltamivir (Tamiflu) and zanamivir (Relenza), their
impact on changing the course of the pandemic is unknown, as their availability is
also not universal and there are already early reports of oseltamivir-resistant H1N1
strains transmitted (van der Vries et al. 2009). As a result, there is considerable un-
certainty about the likely impact of these control measures on the trajectory of the
pandemic.

Mathematical models, typically of the form of deterministic or stochastic systems
of nonlinear differential equations, have been used to gain insights into the trans-
mission dynamics of emerging and reemerging infectious diseases, such as seasonal
and pandemic influenza (see, for instance, Gumel et al. 2008; Miriam et al. 2007),
as well as to serve as a public health decision-making tool. Mathematical approaches
are useful in studying the qualitative and quantitative dynamics of H1N1 (that is,
in estimating its potential burden) and evaluating the impact of public health con-
trol strategies, including mass vaccination. A number of modelling studies have al-
ready been reported on the transmission dynamics of H1N1 (such as those by Brian
et al. 2009; Boëlle et al. 2000; Franco-Paredes and Preciado 2009; Hiroshi et al.
2009; Pourbohloul et al. 2009). Pourbohloul et al. (2009) used a network-based sta-
tistical approach to estimate the initial reproduction number of H1N1 influenza in
North America. Brian et al. (2009) considered compartmental models to gain insight
into the transmission dynamics of H1N1 and the natural history of H1N1 influenza.
This study complements the aforementioned studies by designing a new deterministic
model, which incorporates an imperfect H1N1 vaccine, drug treatment and stratifies
the total infected population in terms of their risk of developing severe illness. The
model, which is rigorously analysed to derive important epidemiological thresholds,
is used to evaluate the potential burden of the second wave of H1N1 in Manitoba
(as of October 17, 2009, Manitoba has reported 927 confirmed cases and 7 H1N1-
associated deaths (Manitoba Health 2009)). It is expected that between 10 to 20%
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of the total Manitoban population may have preexisting immunity. This estimate is
based on preliminary results of a study (led by one of the coauthors: SMM) that es-
timated the seroprevalence of the pandemic H1N1 infection following the first wave
in Manitoba (Mahmud et al. 2010).

The paper is organized as follows. The H1N1 influenza model is formulated in
Sect. 2, and rigorously analysed in Sect. 3. Numerical simulations are reported in
Sect. 4.

2 Formulation of the Model

The total human population at time t , denoted by N(t), is subdivided into 15 mu-
tually exclusive compartments of susceptible individuals (S(t)), vaccinated individ-
uals (V (t)), latently infected individuals (L(t)), infectious individuals without dis-
ease symptoms (A(t)), high-risk symptomatic individuals in the early stage (first two
days) of infection (I1(t)), low-risk symptomatic individuals in the early stage (first
two days) of infection (Y1(t)), high-risk symptomatic individuals in the later stage
of infection (I2(t)), low-risk symptomatic individuals in the later stage of infection
(Y2(t)), high-risk treated infected individuals (TH(t)), low-risk treated infected indi-
viduals (TL(t)), high-risk hospitalized individuals not in the ICU (HH(t)), low-risk
hospitalized individuals not in the ICU (HL(t)), high-risk hospitalized individuals in
the ICU (CH(t)), low-risk hospitalized individuals in the ICU (CL(t)) and recovered
individuals (R(t)). Thus,

N(t) = S(t) + V (t) + L(t) + A(t) + I1(t) + Y1(t) + I2(t) + Y2(t)

+ TH(t) + TL(t) + HH(t) + HL(t) + CH(t) + CL(t) + R(t).

It is worth emphasizing that the model to be designed stratifies the total infected pop-
ulation according to their risk of developing severe illness (i.e., high-risk individuals
are more likely to develop severe disease, require hospitalization, ICU admission and
suffer increased mortality in comparison to low-risk individuals). The susceptible
population is increased by the recruitment of new individuals (assumed susceptible)
into the population at a rate Π . Susceptible individuals acquire H1N1 infection (and
become latent), following effective contact with infected individuals (i.e., those in the
L,A, I1, I2, T ,H1 and H2 classes), at a rate λ, given by

λ(t) = β[D1(t) + D2(t)]
N(t)

, (1)

where

D1(t) = θ1L(t) + I1(t) + θ2Y1(t) + θ3I2(t) + θ4Y2(t) + θ5A(t) + θ6TH(t),

D2(t) = θ7TL(t) + θ8HH(t) + θ9HL(t) + θ10CH(t) + θ11CL(t).

In (1), β is the effective contact rate. Further, the modification parameters 0 <

θi |i=1...11 < 1 account for the assumed decrease in the relative infectiousness of indi-
viduals in the L,Y1, I2, Y2,A, TH, TL,HH,HL,CH and CL classes in comparison to
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infectious individuals in the early stage of infection (I1) (it should be mentioned that
the model to be designed is robust enough to allow for this assumption to be relaxed
for some of the state variables, particularly Y1, Y2, I2 and A). That is, it is assumed
that infected individuals in the L,Y1, I2, Y2,A, TH, TL,HH,HL,CH and CL classes
are less infectious than infectious individuals in the I1 class. It is worth stating that
it is assumed that latently infected individuals (in the L class) can transmit infection
(albeit at a very small rate, θ1β , with 0 < θ1 � 1). Furthermore, it is assumed that
hospitalized individuals not in ICU (i.e., those in the HH and HL classes) and in ICU
(i.e., those in the CH and CL classes) can transmit infection at reduced rates θ8β, θ9β

and θ10β, θ11β , respectively. These assumptions can be relaxed (if hospital isolation
is perfect) by setting θ10 = θ11 = 0.

Susceptible individuals are vaccinated at a rate ξ . It is assumed that the vaccine
is imperfect, so that vaccinated individuals can acquire breakthrough infection at a
reduced rate (1 − ε)λ, where 0 < ε < 1 is the vaccine efficacy against infection.
Latently infected individuals become infectious (typically after 7 days of infection)
at a rate α (so that, 1/α = 7 days). A fraction, r , of these individuals show clinical
symptoms of H1N1 (and move to the class I1), while the remaining fraction, (1 − r),
will not (but still remain capable of infecting others). The latter group is moved to
the class A (of infectious individuals with no disease symptoms). A fraction, f , of
individuals who show clinical symptoms of H1N1 are assumed to be of high risk and
are moved to the I1 class, while the remaining fraction, 1 − f , are considered of low
risk and moved to the Y1 class.

Individuals in the I1 and Y1 classes move to the later stage of infection (after about
48 hours) at rates κH and κL, respectively. Infectious individuals in the classes I1 and
Y1 are treated, within the 48-hour window, at rates τH and τL, respectively. It is as-
sumed that treatment is not effective for infected individuals in the I2 and Y2 classes.
This study assumes that Tamiflu is only offered therapeutically; and such treatment
is only effective if administered within the first 48 hours of infectiousness. Further-
more, since resistance to these drugs has been rare (during this pandemic), the model
does not account for the development and transmission of resistant strains (FluWatch
2010).

