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Abstract The site-frequency spectrum, representing the distribution of allele fre-
quencies at a set of polymorphic sites, is a commonly used summary statistic in pop-
ulation genetics. Explicit forms of the spectrum are known for both models with and
without selection if independence among sites is assumed. The availability of these
explicit forms has allowed for maximum likelihood estimation of selection, devel-
oped first in the Poisson random field model of Sawyer and Hartl, which is now the
primary method for estimating selection directly from DNA sequence data. The inde-
pendence assumption, which amounts to assume free recombination between sites, is,
however, a limiting case for many population genetics models. Here, we extend the
site-frequency spectrum theory to consider the case where the sites are completely
linked. We use diffusion approximation to calculate the joint distribution of the allele
frequencies of linked sites for models without selection and for models with equal
coefficient selection. The joint distribution is derived by first constructing Green’s
functions corresponding to multiallele diffusion equations. We show that the site-
frequency spectrum is highly correlated between frequencies that are complementary
(i.e., sum to 1), and the correlation is significantly elevated by positive selection. The
results presented here can be used to extend the Poisson random field to allow for
estimating selection for correlated sites. More generally, the Green’s function con-
struction should be able to aid in studying the genetic drift of multiple alleles in other
cases.
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1 Introduction

The site-frequency spectrum is the distribution of allele frequencies at a set of
polymorphic sites. The statistic was originally developed to study models that as-
sume irreversible mutations. Fisher and Wright first demonstrated that although
no equilibrium can be reached at each individual site in these models, the dis-
tribution of allele frequencies across polymorphic loci does reach an equilibrium
if population size and selection intensities are both kept constant (Fisher 1930;
Wright 1938). Kimura later extended the theory to consider mutations at individ-
ual bases of DNA sequences by introducing the concept of “infinitely-many-sites”
(Kimura 1969).

Under the infinitely-many-sites model, the distribution of the frequency (x) of
a mutant base at a polymorphic site is proportional to 1/x if the locus is evolv-
ing without selection, the population size is constant, and the mating of individu-
als is random (Wright 1942; Kimura 1964; Durrett 2008). A deviation of the fre-
quency spectrum away from the 1/x distribution would suggest a violation of one or
more of the three hypotheses. Test statistics derived from the site-frequency spec-
trum are widely used in population genetics studies, including tests of neutrality
(Nielsen 2005; Bustamante et al. 2001; Przeworski 2002; Braverman et al. 1995;
Drake et al. 2006), studies of population structure (De and Durrett 2007), investi-
gations of demographic histories (Nei et al. 1975; Tajima 1989; Marth et al. 2004;
Wakeley et al. 2001; Adams and Hudson 2004), and so on.

The distribution of the allele frequencies of polymorphic sites under selection was
first derived by Fisher and Wright (Fisher 1930; Wright 1938). The theory of the
site-frequency spectrum under selection was later reviewed and extended by Grif-
fiths (2003). Using diffusion approximation (Kimura 1964; Karlin and Taylor 1981),
Griffiths showed that the spectrum in a finite sample can be derived from a solu-
tion to the backward diffusion equation by assuming sampling with replacement. The
theory of the site-frequency spectrum has also been extended along several other di-
rections to consider other factors, such as varying population size (Griffiths 2003;
Griffiths and Tavaré 1998; Polanski and Kimmel 2003; Evans et al. 2007), back-
ground selection, or genetic hitchhiking (Braverman et al. 1995; Fay and Wu 2000;
Kim and Stephan 2002), etc.

The intensity of selection can be inferred from the observed site-frequency spec-
trum in a finite sample of chromosomes using the Poisson random field (PRF) model
of Sawyer and Hartl (1992). The PRF model is currently the most widely used method
for estimating selection directly from DNA sequence data in population genetics.

The PRF model assumes independence among sites, which greatly limits its utility
to most realistic population genetics datasets. The assumption amounts to assume
free recombination between polymorphic sites. However, for typical DNA sequences,
polymorphic sites at the same genetic locus often segregate simultaneously because
of the lack of recombination, or are completely linked in the case of haploid genomes.
An analysis done by Bustamante et al. found that the selection estimated by the PRF
model can be quite misleading for linked sites, and recommended to use the PRF
model only for truly independent genetic variation (Bustamante et al. 2001).

Here, we extend the theory of the site-frequency spectrum to the case where the
alleles are completely linked. We use diffusion approximation to derive a formula
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on the joint distribution of the allele frequencies at two linked segregating sites. The
technique that we use is based on constructing Green’s functions (Karlin and Tay-
lor 1981; Roach 1982) of multiallele diffusion equations with appropriate boundary
conditions. Although not explored here, we believe the results presented here can be
used to extend the PRF model to allow for selection estimation for dependent sites.
The rest of the paper is organized as follows: In Sect. 2, we provide some basic de-
finitions of the models. In Sect. 3, we derive the Green’s functions corresponding to
multiallele diffusion equations with or without selection. In Sect. 4, we calculate the
mean occupation time at the diffusion boundaries. In Sect. 5, we use the results from
Sects. 3 and 4 to calculate the joint distribution of the allele frequencies of linked
segregating sites.

2 Basic Definitions

2.1 Wright–Fisher Model of Random Genetic Drift

Consider a genetic locus with K different alleles in a haploid population of con-
stant size N (or a diploid population of size N/2) with nonoverlapping generations
that undergoes random mating. The Wright–Fisher model describes the stochastic
process of the genetic drift at the locus in the population as random sampling with
replacement. More specifically, suppose the allele frequencies at generation t are
X(t) = (x1(t), x2(t), . . . , xK(t)), and the relative fitness of each allele is 1 + sk for
the kth allele (assuming additive selection for diploids). Then the allele frequen-
cies in the next generation will follow the multinomial distribution with parameters
p = (p1, . . . , pK) where pi = xi(t)(1 + si)/

∑
i xi(t)(1 + si).

We assume that the mutation process is described by the infinite-many-sites model
of Kimura in which mutations always occur at distinct sites of a DNA, and each new
mutation introduces a new allele into the population. As time goes, most mutations
will become either extinct or fixed in the population. Our focus is on the polymorphic
sites that are neither fixed nor extinct in the present population. One specific objec-
tive is to derive the joint distribution of the allele frequencies at two or more sites
conditioned on the fact that they are polymorphic.

2.2 K-allele Diffusion Approximation

Although the Wright–Fisher model provides a straightforward way for simulating
genetic drift, it is not amenable to mathematical analysis. Instead, we will study the
model through diffusion approximation which has a long tradition in population ge-
netics, pioneered by Kolmogorov, Wright, Fisher, Kimura, and others (Fisher 1930;
Wright 1942; Kimura 1964; Ewens 1979). In particular, when the population size
is large, selection intensity is relatively weak, and the model is running at a N -
generation time scale, the Wright–Fisher model can be well approximated by a mul-
tidimensional diffusion process (Ewens 1979; Durrett 2008) with infinitesimal gen-
erator

L = 1

2

K∑

i,j=1

aij (x)
∂2

∂xi∂xj

+
K∑

i=1

bi(x)
∂

∂xi

(1)
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where b(x) is the infinitesimal drift vector and a(x) is the infinitesimal covariance
matrix, and they take the following form:

bi(x) = xi

K∑

j=1

(γi − γj )xj , aij (x) = xi(δij − xj ) (2)

where γi = Nsi is the scaled selection intensity. The diffusion model assumes values
in the (K − 1)-dimensional simplex

�K = {
x = (x1, . . . , xK) : x1 ≥ 0, . . . , xK ≥ 0, x1 + · · · + xK = 1

}
(3)

so effectively (1) describes a M = K − 1 dimensional diffusion.
The diffusion model describes the evolution of the allele frequencies under ran-

dom drift and selection, but without mutations. Watterson (1977) and Li (1977)
discussed the stationary solution of the model under selection as well as muta-
tion. Kimura (1956) and Littler and Fackerell (1975) first provided a solution on
the transition density function of the diffusion process without selection and muta-
tion. Shimakura (1977) and Griffiths (1979) later provided a solution of the tran-
sition density function in the neural case with parent-independent mutation by us-
ing explicit eigenfunction expansion. Simpler solutions for the neutral case with
parent-independent mutation were later found by Griffiths and Li (1983) and Tavaré
(1984) by considering a genealogical process associated with the model, and by
Baxter et al. (2007) by using Jacobi polynomial expansion. Different from these
previous results, our focus here is to derive a Green’s function (Roach 1982;
Karlin and Taylor 1981) associated with the K-allele diffusion. Although the Green’s
function associated with two-allele diffusion is well studied (Karlin and Taylor 1981;
Durrett 2008), a general solution associated with K-allele diffusion with K > 2 has
not been described before.

3 Green’s Function of the K-allele Diffusion

Definition 1 (Green’s function of the K-allele diffusion) The Green’s function is the
solution to

LG(x;x′) = −δ(x − x′) (4)

subject to the boundary condition of G(x;x′) = 0 for all x ∈ �b
K , where �b

K := {x =
(x1, . . . , xK) : ∃k such that xk = 0, x ∈ �K} is the boundary of the simplex �K , x′ is
an interior point of �K , and δ(x − x′) is the Dirac delta function.