Individuals in the late stages of H1N1 infection (i.e., those in the I2 and Y2 classes)
become sick and are hospitalized at rates ψH and ψL, respectively. Furthermore, these
individuals can recover naturally at rates γH and γL, respectively. Infectious individu-
als that show no symptoms of H1N1 recover naturally at a rate γA. Treated individuals
can fail treatment and become hospitalized at rates φH and φL, respectively; other-
wise, they recover at rates γTH and γTL respectively. Hospitalized individuals, both of
high and low risk, recover at rates γHH and γHL, respectively, or are transferred to the
ICU (of high or low risk) at rates σH and σL, respectively. ICU patients (both in high-
and low-risk classes) can recover at rates γCH and γCL, respectively. Natural mor-
tality occurs in all classes at a rate μ, while hospitalized individuals (in the HH and
HL classes) and those in ICU (i.e., those in the CH and CL classes) suffer additional
disease-induced death at rates δHH, δHL, δCH andδCL, respectively. It is assumed that
δCH > δHH and δCL > δHL, since individuals in ICU (either of high or low risk) are
more likely to die than those not in ICU (because of their severe complications). Fur-
thermore, it is assumed that recovered individuals do not lose their infection-acquired
immunity, so that they do not become susceptible to reinfection.
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Combining all the aforementioned definitions and assumptions, it follows that the
model for the transmission dynamics of H1N1 flu in a population is given by the
following deterministic system of nonlinear differential equations (see Fig. 1 for a
flow diagram and Table 1 for the description of the variables and parameters of the
model):

dS

dt
= Π − λ(t)S(t) − k1S(t),

dV

dt
= ξS(t) − (1 − ε)λ(t)V (t) − μV (t),

dL

dt
= λ(t)S(t) + (1 − ε)λ(t)V (t) − k2L(t),

dI1

dt
= f rαL(t) − k3I1(t),

dY1

dt
= (1 − f )rαL(t) − k4Y1(t),

dI2

dt
= κHI1(t) − k5I2(t),

dY2

dt
= κLY1(t) − k6Y2(t),

dA

dt
= (1 − r)αL(t) − k7A(t),

(2)
dTH

dt
= τHI1(t) − k8TH(t),

dTL

dt
= τLY1(t) − k9TL(t),

dHH

dt
= ψHI2(t) + φHTH(t) − k10HH(t),

dHL

dt
= ψLY2(t) + φLTL(t) − k11HL(t),

dCH

dt
= σHHH(t) − k12CH(t),

dCL

dt
= σLHL(t) − k13CL(t),

dR

dt
= γHI2(t) + γLY2(t) + γAA(t) + γTHTH(t) + γTLTL(t)

+ γHHHH(t) + γHLHL(t) + γCHCH(t) + γCLCL(t) − μR(t),

where

k1 = μ + ξ, k2 = μ + α, k3 = μ + τH + κH, k4 = μ + τL + κL,
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Fig. 1 Flow diagram of the model

k5 = μ + ψH + γH, k6 = μ + ψL + γL, k7 = μ + γA,

k8 = μ + φH + γTH, k9 = μ + φL + γTL,

k10 = μ + σH + γHH + δHH, k11 = μ + σL + γHL + δHL,

k12 = μ + γCH + δCH, k13 = μ + γCL + δCL.

It is worth mentioning that one limitation of model (2) is that it does not explicitly
incorporate the role of age structure (to account for the variability in susceptibility
according to age). A homogeneously mixed population is assumed to allow for the
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Table 1 Description of variables and parameters of the model

Variable Description

S(t) Susceptible individuals

V (t) Vaccinated individuals

L(t) Latently infected individuals

I1(t) High-risk symptomatic individuals in early stage of infectiousness

Y1(t) Low-risk symptomatic individuals in early stage of infectiousness

I2(t) High-risk symptomatic individuals in late stage of infectiousness

Y2(t) Low-risk symptomatic individuals in late stage of infectiousness

A(t) Infectious individuals with no symptoms

TH(t) High-risk treated infected individuals

TL(t) Low-risk treated infected individuals

HH(t) High-risk hospitalized individuals not in ICU

HL(t) Low-risk hospitalized individuals not in ICU

CH(t) High-risk hospitalized individuals in ICU

CL(t) Low-risk hospitalized individuals in ICU

R(t) Recovered individuals

Parameter Description (per day)

Π Recruitment rate into the susceptible population

μ Natural death rate

β Effective contact rate

δHH, δHL, δCH, δCL Disease-induced mortality for individuals in HH,HL

and CH,CL classes, respectively

ξ Vaccination rate

ε Vaccine efficacy

α Rate at which latent individuals become infectious

r Fraction of infectious individuals who show disease symptoms

f Fraction of infectious individuals showing symptoms with high risk

κH Progression rate of infectious individuals from I1 to I2

κL Progression rate of infectious individuals from Y1 to Y2

γH, γL, γA, γTH, γTL Recovery rates for individuals in I2, Y2,A,TH, TL classes, respectively

γHH, γHL, γCH, γCL Recovery rates for individuals in HH,HL,CH and CL classes, respectively

ψH,ψL Hospitalization rate for individuals in I2 and Y2 classes, respectively

φH, φL Hospitalization rate for high- and low-risk treated individuals, respectively.

σH, σL ICU admission rate for high- and low-risk hospitalized individuals, respectively

τH, τL Treatment rate for individuals in I1 and Y1 classes, respectively

θi (i = 1 . . .11) Relative risk of infectiousness of infected individuals in relation to those in I1 class

ensuing mathematical analysis of the model to be more tractable. We intend to in-
vestigate the issue of heterogeneity, in the context of the H1N1 pandemic, in a future
study.



Modelling the Transmission Dynamics and Control of the Novel 523

3 Analysis of the Model

3.1 Basic Properties

3.1.1 Positivity and Boundedness of Solutions

For the basic model (2) to be epidemiologically meaningful, it is important to prove
that all its state variables are nonnegative for all time. In other words, solutions of the
model system (2) with positive initial data will remain positive for all time t > 0.

Theorem 1 Let the initial data S(0) > 0, V (0) ≥ 0, L(0) ≥ 0, I1(0) ≥ 0, Y1(0) ≥
0, I2(0) ≥ 0, Y2(0) ≥ 0, A(0) ≥ 0, TH(0) ≥ 0, TL(0) ≥ 0, HH(0) ≥ 0, HL(0) ≥ 0,
CH(0) ≥ 0, CL(0) ≥ 0, R(0) ≥ 0. Then the solutions (S,V,L, I1, Y1, I2, Y2,A,TH,

TL,HH,HL,CH,CL,R) of the basic model (2) are positive for all t > 0. Furthermore,

lim sup
t→∞

N(t) ≤ Π

μ
,

with N = S + V + L + I1 + Y1 + I2 + Y2 + A + TH + TL + HH + HL

+ CH + CL + R.

Proof It follows, from the first equation of system (2), that

d

dt

[
S(t) exp

{∫ t

0
λ(u)du + (μ + ξ)t

}]
= Π exp

{∫ t

0
λ(u)du + (μ + ξ)t

}
.

Hence,

S(t1) exp

{∫ t1

0
λ(u)du + (μ + ξ)t1

}
− S(0)

=
∫ t1

0
Π exp

{∫ x

0
λ(ν) dν + (μ + ξ)x

}
dx,

so that

S(t1) = S(0) exp

{
−

∫ t1

0
λ(u)du + (μ + ξ)t1

}

+ exp

{
−

∫ t1

0
λ(u)du + (μ + ξ)t1

}

×
∫ t1

0
Π exp

{∫ x

0
λ(ν) dν + (μ + ξ)x

}
dx.