Before we proceed to derive a formula for the Green’s function, we first provide
an alternative and more intuitive interpretation of it. The following is an extension of
the one-dimensional result described in the book by Durrett (2008).

Theorem 1 Consider the random process Xt with K-dimensional infinitesimal gen-
erator L. Suppose V is a subset of R

K , which is compact has a piecewise smooth
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boundary ∂V . Suppose it is possible to reach ∂V from any interior point of V . Let
τ = inf{t : Xt ∈ ∂V } be the time of the first visit to ∂V when X(0) = x. Then

g(x) = Ex

[∫ τ

0
f (Xt ) dt

]

(5)

is the unique solution of Lg = −f for all x ∈ V with the boundary condition: g(y) =
0 for all y ∈ ∂V .

Proof Since ∂V is reachable from any interior point of V , we have supx∈V Ex[τ ] <

∞, and thus g(x) is well defined. Note that

d

dt
Ex

[

g(Xt ) +
∫ t

0
f (Xs) ds

]

= Ex

[
Lg(Xt ) + f (Xt )

] = 0 (6)

Thus, Ex[g(Xt ) + ∫ t

0 f (Xs) ds] = C is a constant. Consider two cases: (a) when
t → ∞, C = Ex[

∫ τ

0 f (Xs) ds], and (b) when t = 0, C = g(x). So, we must have
g(x) = Ex[

∫ τ

0 f (Xt ) dt]. �

As a consequence, we have the following interpretation on the Green’s function.

Corollary 1 Suppose G(x;y) is the solution of

LG(x;y) = −δ(x − y) (7)

for all x ∈ V with the boundary condition of G(z;y) = 0 for all z ∈ ∂V , where y is
an interior point of V . Then

G(x;y) =
∫ ∞

0
p
(
X(t) = y|X(0) = x

)
dt (8)

where p(X(t) = y|X(0) = x) is the transitional probability density.

In another words, for sufficiently small δy, G(x;y)δy is the mean occupation time
of [y, y + δy] before hitting the boundary ∂V . Given G, the solution to Lg = −f can
be simply written as g(x) = ∫

G(x,y)f (y) dy.

3.1 Change of Variables

In its present form, (4) is not easy to solve because the variables are not separable.
Next, we describe a change of variables, which was first proposed by Kimura (1956)
and later extended by Baxter et al. (2007), to eliminate the cross-covariance terms.
We consider separately the diffusion models with or without selection.

3.1.1 Without Selection

In this case, the infinitesimal generator is

L = 1

2

K∑

i,j=1

xi(δij − xj )
∂2

∂xi∂xj

(9)
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The following change of variables will be able to eliminate the cross-covariance terms
in L.

Lemma 1 (Change of variables in K allele diffusion without selection) Consider
the infinitesimal generator for K-allele diffusion without selection in (9). Change
variables from x = (x1, . . . , xK) to z = (z1, . . . , zK) according to

z1 = x1, z2 = x2

1 − x1
, . . . , zi = xi

1 − ∑i−1
j=1 xj

(10)

for i = 2, . . . ,K . Then the infinitesimal generator of the diffusion process in terms of
z is

L = 1

2
z1(1 − z1)

∂2

∂z2
1

+ 1

2

K−1∑

i=2

zi(1 − zi)
∏i−1

j=1(1 − zj )

∂2

∂z2
i

(11)

Proof Denote b̄(z) the new infinitesimal drift vector and ā(z) the new infinitesimal
covariance matrix after the change of variables. Let Di = ∂

∂xi
and Dij = ∂2

∂xi∂xj
. For

a general transformation of variables, b̄(z) and ā(z) are related to the original drift
vector b(x) and covariance matrix a(x) through

b̄i (z) =
∑

m

Dmzi(x)bm(x) + 1

2

∑

m,n

Dmnzi(x)amn(x)

āij (z) =
∑

m,n

Dmzi(x)Dnzj (x)amn(x)

(12)

Given the particular form zi(x) = xi/(1 − ∑
j<i xj ), we have

Dmzi = I(m = i)
1

1 − ∑
j<i xj

+ I(m < i)
xi

(1 − ∑
j<i xj )2

Dmnzi = I(n < m = i or m < n = i)
1

(1 − ∑
j<i xj )2

+ I(m,n < i)
2xi

(1 − ∑
j<i xj )3

Substituting the above to (12), we have b̄i = 0 for all i, that is, the drift vector stays
zero. For the covariance matrix, let ui = 1 − ∑

k<i xk . Then we have

āij = 1

uiuj

{
aij + zizjui

[
uj − I(j ≤ i)

] + zizjuj

[
ui − I(i ≤ j)