> 0.

Similarly, it can be shown that V ≥ 0,L ≥ 0, I1 ≥ 0, Y1 ≥ 0, I2 ≥ 0, Y2 ≥ 0,A ≥
0, TH ≥ 0, TL ≥ 0,HH ≥ 0,HL ≥ 0,CH ≥ 0,CL ≥ 0 and R ≥ 0 for all t > 0. For
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the second part of the proof, it should be noted, first of all, that 0 < HH(t) ≤ N(t),
0 < HL(t) ≤ N(t), 0 < CH(t) ≤ N(t) and 0 < CL(t) ≤ N(t).

Adding all the equations in the differential equation system (2) gives

dN

dt
= Π − μN(t) − δHHHH(t) − δHLHL(t) − δCHCH(t) − δCLCL(t). (3)

It follows from (3) that

Π − (μ + δHH + δHL + δCH + δCL)N(t) ≤ dN

dt
< Π − μN(t).

Thus,

Π

μ + δHH + δHL + δCH + δCL
≤ lim inf

t→∞ N(t) ≤ lim sup
t→∞

N(t) ≤ Π

μ
,

so that

lim sup
t→∞

N(t) ≤ Π

μ
,

as required. �

3.1.2 Invariant Regions

Model (2) will be analysed in a biologically-feasible region as follows. We first show
that system (2) is dissipative (i.e., all feasible solutions are uniformly bounded in a
proper subset D ⊂ R

15+ ). Consider the region

D =
{
(S,V,L, I1, Y1, I2, Y2,A,TH, TL,HH,HL,CH,CL,R) ∈ R

15+ :

S + V + L + I1 + Y1 + I2 + Y2 + A + TH + TL + HH + HL + CH

+ CL + R ≤ Π

μ

}
.

The following steps are followed to establish the positive invariance of D (i.e., solu-
tions in D remain in D for all t ≥ 0). It follows from (3) that

dN

dt
≤ Π − μN(t). (4)

A standard comparison theorem (Lakshmikantham et al. 1989) can then be used to
show that N(t) ≤ N(0)e−μt + Π

μ
(1 − e−μt ). In particular, N(t) ≤ Π

μ
if N(0) ≤ Π

μ
.

Thus, the region D is positively invariant. Hence, it is sufficient to consider the dy-
namics of the flow generated by (2) in D. In this region, the model can be considered
as been epidemiologically and mathematically well posed (Hethcote 2000). Thus,
every solution of the basic model (2) with initial conditions in D remains in D for all
t > 0. Therefore, the ω-limit sets of the system (2) are contained in D. This result is
summarized below.
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Lemma 1 The region D is positively invariant for the basic model (2) with initial
conditions in R

15+ .

3.2 Stability of Disease-Free Equilibrium (DFE)

3.2.1 Local Stability

Model (2) has a DFE, obtained by setting the right-hand sides of the equations in the
model to zero, given by

E0 = (
S∗,V ∗,L∗, I ∗

1 , Y ∗
1 , I ∗

2 , Y ∗
2 ,A∗, T ∗

H, T ∗
L ,H ∗

H,H ∗
L ,C∗

H,C∗
L,R∗)

=
(

Π

k1
,
ξΠ

μk1
,0,0,0,0,0,0,0,0,0,0,0,0,0

)
. (5)

The linear stability of E0 can be established using the next-generation operator
method on system (2). Using the notation in (van den Driessche and Watmough
2002), the matrices F and V , for the new infection terms and the remaining transfer
terms, are, respectively, given by

F =
(

F1 F2
F3 F4

)
and V =

(
V1 V2
V3 V4

)
,

with

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

β∗θ1 β∗ β∗θ2 β∗θ3 β∗θ4 β∗θ5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

β∗θ6 β∗θ7 β∗θ8 β∗θ9 β∗θ10 β∗θ11
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

F3 = [0]6×6, F4 = [0]6×6,

V1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k2 0 0 0 0 0
−f rα k3 0 0 0 0

−(1 − f )rα 0 k4 0 0 0
0 −κH 0 K5 0 0
0 0 −κL 0 k6 0

−(1 − r)α 0 0 0 0 k7

⎤
⎥⎥⎥⎥⎥⎥⎦

,

V2 = [0]6×6,
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V3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −τH 0 0 0 0
0 0 −τL 0 0 0
0 0 0 −ψH 0 0
0 0 0 0 −ψL 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, and

V4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

k8 0 0 0 0 0
0 k9 0 0 0 0

−φH 0 k10 0 0 0
0 −φL 0 k11 0 0
0 0 −σH 0 k12 0
0 0 0 −σL 0 k13

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

β∗ = β[S∗ + (1 − ε)V ∗]
N∗ .

Thus,

Rc = ρ
(
FV −1) = β∗(Φ1τH + Φ2τL + Φ3κH + Φ4κL + Φ5)

k2k3k4k5k6k7k8k9k10k11k12k13
,

where

Φ1 = f rαk4k5k6k7k9k11k13(θ6k10k12 + θ10σHφH + θ8k12φH),

Φ2 = rαk3k5k6k7k8k10k12(1 − f )(θ7k11k13 + θ11σLφL + θ9k13φL),

Φ3 = f rαk4k6k7k8k9k11k13(θ3k10k12 + θ10σHψH + θ8k12ψH),

Φ4 = rαk3k5k7k8k9k10k12(1 − f )(θ4k11k13 + θ11σLψL + θ9k13ψL),

Φ5 = k5k6k8k9k10k11k12k13
[
θ1k3k4k7 + f rαk4k7 + θ2(1 − f )rαk3k7

+ θ5(1 − r)αk3k4
]
,

and ρ represents the spectral radius. Consequently, it follows from Theorem 2 of
van den Driessche and Watmough (2002) that:

Lemma 2 The DFE of the model (2), given by (5), is locally asymptotically stable
(LAS) whenever Rc < 1 and unstable if Rc > 1.

The threshold quantity, Rc, is the effective reproduction number for H1N1 in-
fection. It measures the average number of new H1N1 cases generated by a single
infected individual in a population where some of the susceptible individuals are vac-
cinated (Hethcote 2000; van den Driessche and Watmough 2002).
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3.3 Existence of Backward Bifurcation

The phenomenon of backward bifurcation in disease transmission models, where
a stable endemic equilibrium coexists with a stable disease-free equilibrium when
the associated reproduction number is less than unity, has been observed in numer-
ous disease transmission models such as those for behavioral responses to perceived
risks (Hadeler and Castillo-Chavez 1995), multigroup models (Castillo-Chavez et
al. 1989a, 1989b; Simon and Jacquez 1992), vaccination models (Brauer 2004;
Elbasha and Gumel 2006; Kribs-Zaleta and Valesco-Hernandez 2000; Sharomi et
al. 2007), treatment (Sharomi and Gumel 2009; Wang 2006) and models of the trans-
mission of mycobacterium tuberculosis with exogenous reinfection (Castillo-Chavez
and Song 2004; Feng et al. 2000) and HTLV-I (Gomez-Acevedo and Li 2005). The
epidemiological implication of backward bifurcation is that effective disease control
is only feasible if the associated reproduction number is reduced further to values
below another subthreshold less than unity. Clearly, this phenomenon has important
public health implications, since it renders the classical epidemiological requirement
of having the reproduction number less than unity, while necessary, to be insufficient
(in general) for disease elimination. Thus, it is instructive to check the possibility of
the backward bifurcation phenomenon in the context of the transmission dynamics of
the H1N1 pandemic in the presence of an imperfect vaccine.

First of all, the possible equilibrium solutions model (2) can have are determined
as follows. Let

E1 = (
S∗∗,V ∗∗,L∗∗, I ∗∗

1 , Y ∗∗
1 , I ∗∗

2 , Y ∗∗
2 ,A∗∗, T ∗∗

H , T ∗∗
L ,H ∗∗

H ,H ∗∗
L ,C∗∗

H ,C∗∗
L ,R∗∗)

be any arbitrary equilibrium of model (2). Further, let

λ∗∗ = β(D∗∗
1 + D∗∗

2 )

N∗∗ , (6)

with

D∗∗
1 = θ1L

∗∗ + I ∗∗
1 + θ2Y

∗∗
1 + θ3I

∗∗
2 + θ4Y

∗∗
2 + θ5A

∗∗ + θ6T
∗∗
H ,

D∗∗
2 = θ7T

∗∗
L + θ8H

∗∗
H + θ9H

∗∗
L + θ10C

∗∗
H + θ11C

∗∗
L ,

be the associated force of infection at steady state. To find conditions for the existence
of an equilibrium for which H1N1 infection is endemic in the population (i.e., at least
one of the subpopulations L∗∗, I ∗∗

1 , Y ∗∗
1 , I ∗∗

2 , Y ∗∗
2 , A∗∗, T ∗∗

H , T ∗∗
L , H ∗∗

H , H ∗∗
L , C∗∗

H
and C∗∗

L is nonzero), the equations in (2) are solved in terms of the aforementioned
force of infection at steady state (λ∗∗). Setting the right-hand sides of model (2) to
zero (at steady state) gives

V ∗∗ = ξS∗∗

μ + (1 − ε)λ∗∗ , L∗∗ = 1

k2

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

I ∗∗
1 = D11

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,
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Y ∗∗
1 = D12

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

I ∗∗
2 = D13

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

Y ∗∗
2 = D14

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

A∗∗ = D15

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

T ∗∗
H = D16

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗, (7)

T ∗∗
L = D17

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

H ∗∗
H = D18

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

H ∗∗
L = D19

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

C∗∗
H = D20

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

C∗∗
L = D21

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

R∗∗ = D22

[
1 + ξ(1 − ε)

μ + (1 − ε)λ∗∗

]
λ∗∗S∗∗,

where

D11 = f rα

k2k3
, D12 = (1 − f )rα

k2k4
, D13 = κHf rα

k2k3k5
,

D14 = κL(1 − f )rα

k2k4k6
, D15 = (1 − r)α

k2k7
, D16 = τHf rα

k2k3k8
,

D17 = τL(1 − f )rα

k2k4k9
, D18 = f rα

k2k3k10

(
ψHκH

k5
+ φHτH

k8

)
,

D19 = (1 − f )rα

k2k4k11

(
ψLκL

k6
+ φLτL

k9

)
,

(8)

D20 = f rασH

k2k3k10k12

(
ψHκH

k5
+ φHτH

k8

)
,

D21 = (1 − f )rασL

k2k4k11k13

(
ψLκL

k6
+ φLτL

k9

)
,
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D22 = 1

μ
(γHD13 + γLD14 + γAD15 + γTHD16 + γTLD17 + γHHD18

+ γHLD19 + γCHD20 + γCLD21).

Substituting (7) with (8) into the expressions for λ∗∗ in (6) gives

λ∗∗ = βλ∗∗S∗∗[1 + ξ(1−ε)
μ+(1−ε)λ∗∗ ]G1

S∗∗{1 + ξ
μ+(1−ε)λ∗∗ + G2[1 + ξ(1−ε)

μ+(1−ε)λ∗∗ ]λ∗∗} , (9)

where

G1 = θ1

k2
+ D11 + θ2D12 + θ3D13 + θ4D14 + θ5D15 + θ6D16 + θ7D17

+ θ8D18 + θ9D19 + θ10D20 + θ11D21,

G2 = 1

k2
+ D11 + D12 + D13 + D14 + D15 + D16 + D17

+ D18 + D19 + D20 + D21 + D22,

so that the nonzero (endemic) equilibria of model (2) satisfy

Z1
(
λ∗∗)2 + Z2λ

∗∗ + Z3 = 0, (10)

where

Z1 = (1 − ε)G2, Z2 = G2
[
μ + ξ(1 − ε)

] + (1 − ε)(1 − βG1) and

Z3 = k1(1 − Rc).
(11)

The quadratic (10) can be analysed for the possibility of multiple endemic equi-
libria. It is worth noting that the coefficient Z1 is always positive, and Z3 is positive
(negative) if Rc is less than (greater than) unity, respectively. Hence, the following
result is established:

Theorem 2 Model (2) has

(i) A unique endemic equilibrium if Z3 < 0 ⇔ Rc > 1.
(ii) A unique endemic equilibrium if Z2 < 0, and Z3 = 0 or Z2

2 − 4Z1Z3 = 0.
(iii) Two endemic equilibria if Z3 > 0, Z2 < 0 and Z2

2 − 4Z1Z3 > 0.
(iv) No endemic equilibrium otherwise.

Case (iii) of Theorem 2 indicates the possibility of backward bifurcation in model
(2) when Rc < 1. To check for this, the discriminant Z2

2 − 4Z1Z3 is set to zero, and
the resulting equation is solved for the critical value of Rc, giving

Rc
c = 1 − Z2

2

4k1Z1
,
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Fig. 2 Backward bifurcation
diagram of model (2). Parameter
values used are as given in
Sect. 3.3

from which it can be shown that backward bifurcation occurs for values of Rc such
that 0 < Rc

c < Rc < 1. This phenomenon is illustrated by simulating model (2)
with the following set of parameter values: Π = 1 100 000/80 × 365,μ = 1/29 500,
β = 0.01, δHH = 0, δHL = 0, δCH = 1/2, δCL = 1/2, ξ = 0.06/100, ε = 0.4, α =
1/370, r = 0.999, f = 0.1, κH = 0.1, κL = 0.1, τH = 0.058, τL = 1, γA = 1, γTH =
3/700, γTL = 1/800, γHH = 3/800, γHL = 1/8000, γCH = 1/8000, γCL = 1/9000,
ψH = 5.04, ψL = 5.01, φH = 2.005, φL = 5.02, σH = 5.075, σL = 1.5, θ1 = 0.428,
θ2 = 1, θ3 = 0.6, θ4 = 0.6, θ5 = 0.5, θ6 = 0.5, θ7 = 0.5, θ8 = 0.5, θ9 = 0.5, θ10 = 0,
θ11 = 0, γH = 1/8400, γL = 1/8400 (so that Rc = 0.983 < 1 and Rc

c = 0.946.
Hence, Rc

c < Rc < 1). It should be mentioned, however, that the aforementioned
parameter values may not all be realistic epidemiologically (the reader may refer to
the study in Lipsitch and Murray (2003), and some of the references therein, for dis-
cussions on whether or not backward bifurcation can occur using a realistic set of
parameter values).