]

+ zizj

[
uj (1 − ui)I(i < j) + ui(1 − uj )I(j ≤ i)

]}

So, we have āij = zi(1 − zi)/ui for i = j and 0 otherwise. Note that ui = ui−1(1 −
zi−1), so ui = ∏

j<i(1 − zj ). Thus, this completes the proof. �
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3.1.2 With Selection

When the selection intensity is nonzero, the infinitesimal generator L in (1) contains
interaction terms between variables in both the drift term and the covariance term. For
general forms of selection intensity, the above change of variables scheme will not
be able to completely separate variables in L, and consequently an explicit solution
cannot be derived using this method. Note that in general the diffusion with selection
is more difficult to analyze, which is reflected by the fact that no explicit solution
of its transition density function is currently known. Recently, Barbour et al. (2000)
and Etheridge and Griffiths (2009) derived a transition density expansion in terms of
the transition functions of a dual birth-death process, which however did not yield a
closed-form solution.

We consider a special case relevant to the study of the site-frequency spectrum
in which the selection intensity is chosen such that γ1 = 0 and γi = γ for all i > 1.
This corresponds to the scenario where the first allele is a wild type allele, and all
the others are mutant types derived from the wild type, each of which has the same
fitness. Alternatively, this can also represent the case where one of the alleles is under
selection with intensity −γ while all others are neutral.

With this choice of selection intensity, the infinitesimal generator for the diffusion
becomes

L = 1

2

K∑

i,j=1

xi(δij − xj )
∂2

∂xi∂xj

− γ x1(1 − x1)
∂

∂x1
+ γ x1

K∑

i=2

xi

∂

∂xi

(13)

That is, the infinitesimal drift b1(x) = −γ x1(1 − x1) and bi(x) = γ x1xi for all i > 1.

Lemma 2 (Change of variables in K-allele diffusion with selection) Consider the
infinitesimal generator for K-allele diffusion with selection in (13). Change variables
from x = (x1, . . . , xK) to z = (z1, . . . , zK) according to

z1 = x1, z2 = x2

1 − x1
, . . . , zi = xi

1 − ∑i−1
j=1 xj

(14)

Then the infinitesimal generator of the diffusion process in terms of z is

L = 1

2
z1(1 − z1)

∂2

∂z2
1

+ 1

2

K−1∑

i=2

zi(1 − zi)
∏i−1

j=1(1 − zj )

∂2

∂z2
i

− γ z1(1 − z1)
∂

∂z1
(15)

Proof The proof is similar to the one presented in Lemma 1. The covariance terms
stay the same. We only need to check the drift term.

b̄i =
∑

m

Dmzi(x)bm(x) + 1

2

∑

m,n

Dmnzi(x)amn(x) =
∑

m

Dmzi(x)bm(x)

The case for i = 1 is straightforward since b̄1 = b1(x) = −γ z1(1 − z1). For i > 1,

b̃i =
∑

m

[
I(m = i)

ui

+ I(m < i)xi

u2
i

]

bm(x)
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= bi(x)

ui

+ xi

u2
i

i−1∑

m=1

bm(x)

= 0

Thus, this completes the proof. �

3.2 Green’s Function of Three-allele Diffusion

For the clarity of discussion, we consider first a simple case when the total number
of alleles is K = 3, and generalize the result to an arbitrary K in a later section.
When K = 3, the corresponding diffusion model will be a two-dimensional diffusion,
involving two free variables.

3.2.1 Without Selection

Our goal here is to find a solution to

[
x1(1 − x1)

2

∂2

∂x2
1

− x1x2
∂2

∂x1∂x2
+ x2(1 − x2)

2

∂2

∂x2
2

]

G(x1, x2;x′
1, x

′
2)

= −δ(x − x′) (16)

with both (x1, x2) and (x′
1, x

′
2) ∈ �3 where �3 = {(y1, y2) : y1, y2 ∈ [0,1], y1 + y2 ≤

1}, and with the boundary condition of G(x1, x2;x′
1, x

′
2) = 0 for all x1 and x2 that sat-

isfy x1 = 0, x2 = 0, or x1 +x2 = 1. Our approach is to expand the Green’s function us-
ing orthogonal polynomials, more specifically, the Jacobi polynomials (Abramowitz
and Stegun 1965) in this case.

Theorem 2 (Green’s function of K = 3 diffusion without selection) The Green’s
function corresponding to three-allele diffusion without selection, that is, the solution
of the (16), is

G(x1, x2;x′
1, x

′
2) =

∞∑

n=0

2(n + 2)n!(n + 2)!
(2n + 2)!