The associated backward bifurcation diagram, depicted in Fig. 2, shows that the
model has a disease-free equilibrium (corresponding to λ∗∗ = 0) and two endemic
equilibria (corresponding to λ∗∗ = 0.00067 and λ∗∗ = 0.000062); one of the endemic
equilibria (λ∗∗ = 0.00067) is LAS, the other (λ∗∗ = 0.000062) is unstable (a saddle),
and the disease-free equilibrium (E0) is LAS. This clearly shows the coexistence of
two stable equilibria when Rc < 1, confirming that the model exhibits backward
bifurcation for Rc

c < Rc < 1. This result is summarized below for model (2) (a more
rigorous proof of the backward bifurcation phenomenon of the model is given, using
the centre manifold theory (Carr 1981), in Appendix A).

Theorem 3 Model (2) exhibits backward bifurcation when Case (iii) of Theorem 2
holds and Rc

c < Rc < 1.

The epidemiological implication of the aforementioned backward bifurcation phe-
nomenon is that having the reproduction threshold (Rc) less than unity, while neces-
sary, is not sufficient for the effective control or elimination of the H1N1 pandemic
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from the community (since two stable attractors coexist when Rc
c < Rc < 1). In such

a case, effective disease control or elimination when Rc
c < Rc < 1 is dependent on

the initial sizes of the subpopulations of the model (see Elbasha and Gumel 2006;
Sharomi et al. 2007 for further discussion on the epidemiological consequences of
backward bifurcation).

Numerical simulation results, depicted in Fig. 3A, suggest that the unique endemic
equilibrium guaranteed by Items (i) and (ii) of Theorem 2 is LAS when it exists.

3.4 Effect of Perfect Vaccine on Backward Bifurcation

Consider model (2) with a perfect H1N1 vaccine (that is, ε = 1). In such a case, the
associated reproduction number is R̃c = Rc|ε=1. It follows from (11) that if ε = 1,
the coefficients Z1 = 0 and Z2 > 0, so that the quadratic (10) reduces to a linear
equation in λ∗∗ (with λ∗∗ = −Z3/Z2). In this case, model (2) has a unique endemic
equilibrium if Z3 < 0 (i.e., R̃c > 1), ruling out backward bifurcation in the model
for this case (since no two endemic equilibria exist when R̃c < 1. The presence
of two endemic equilibria when R̃c < 1 is a necessary requirement for the exis-
tence of backward bifurcation). Furthermore, it follows that Z3 = 0 when R̃c = 1.
Thus, in such a case (with Z1 = Z3 = 0), the quadratic (10) has only the trivial so-
lution λ∗∗ = 0 (which corresponds to the DFE, E0). This result is summarized be-
low.

Lemma 3 Consider the case where the vaccine is perfect (ε = 1). Model (2) has a
unique endemic equilibrium whenever R̃c > 1, and no endemic equilibrium other-
wise.

To further confirm the impossibility of backward bifurcation occurring when the
vaccine is perfect, a global asymptotic stability proof of the DFE is given for this case
(ε = 1) below.

3.4.1 Global Stability of DFE of the Model with ε = 1

Consider model (2) with a perfect vaccine (i.e., ε = 1). We claim the following:

Theorem 4 The DFE of model (2) with ε = 1 is globally asymptotically stable when-
ever R̃c ≤ μ

k1
< 1.

Proof Consider model (2) with ε = 1. Further, consider the Lyapunov function

F = a1L + a2I1 + a3Y1 + a4I2 + a5Y2 + a6A + a7TH + a8TL

+ a9HH + a10HL + a11CH + a12CL

with

a1 = k2k3k4k5k6k7k8k9k10k11k12k13N
∗R̃c

S∗β
,
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a2 = k2k4k6k7k9k11k13
[
k10k12(k5k8 + θ3κHk8 + θ6τHk5)

+ (ψHκHk8 + φHτHk5)(θ8k12 + θ10σH)
]
,

a3 = k2k3k5k7k8k10k12
[
k11k13(θ2k6k9 + θ4κLk9 + θ7τLk6)

+ (ψLκLk9 + φLτLk6)(θ9k13 + θ11σL)
]
,

a4 = k2k3k4k6k7k8k9k11k13(θ3k10k12 + θ8ψHk12 + θ10σHψH),

a5 = k2k3k4k5k7k8k9k10k12(θ4k11k13 + θ9ψLk13 + θ11σLψL),

a6 = θ5k2k3k4k5k6k8k9k10k11k12k13,

a7 = k2k3k4k5k6k7k9k11k13(θ6k10k12 + θ8φHk12 + θ10σHφH),

a8 = k2k3k4k5k6k7k8k10k12(θ7k11k13 + θ9φLk13 + θ11σLφL),

a9 = k2k3k4k5k6k7k8k9k11k13(θ8k12 + θ10σH),

a10 = k2k3k4k5k6k7k8k9k10k12(θ9k13 + θ11σL),

a11 = θ10k2k3k4k5k6k7k8k9k10k11k13,

a12 = θ11k2k3k4k5k6k7k8k9k10k11k12,

so that (where a dot represents differentiation with respect to t)

Ḟ = a1L̇ + a2İ1 + a3Ẏ1 + a4İ2 + a5Ẏ2 + a6Ȧ + a7ṪH + a8ṪL

+ a9ḢH + a10ḢL + a11ĊH + a12ĊL

= k2k3k4k5k6k7k8k9k10k11k12k13SN∗λR̃c

S∗β

− k2
2k3k4k5k6k7k8k9k10k11k12k13N

∗LR̃c

S∗β

− k2k3k4k5k6k7k8k9k10k11k12k13Nλ

β
+ k2

2k3k4k5k6k7k8k9k10k11k12k13N
∗LR̃c

S∗β

= k2k3k4k5k6k7k8k9k10k11k12k13SN∗λR̃c

S∗β
− k2k3k4k5k6k7k8k9k10k11k12k13Nλ

β

= k2k3k4k5k6k7k8k9k10k11k12k13Nλ

β

(
SN∗R̃c

S∗N
− 1

)

= k2k3k4k5k6k7k8k9k10k11k12k13Nλ

β

(
Sk1 R̃c

Nμ
− 1

)