Φn(x1, x
′
1)

x′
1(1 − x′

1)
2

× P (1,1)
n (1 − 2z′

2)P
(1,1)
n (1 − 2z2)z2(1 − z2) (17)

where z2 = x2/(1 − x1), z′
2 = x′

2/(1 − x′
1), P

(1,1)
n is the Jacobi polynomial, and the

function Φn is defined as

Φn(x1, x
′
1) = (1 − x1)

r (1 − x′
1)

r

×
{

x12F1(r, r + 1;2;x1)2F1(r, r − 1;2r;1 − x′
1) if x1 < x′

1
x′

12F1(r, r + 1;2;x′
1)2F1(r, r − 1;2r;1 − x1) o.w.

(18)

where r = n + 2 and 2F1 is the Gauss hypergeometric function.
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Proof The proof consists of the following three steps:
Step 1. Change of variables
Let z1 = x1, z2 = x2/(1 − x1), z′

1 = x′
1, and z′

2 = x′
2/(1 − x′

1). Then according to
Lemma 1, (16) can be rewritten as

[
z1(1 − z1)

2

∂2

∂z2
1

+ z2(1 − z2)

2(1 − z1)

∂2

∂z2
2

]

G(z1, z2; z′
1, z

′
2) = − 1

1 − z1
δ(z − z′) (19)

subject to the boundary condition of G(z1, z2; z′
1, z

′
2) = 0 for all z1, z2 = 0 or 1. Since

both z′
1 and z′

2 are viewed as parameters of the differential equation, in the following,
we will also use the notation of G(z1, z2) to represent G.

Step 2. Expansion using orthogonal polynomials
Next, we propose to expand the dependency of G on z2 using orthogonal polynomials

G(z1, z2) =
∞∑

n=0

An(z1)z2(1 − z2)P
(1,1)
n (1 − 2z2) (20)

where P
(1,1)
n is the n-th order Jacobi polynomial, which has the general form of

P
(α,β)
n with P

(α,β)
n (1 − 2x) being the solution of the hypergeometric function

x(1 − x)y′′ + [
(α + 1) − (α + β + 2)x

]
y′ + n(n + α + β + 1)y = 0 (21)

for α,β > −1 and x ∈ [0,1].
Let Bn(u) ≡ u(1 − u)P

(1,1)
n (1 − 2u). It can be shown that Bn satisfies

u(1 − u)

2
B ′′

n(u) = −λnBn(u) (22)

for all u ∈ [0,1], where λn = (n + 1)(n + 2)/2 with n = 0,1, . . . . According to the
Sturm–Liouville theory, {Bn(u) : n = 0,1, . . .} forms a complete set of orthogonal
basis functions for any function f (u) on u ∈ [0,1], with f and f ′ being piece-wise
continuous and satisfying the boundary condition f (0) = f (1) = 0. Thus, the expan-
sion of G(z1, z2) in terms of (20) is always possible.

Substituting (20) to (19), we have

∞∑

m=0

[
z1(1 − z1)

2
A′′

m(z1)−λm

Am(z1)

1 − z1

]

Bm(z2) = − 1

1 − z1
δ(z1 −z′

1)δ(z2 −z′
2) (23)

Multiply both sides by P
(1,1)
n (1 − 2z2), take integral over z2, and use the orthogonal

property of Jacobi polynomials

∫ 1

−1

(
1 − u2)P (1,1)

n (u)P (1,1)
m (u)du = 8(n + 1)

(n + 2)(2n + 3)
δnm (24)
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We find that An(z1) has to satisfy

z1(1 − z1)
2

2
A′′

n(z1) − λnAn(z1) = −Cnδ(z1 − z′
1)

s.t. An(0) = An(1) = 0

(25)

where Cn = (n+2)(2n+3)
n+1 P

(1,1)
n (1 − 2z′

2).

Step 3. Derivation of the one-dimensional Green’s function
Our next step is to find a solution to (25), which is the Green’s function for an one-
dimensional second-order ODE.

Let An(z1) = (1 − z1)
rφ(z1) and substitute it to (25). We find that the left side of

(25) becomes

LHS = 1

2
(1 − z1)

r+1
[

z1(1 − z1)φ
′′ − 2rz1φ

′ − r(r − 1)φ

− r(r − 1) − 2λn

1 − z1
φ

]

(26)

= 1

2
(1 − z1)

r+1[z1(1 − z1)φ
′′ − 2rz1φ

′ − r(r − 1)φ
]

(27)

where the second equation holds if we choose r satisfying r(r − 1) = 2λn, i.e., r =
n + 2. With this choice of r , function φ(x) should satisfy

x(1 − x)φ′′ − 2rxφ′ − r(r − 1)φ = − 2Cn

(1 − x)r+1
δ(x − x′)

s.t. φ(0) = 0 and φ(1) = finite

(28)