≤ k2k3k4k5k6k7k8k9k10k11k12k13Nλ

β

(
k1 R̃c

μ
− 1

)
since S ≤ N in D

≤ 0 for R̃c ≤ μ

k1
< 1.
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Fig. 3 Solutions profile of the total number of infections as a function of time for the case A ξ = 0.5,
ε = 0.6, β = 2.7 and Π = 1 100 000/80 (so that Rc = 5.292 > 1); B ε = 1, ξ = 0.001 and β = 2.7 (so
that R̃c = 0.4380 < 1). Other parameter values used are as given in Table 2
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Thus, Ḟ ≤ 0 if R̃c ≤ μ
k1

with Ḟ = 0 if and only if L = I1 = Y1 = I2 = Y2 =
A = TH = TL = HH = HL = CH = CL = 0. It follows, from the Lasalle’s Invari-
ance Principle (Hale 1969) that L → 0, I1 → 0, Y1 → 0, I2 → 0, Y2 → 0, A → 0,
TH → 0, TL → 0, HH → 0, HL → 0, CH → 0 and CL → 0 as t → ∞. Substitut-
ing (L, I1, Y1, I2, Y2,A,TH, TL,HH,HL,CH,CL) = (0,0,0,0,0,0,0,0,0,0,0,0)

into the first two equations of the model shows, respectively, that S → Π
k1

and

V → ξΠ
μk1

as t → ∞. Thus, (S,V,L, I1, Y1, I2, Y2,A,TH, TL,HH,HL,CH,CL) →
(Π
k1

,
ξΠ
μk1

,0,0,0,0,0,0,0,0,0,0,0,0) as t → ∞ for R̃c ≤ μ
k1

< 1 and ε = 1. Fur-
ther, since D is positively invariant, it follows that the DFE, E0, is GAS in D for all
nonnegative initial conditions of the state variables of model (2) if R̃c ≤ μ

k1
< 1 and

ε = 1. �

Figure 3B depicts the total number of infections as a function of time for the
case with ε = 1 and R̃c < 1, showing convergence to the DFE (in line with Theo-
rem 4). It is worth stating that further extensive numerical simulations suggest that
the condition R̃c < μ/k1 is only sufficient, but not necessary, for disease elimina-
tion when R̃c < 1 (for ε = 1), since the solutions converge to the DFE even for
μ/k1 < R̃c < 1.

In summary, it is clear from Theorems 3 and 4 that the backward bifurcation phe-
nomenon of the model is caused by the imperfect nature of the H1N1 vaccine (i.e.,
0 < ε < 1). Furthermore, a perfect vaccine (ε = 1) will lead to the elimination of the
disease if the reproduction threshold quantity R̃c is brought to (and maintained at) a
value less than μ

k1
. In other words, in the case where the H1N1 vaccine is perfect, the

classical epidemiological requirement of having the reproduction threshold less than
unity (that is, R̃c ≤ μ

k1
< 1) is necessary and sufficient for H1N1 elimination from the

community. Thus, this study emphasizes the pressing need for the design of perfect
vaccines to handle emerging diseases, such as H1N1.

4 Numerical Simulations

Model (2) is simulated using the parameter values given in Table 2 (unless other-
wise stated) and appropriate demographic (initial) data for the province of Mani-
toba, to evaluate various anti-H1N1 intervention scenarios. The simulations were
carried out using MATLAB software. Simulations of the model for the first wave
of the pandemic in Manitoba, which occurred during the period April 29–July
29, 2009, suggest a cumulative mortality of 10 people, over 200 hospitalizations,
about 45 000 latent cases and 45 people admitted to ICU (Fig. 4). These simula-
tions, which correspond to a reproduction number Rc = 1.3227 (Fraser et al. 2009;
Nishiura et al. 2009), are consistent with the observed data for the province of Mani-
toba. Having validated the model in this way, it is then reasonable to use the model to
explore various scenarios for the second wave of H1N1 (which is currently underway)
for the province of Manitoba.

It is assumed that the second wave of the H1N1 pandemic started early in October
2009, and the corresponding reproduction number is Rc = 1.9106 (to account for the
assumption that the second wave of a pandemic is known to be more severe than the
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Table 2 Parameter values used in the simulations

Parameter Nominal values Ranges References

Π 1100000
80×365 /day (Statistics Canada 2009a)

β 0.27 0.27–0.39/day

1/μ 80 × 365 days 77–82 years (Statistics Canada 2009b)

δHH 0 assumed

δHL 0 assumed

δCH 1/4 estimated

δCL 1/6 estimated

ξ 35/100 estimated

ε 0.8 (Demicheli et al. 2009)

1/α 7 1–7 days (Centers for Disease Control and Prevention 2009e)

r 0.4 [0,1] assumed

f 0.6 [0,1] assumed

κH 0.6

κL 0.3

τH 0.06 estimated

τL 0.04 estimated

γH 1 − φH

γL 1 − φL

γA 1 estimated

γTH 3/20 estimated

γTL 1/10 estimated

γHH 3/8 estimated

γHL 1/4 estimated

γCH 3/42 estimated

γCL 1/21 Winnipeg Regional Health Authority

ψH 0.04 Winnipeg Regional Health Authority

ψL 0.01 (World Health Organization 2009e)

φH 0.02 Winnipeg Regional Health Authority

φL 0.005 Winnipeg Regional Health Authority

σH 0.075 assumed

σL 0.05 assumed

θ1 0.5 [0,1) assumed

θ2 1

θ3 0.5 [0,1) assumed

θ4 0.5 [0,1) assumed

θ5 0.3 [0,1) assumed

θ6 0.3 [0,1) assumed

θ7 0.3 [0,1) assumed

θ8 0.045 [0,1) assumed

θ9 0.045 [0,1) assumed

θ10 0 [0,1) assumed

θ11 0 [0,1) assumed
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Fig. 4 Simulations of the first wave, for the province of Manitoba, giving the cumulative numbers of
latent cases, H1N1-induced mortality, hospitalizations (not in ICU) and ICU admissions. Parameter values
used are as given in Table 2 (so that Rc = 1.3227)

first wave). Although it is assumed that mass vaccination commences on October 26,
2009 in Manitoba, it is further assumed that the full vaccine effect (in reducing disease
burden) is not felt in the community until at least after the first week of November.
This is to account for the fact that, at individual level, protective level of antibodies is
not achieved in vaccinated individuals until 2–3 weeks following the administration
of the vaccine. Furthermore, at the population level, a few weeks are probably needed
before a significant proportion of the population is vaccinated, even when mass vac-
cination clinics are used. These facts are incorporated in the simulations by including
a time lag after which the full vaccine effect is felt in the community (Cox et al. 2008;
Greenberg et al. 2009).

A contour plot of the reproduction number (Rc), as a function of the vaccine ef-
ficacy and fraction of individuals vaccinated at steady state, is depicted in Fig. 5.
It follows from this figure that with the assumed vaccine efficacy of 80%, at least
60% of Manitobans need to be vaccinated in order for effective control or elimina-
tion of the second wave of H1N1 in Manitoba to be feasible (it should be recalled
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Fig. 5 Contour plot of the reproduction number (Rc) as a function of vaccine efficacy (ε) and fraction of

susceptible individuals vaccinated at steady state ( V ∗
N∗ ). Parameter values used are as given in Table 2

that, although this combination of efficacy and coverage rate guarantees that the re-
production threshold Rc is less than unity, the phenomenon of backward bifurcation
in the model when Rc

c < Rc < 1 makes the classical epidemiological requirement,
Rc < 1, necessary but not sufficient for effective disease control or elimination. In
other words, for an imperfect vaccine, the reproduction threshold, Rc, has to be
brought to a value less than Rc

c for disease elimination to be guaranteed, owing to
the phenomenon of backward bifurcation).

Figure 6A depicts a time series plot of the number of hospitalized individuals, for
the case where 10% of the total Manitoban population are assumed to have preexist-
ing (infection-acquired) immunity (due to the first wave), for various time periods
when the vaccine impact is expected to take effect. It is evident from this figure
that the peak, which is projected to occur at the end of November or early in De-
cember, increases with increasing duration of time before the vaccine impact is felt.
Furthermore, the figure shows that the H1N1 pandemic would run until late January
or early February 2010. Similar plots are depicted for the ICU admissions (Fig. 6B)
and H1N1-induced mortality (Fig. 6C). The associated cumulative numbers of hos-
pitalized, ICU admissions and mortality are given in Table 3.

For the case where the assumed preexisting immunity is 20%, the model shows a
milder pandemic compared to the case where the preexisting immunity is assumed to
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Fig. 6 Time series plot for A Hospitalization, B H1N1-induced mortality, C ICU admissions, correspond-
ing to different times when the vaccine effect is felt in the community, for the case where 10% of the
population have preexisting immunity. Parameter values used are as given in Table 2

Table 3 Summary of disease burden for the second wave corresponding to the case where 10% of the
population have preexisting immunity

Number Vaccine Effect Starts

November 10 November 15 November 20

Cumulative Hospitalized 946 1462 2233

Cumulative ICU 194 300 459

Cumulative Mortality 45 70 108

be 10% (Figs. 7A–7C; see also Table 4). It is clear from Table 3 that, with 10% pre-
existing population-wide immunity, the province of Manitoba could have between
946–2223 hospitalizations, 194–459 ICU cases and 45–108 H1N1-induced mortal-
ity, depending on when the vaccine impact takes effect in the community. Similarly,
it follows from Table 4 that, for the case where 20% of the populace have prior im-
munity, the province could have: 436–849 hospitalizations, 90–175 ICU admissions
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Fig. 7 Time series plot for A Hospitalization, B H1N1-induced mortality, C ICU admissions, correspond-
ing to different times when the vaccine effect is felt in the community, for the case where 20% of the
population have preexisting immunity. Parameter values used are as given in Table 2

Table 4 Summary of disease burden for the second wave corresponding to the case where 20% of the
population have preexisting immunity

Number Vaccine Effect Starts

November 10 November 15 November 20

Cumulative Hospitalized 436 611 849

Cumulative ICU 90 126 175

Cumulative Mortality 21 30 41

and 21–41 deaths. In summary, these results show that the timely implementation of
a vaccination program, coupled with the proportion of individuals with preexisting
immunity, are crucial to the expected burden of the H1N1 pandemic in the province
of Manitoba. Further, these simulations suggest that the burden of the second wave
would be at least three times that of the first wave.
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5 Conclusions

A deterministic compartmental model for the transmission dynamics of the influenza
H1N1 pandemic, which subdivides the infected population in terms of their risk of
developing severe illness, is designed and rigorously analysed to gain insight into its
dynamical features. Simulations were carried out using partial data from the province
of Manitoba, Canada. The theoretical analysis of the model showed the following:

(i) The model exhibits the phenomenon of backward bifurcation, where a stable
disease-free equilibrium coexists with a stable endemic equilibrium when the
associated reproduction threshold is less than unity. The phenomenon of back-
ward bifurcation is caused by the imperfect nature of the H1N1 vaccine.

(ii) The model with perfect vaccine (with efficacy 100%) is shown to have a glob-
ally asymptotically stable DFE whenever the associated reproduction threshold
is less than unity and a unique endemic equilibrium when the threshold exceeds
unity. Thus, this study shows that the vaccine-induced backward bifurcation ex-
hibited by the model can be removed if the vaccine is 100% effective.

(iii) The model has a unique endemic equilibrium when the associated reproduction
threshold exceeds unity.

Numerical simulations of the model, using relevant epidemiological and demographic
data for the province of Manitoba, suggest the following:

(a) The timely implementation of a mass vaccination program, together with the per-
centage of the Manitoban population with preexisting (infection-acquired) immu-
nity, is crucial to the expected burden of the second wave of the H1N1 pandemic.

(b) With the estimated vaccine efficacy of 80%, at least 60% of Manitobans need
to be vaccinated in order for the effective control or elimination of the H1N1
pandemic to be feasible.

(c) The burden of the second wave of the H1N1 pandemic is expected to be at least
three times that of the first wave; and the second wave would last until the early
part of 2010.

It is worth emphasizing that the simulation results reported above are, of course,
sensitive to changes in the parameter and initial values (the model developed here is,
however, robust enough to allow for more realistic estimation of the pandemic H1N1
burden as more data becomes available).
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Appendix A: Proof of Theorem 3

Proof The centre manifold theory (Carr 1981), as described in Castillo-Chavez
and Song (2004) (Theorem 4.1), will be used to establish the backward bifurca-
tion of the model (see also Feng et al. 2000; Podder and Gumel 2009; Sharomi
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et al. 2008). To apply this theory, the following simplification and change of vari-
ables are made first of all. Let S = x1,V = x2,L = x3, I1 = x4, Y1 = x5, I2 =
x6, Y2 = x7,A = x8, TH = x9, TL = x10,HH = x11,HL = x12,CH = x13,CL = x14,
and R = x15, so that N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15. Further, by using the vector notation X =
(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15)

T, model (2) can be writ-
ten in the form dX

dt
= (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15)

T

as follows:

dx1

dt
= Π − λx1 − k1x1,

dx2

dt
= ξx1 − (1 − ε)λx2 − μx2,

dx3

dt
= λx1 + (1 − ε)λx2 − k2x3,

dx4

dt
= f rαx3 − k3x4,

dx5

dt
= (1 − f )rαx3 − k4x5,

dx6

dt
= κHx4 − k5x6,

dx7

dt
= κLx5 − k6x7,

dx8

dt
= (1 − r)αx3 − k7x8,

dx9

dt
= τHx4 − k8x9,

(12)
dx10

dt
= τLx5 − k9x10,

dx11

dt
= psiHx6 + φHx9 − k10x11,

dx12

dt
= ψLx7 + φLx10 − k11x12,

dx13

dt
= σHx11 − k12x13,

dx14

dt
= σLx12 − k13x14, n

dx15

dt
= γHx6 + γLx7 + γAx8 + γTHx9 + γTLx10

+ γHHx11 + γHLx12 + γCHx13 + γCLx14 − μx15,
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with

λ = β(Q1 + Q2)

N
, (13)

where

Q1 = θ1x3 + x4 + θ2x5 + θ3x6 + θ4x7 + θ5x8 + θ6x9,

Q2 = θ7x10 + θ8x11 + θ9x12 + θ10x13 + θ11x14.