It can be shown that the two homogenous solutions of the above equation are
φ(1)(x) = x2F1(r, r + 1;2;x) and φ(2)(x) = 2F1(r, r − 1;2r;1 − x), where φ(1) sat-
isfies the boundary condition at x = 0 and φ(2) satisfies the boundary condition at
x = 1. Consequently, the two homogenous solutions of (25) are

A1(x) = (1 − x)rx2F1(r, r + 1;2;x) (29)

A2(x) = (1 − x)r 2F1(r, r − 1;2r;1 − x) (30)

where A1(x) satisfies boundary condition at x = 0 and A2(x) satisfies boundary con-
dition at x = 1. Thus, the solution of (25) is An(z1, z

′
1) = dΦn(z1, z

′
1), where

Φn(z1, z
′
1) =

{
A1(z1)A2(z

′
1) if z1 < z′

1
A1(z

′
1)A2(z1) if z1 ≥ z′

1
(31)

and d = 2Cn/[W(A1,A2)(z
′
1)z

′
1(1 − z′

1)
2], where

W(A1,A2)(x) ≡ A′
1(x)A2(x) − A1(x)A′

2(x) (32)
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is the Wronskian function, and should be a constant since (25) does not contain the
first derivative of An(z1). So, W(A1,A2)(x) = W(A1,A2)(0) = A2(0) for all x ∈
[0,1].

Note that

2F1(a, b; c;1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
(33)

holds if c − a − b > 0 and c 
= 0,−1,−2, . . . . Thus

W(A1,A2)(x) = 2F1(r, r − 1;2r;1) = Γ (2r)

Γ (r)Γ (r + 1)
= (2n + 3)!

(n + 1)!(n + 2)! (34)

for all x ∈ [0,1]. So,

An(z1, z
′
1) = 2Cn(n + 1)!(n + 2)!

(2n + 3)!
Φn(z1, z

′
1)

z′
1(1 − z′

1)
2

(35)

Substituting the expression of An(z1, z
′
1) back to (20) gives the final formula of the

Green’s function, and thus completes the proof. �

3.2.2 With Selection

Our goal here is to find a solution to
[

x1(1 − x1)

2

∂2

∂x2
1

− x1x2
∂2

∂x1∂x2
+ x2(1 − x2)

2

∂2

∂x2
2

− γ x1(1 − x1)
∂

∂x1

+ γ x1x2
∂

∂x2

]

G(x1, x2;x′
1, x

′
2) = −δ(x − x′) (36)

with both (x1, x2) and (x′
1, x

′
2) ∈ �3, and with the boundary condition of G(x1, x2;

x′
1, x

′
2) = 0 for all x1 and x2 that satisfy x1 = 0, x2 = 0, or x1 + x2 = 1.

Theorem 3 (Green’s function of K = 3 diffusion with selection) The Green’s func-
tion corresponding to three-allele diffusion with selection, i.e., the solution of (36)
is

G(x1, x2;x′
1, x

′
2) =

∞∑

n=0

2(n + 2)(2n + 3)

(n + 1)F̄ (n + 2, n + 1;2(n + 2);1;γ 2)

eγ (x1−x′
1)Φ̄n(x1, x

′
1)

x′
1(1 − x′

1)
2

× P (1,1)
n (1 − 2z′

2)P
(1,1)
n (1 − 2z2)z2(1 − z2) (37)

where z2 = x2/(1 − x1), z′
2 = x′

2/(1 − x′
1), P

(1,1)
n is the Jacobi polynomial, and the

function Φ̄n is defined as

Φ̄n(x1, x
′
1) = (1 − x1)

r (1 − x′
1)

r

×
{

x1F̄
(
r, r + 1;2;x1;γ 2

)
F̄

(
r, r − 1;2r;1 − x′

1;γ 2
)

if x1 ≤ x′
1

x′
1F̄

(
r, r + 1;2;x′

1;γ 2
)
F̄

(
r, r − 1;2r;1 − x1;γ 2

)
o.w.

(38)
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with r = n + 2. F̄ is an extension of the Gauss hypergeometric function defined as

F̄ (a, b; c;x;d) =
∞∑

n=0

anx
n, where

an+1 = (n + a)(n + b)an + d(an−1 − an−2)

(n + 1)(n + c)
(39)

with a0 = 1, and an = 0 when n < 0.

Proof The proof consists of the following three steps:
Step 1. Change of variables
Let z1 = x1, z2 = x2/(1 − x1), z′

1 = x′
1, and z′

2 = x′
2/(1 − x′

1). Then according to
Lemma 2, (36) can be rewritten as

[
z1(1 − z1)

2

∂2

∂z2
1

+ z2(1 − z2)

2(1 − z1)

∂2

∂z2
2

− γ z1(1 − z1)
∂

∂z1

]

G(z1, z2; z′
1, z

′
2)

= − 1

1 − z1
δ(z − z′) (40)

with the boundary condition of G(z1, z2; z′
1, z

′
2) = 0 for all z1, z2 = 0 or 1.

Step 2. Expansion using orthogonal polynomials
Similar to the argument presented in the proof of Theorem 2, G can be expanded
using orthogonal polynomials

G(z1, z2) =
∞∑

n=0

An(z1)z2(1 − z2)P
(1,1)
n (1 − 2z2) (41)

Substituting the expanded G to (40), we have

∞∑

m=0

[
z1(1 − z1)

2
A′′

m(z1) − γ z1(1 − z1)A
′
m(z1) − λm

Am(z1)

1 − z1

]

Bm(z2)

= −δ(z1 − z′
1)δ(z2 − z′

2)

1 − z1

Multiplying both sides by P
(1,1)
n (1 − 2z2), taking integral over z2, and using the

orthogonal property of Jacobi polynomials, we find that An(z1) has to satisfy

z1(1 − z1)

2
A′′

n(z1) − γ z1(1 − z1)A
′
m(z1) − λn

1 − z1
An(z1) = −Cnδ(z1 − z′

1)

1 − z1

s.t. An(0) = An(1) = 0

(42)

where Cn = (n+2)(2n+3)
n+1 P

(1,1)
n (1 − 2z′

2).
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Step 3. Derivation of the one-dimensional Green’s function
Our next step is to find a solution to (42). Letting An(z1) = eγ z1ψ(z1) and substitut-
ing it to (42), we have

z1(1 − z1)

2
ψ ′′(z1) −

[
γ 2

2
z1(1 − z1) + λn

1 − z1

]

ψ = −Cn

e−γ z1

1 − z1
δ(z1 − z′

1)

s.t. ψ(0) = ψ(1) = 0

(43)

Now, we further let ψ(x) = (1 − x)rφ(x). Then the left side of (43) becomes

1

2
(1 − z1)

r

[

z1(1 − z1)φ
′′ − 2rz1φ

′ − [
r(r − 1) + γ 2z1(1 − z1)

]
φ

− r(r − 1) − 2λn

1 − z1
φ

]

= 1

2
(1 − z1)

r
[
z1(1 − z1)φ

′′ − 2rz1φ
′ − [

r(r − 1) + γ 2z1(1 − z1)
]
φ
]

where the second equation holds if we choose r satisfying r(r − 1) = 2λn, i.e., r =
n + 2.

With this choice of r , function φ(x) should satisfy

x(1 − x)φ′′ − 2rxφ′ − [
r(r − 1) + γ 2x(1 − x)

]
φ = − 2Cne

−γ x

(1 − x)r+1
δ(x − x′)

s.t. φ(0) = 0 and φ(1) = finite

(44)

Our next step is to find two homogenous solutions of the above equation that
satisfy the boundary conditions. For this purpose, we consider a general form of the
secondary order ODE

x(1 − x)y′′ + [
c − (a + b + 1)x

]
y′ − [

ab + dx(1 − x)
]
y = 0 (45)

where a, b, c, and d are constants. Here, x = 0 is a regular singular point. We consider
a series solution around x = 0. Let y(x) = xr

∑∞
n=0 anx

n. The indicial equation is
r(r − 1 + c) = 0, so r = 0 or r = 1 − c. If c > 1 (which is the case we will be
considering), the solution corresponding to r = 1 − c diverges at x = 0, so we only
consider the solution corresponding to r = 0. Substituting the series solution to the
ODE, we find y(x) = F̄ (a, b; c;x;d) defined in Theorem 3. The series converge for
all |x| < 1, and reduce to the Gauss hypergeometric function when d = 0.

In terms of F̄ , the two homogenous solutions of (44) can be written as φ(1)(x) =
xF̄ (r, r + 1;2;x;γ 2) and φ(2)(x) = F̄ (r, r − 1;2r;1 − x;γ 2) where φ(1) satisfies
the boundary condition at x = 0 and φ(2) satisfies the boundary condition at x = 1.
Consequently, the two homogenous solutions of (43) are

A1(x) = (1 − x)rxF̄
(
r, r + 1;2;x;γ 2) (46)

A2(x) = (1 − x)r F̄
(
r, r − 1;2r;1 − x;γ 2) (47)
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where A1(x) satisfies boundary condition at x = 0 and A2(x) satisfies boundary con-
dition at x = 1. Thus, the solution of (42) is An(z1, z