The Jacobian of system (12), at E0, is given by

J (E0) =
[
J1 J2
J3 J4

]

with

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−k1 0 − βθ1μ
k1

− βμ
k1

− βθ2μ
k1

− βθ3μ
k1

− βθ4μ
k1

ξ −μ − βθ1ξ(1−ε)
k1

− βξ(1−ε)
k1

− βθ2ξ(1−ε)
k1

− βθ3ξ(1−ε)
k1

− βθ4ξ(1−ε)
k1

0 0 βθ1Υ1
k1

− k2
βΥ1
k1

βθ2Υ1
k1

βθ3Υ1
k1

βθ4Υ1
k1

0 0 f rα −k3 0 0 0
0 0 (1 − f )rα 0 −k4 0 0
0 0 0 κH 0 −k5 0
0 0 0 0 κL 0 −k6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

J2 =

⎡
⎢⎢⎢⎢⎢⎣

− βθ5μ
k1

− βθ6μ
k1

− βθ7μ
k1

− βθ8μ
k1

− βθ9μ
k1

− βθ10μ
k1

− βθ11μ
k1

0

− βθ5ξ(1−ε)
k1

− βθ6ξ(1−ε)
k1

− βθ7ξ(1−ε)
k1

− βθ8ξ(1−ε)
k1

− βθ9ξ(1−ε)
k1

− βθ10ξ(1−ε)
k1

− βθ11ξ(1−ε)
k1

0

βθ5Υ1
k1

βθ6Υ1
k1

βθ7Υ1
k1

βθ8Υ1
k1

βθ9Υ1
k1

βθ10Υ1
k1

βθ11Υ1
k1

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

J3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 (1 − r)α 0 0 0 0
0 0 0 τH 0 0 0
0 0 0 0 τL 0 0
0 0 0 0 0 ψH 0
0 0 0 0 0 0 ψL
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 γH γL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k7 0 0 0 0 0 0 0
0 −k8 0 0 0 0 0 0
0 0 −k9 0 0 0 0 0
0 φH 0 −k10 0 0 0 0
0 0 φL 0 −k11 0 0 0
0 0 0 σH 0 −k12 0 0
0 0 0 0 σL 0 −k13 0
γA γTH γTL γHH γHL γCH γCL −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where Υ1 = μ + ξ(1 − ε). It can be shown, from J (E0), that (as before)

Rc = β[S∗ + (1 − ε)V ∗](Φ1τH + Φ2τL + Φ3κH + Φ4κL + Φ5)

N∗k2k3k4k5k6k7k8k9k10k11k12k13
.

Consider the case where Rc = 1. Suppose, further, that β is chosen as a bifurcation
parameter. Solving for β from Rc = 1 gives

β = β∗
1 = N∗k2k3k4k5k6k7k8k9k10k11k12k13

[S∗ + (1 − ε)V ∗](Φ1τH + Φ2τL + Φ3κH + Φ4κL + Φ5)
. (14)

It is easy to verify that the transformed system (12), with β = β∗
1 , has a hyperbolic

equilibrium point (i.e., the linearized system has a simple eigenvalue with zero real
part, and all other eigenvalues have negative real parts). Hence, the centre manifold
theory (Carr 1981) can be used to analyse the dynamics of (12) near β = β∗

1 .

Eigenvectors of J (E0)|β=β∗
1

It can be shown that the Jacobian of (12) at β = β∗
1 (denoted by Jβ∗

1
) has a right eigen-

vector (associated with the zero eigenvalue) given by w = [w1,w2,w3,w4,w5,w6,

w7,w8,w9,w10,w11,w12,w13,w14,w15]T, where

w1 = −β∗
1 μΥ2

k2
1

, w2 = ξw1

μ
− β∗

1 ξ(1 − ε)Υ2

μk1
, w3 = w3 > 0,

w4 = f rαw3

k3
, w5 = (1 − f )rαw3

k4
,

w6 = κHw4

k5
, w7 = κLw5

k6
, w8 = (1 − r)αw3

k7
,

w9 = τHw4

k8
, w10 = τLw5

k9
,

w11 = ψHw6 + φHw9

k10
, w12 = ψLw7 + φLw10

k11
,

w13 = σHw11

k12
, w14 = σLw12

k13
,

w15 = γHw6 + γLw7 + γAw8 + γTHw9 + γTLw10 + γHHw11

μ

+ γHLw12 + γCHw13 + γCLw14

μ
,

with

Υ2 = w3θ1 + w4 + w5θ2 + w6θ3 + w7θ4 + w8θ5 + w9θ6 + w10θ7

+ w11θ8 + w12θ9 + w13θ10 + w14θ11.
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Furthermore, Jβ∗
1

has a left eigenvector v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,

v12, v13, v14, v15] (associated with the zero eigenvalue), where

v1 = 0, v2 = 0, v3 = v3 > 0, v4 = β∗
1 Υ1v3

k1k3
+ κHv6

k3
+ τHv9

k3
,

v5 = β∗
1 θ2Υ1v3

k1k4
+ κLv7

k4
+ τLv10

k4
, v6 = β∗

1 θ3Υ1v3

k1k5
+ ψHv11

k5
,

v7 = β∗
1 θ4Υ1v3

k1k6
+ ψLv12

k6
, v8 = β∗

1 θ5Υ1v3

k1k7
, v9 = β∗

1 θ6Υ1v3

k1k8
+ φHv11

k8
,

v10 = β∗
1 θ7Υ1v3

k1k9
+ φLv12

k9
, v11 = β∗

1 θ8Υ1v3

k1k10
+ σHv13

k10
,

v12 = β∗
1 θ9Υ1v3

k1k11
+ σLv14

k11
,

v13 = β∗
1 θ10Υ1v3

k12
, v14 = β∗

1 θ11Υ1v3

k13
, v15 = 0.

The theorem in Castillo-Chavez and Song (2004) (see also Carr 1981; Dushoff et al.
1998; van den Driessche and Watmough 2002) is reproduced below for convenience.

Theorem A.1 (Castillo-Chavez and Song 2004) Consider the following general sys-
tem of ordinary differential equations with a parameter φ :

dx

dt
= f (x,φ), f : R

n × R → R and f ∈ C
2(

R
n × R

)
, (15)

where 0 is an equilibrium point of the system (that is, f (0, φ) ≡ 0 for all φ), and
assume

A1: A = Dxf (0,0) = (
∂fi

∂xj
(0,0)) is the linearization matrix of system (15) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A, and
other eigenvalues of A have negative real parts;

A2: Matrix A has a right eigenvector w and a left eigenvector v (each corresponding
to the zero eigenvalue).

Let fk be the kth component of f , and

a =
n∑

k,i,j=1

vkwiwj

∂2fk

∂xi∂xj

(0,0),

b =
n∑

k,i=1

vkwi

∂2fk

∂xi∂φ
(0,0).

The local dynamics of the system around 0 is totally determined by the signs of a

and b.
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(i) a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable, and
there exists a negative, locally asymptotically stable equilibrium.

(ii) a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is
locally asymptotically stable equilibrium, and there exists a positive unstable
equilibrium.

(iii) a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a
positive unstable equilibrium appears.

(iv) a < 0, b > 0. When φ changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Computations of a and b It can be shown, by computing the nonzero partial deriv-
atives of F at the DFE (E0) and simplifying, that

a =
n∑

k,i,j=1

vkwiwj

∂2fk

∂xi∂xj

(0,0) = 2β∗
1 μv3Υ2

k1

[
εβ∗

1 ξ(1 − ε)Υ2

k1
− Υ1

11∑
i=1

wi

]
,

so that the bifurcation coefficient a > 0 if and only if

β∗
1 >

k1Υ1

εξ(1 − ε)Υ2

11∑
i=1

wi. (16)

Furthermore, it can be shown that

b = v3Υ1Υ2

k1
> 0.

Thus, it follows from Theorem 5 that:

Theorem A.2 Model (12) (or, equivalently, model (2)) undergoes a backward bifur-
cation at Rc = 1 if inequality (16) holds.

�

It is worth noting from the equation for a above that if the vaccine is perfect (i.e.,
ε = 1), the bifurcation coefficient a < 0. Thus, backward bifurcation phenomenon is
not feasible in this case (this is in line with Theorem 4).
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