′
1) = deγ z1Φ̄n(z1, z

′
1), where

Φ̄n(z1, z
′
1) =

{
A1(z1)A2(z

′
1) if z1 < z′

1
A1(z

′
1)A2(z1) if z1 ≥ z′

1
(48)

and d = 2Cne
−γ z′

1/[W(A1,A2)(z
′
1)z

′
1(1 − z′

1)
2], where

W(A1,A2)(x) ≡ A′
1(x)A2(x) − A1(x)A′

2(x) (49)

is the Wronskian function, and should be a constant since (43) does not contain the
first derivative of ψ(z1). So, W(A1,A2)(x) = W(A1,A2)(0) = A2(0) for all x ∈
[0,1]. Thus,

d = 2Cn

F̄ (r, r − 1;2r;1;γ 2)

e−γ z′
1

z′
1(1 − z′

1)
2

(50)

This completes the proof. �

3.3 Green’s Function for General K

Next, we consider the general case of any K ≥ 3.

Theorem 4 (Green’s function of K-allele diffusion without selection) The Green’s
function corresponding to the K-allele diffusion (i.e. M = K − 1 dimensional diffu-
sion) without selection is

G(x;x′) =
∑

l∈NM−1

al

Φn2(z1, z
′
1)

z′
1(1 − z′

1)
M

×
M∏

j=2

zj (1 − zj )
rj P

(1,2rj −1)

lj
(1 − 2zj )P

(1,2rj −1)

lj
(1 − 2z′

j )

(1 − z′
j )

M−j−rj +1
(51)

where z1 = x1, zi = xi/(1 − ∑
j<i xj ) for all i > 2, and similarly for (z′

1, . . . , z
′
M).

al is a coefficient indexed by l = (l2, . . . , lM) with li = 0,1, . . . , and is defined to be

al = 2
(n2 + 1)!(n2 + 2)!

(2n2 + 3)!
M∏

j=2

(2lj + 2rj + 1)(lj + 2rj )

lj + 1
(52)

where ni = ∑M
j=i lj + M − i for all i = 2, . . . ,M , and ri = ni+1 + 2 when i =

1, . . . ,M − 1 and equal to 1 when i = M . P
(α,β)
n is the Jacobi polynomial, and the

function Φn is defined the same as in Theorem 2.

A proof of Theorem 4 can be found in the Appendix.
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Theorem 5 (Green’s function of K-allele diffusion with selection) The Green’s func-
tion corresponding to the K-allele diffusion (i.e., M = K − 1 dimensional diffusion)
with selection defined in the form of (13) is

G(x;x′) =
∑

l∈NM−1

āl

eγ (z1−z′
1)Φ̄n2(z1, z

′
1)

z′
1(1 − z′

1)
M

×
M∏

j=2

zj (1 − zj )
rj P

(1,2rj −1)

lj
(1 − 2zj )P

(1,2rj −1)

lj
(1 − 2z′

j )

(1 − z′
j )

M−j−rj +1
(53)

where z1 = x1, zi = xi/(1 − ∑
j<i xj ) for all i > 2, and similarly for (z′

1, . . . , z
′
M).

āl is a coefficient indexed by l = (l2, . . . , lM) with li = 0,1, . . . , and is defined to be

āl = 2

F̄ (r1, r1 − 1;2r1;1;γ 2)

M∏

j=2

(2lj + 2rj + 1)(lj + 2rj )

lj + 1
(54)

where ni = ∑M
j=i lj + M − i for all i = 2, . . . ,M , and ri = ni+1 + 2 when i =

1, . . . ,M − 1 and equal to 1 when i = M . P
(α,β)
n is the Jacobi polynomial, and the

functions F̄ and Φ̄n are defined as in Theorem 3.

Theorem 5 can be proved using a combination of the proofs shown for Theorems 4
and 3, and is not shown here.

4 Occupation Time at Diffusion Boundaries

For the K-allele diffusion in (1), we have considered so far only the behavior within
the diffusion boundaries. However, the diffusion will eventually reach one of the
boundaries, which corresponds to the extinction of one of the allele types. With the
Wright–Fisher model, the genetic drift afterward will continue to be modeled with
random mating and sampling with replacement, and the corresponding diffusion ap-
proximation will be a (K − 1)-allele diffusion.

In this section, we derive the mean occupation time spent at different points of
the diffusion boundaries before any of the remaining allele types becomes further
extinct. Since the Green’s function corresponding to the (K − 1)-allele diffusion can
calculate the mean occupation time at these points conditioned on a particular initial
condition, the key step here is to derive the probability of hitting each entry point of
the K-allele diffusion boundaries. Although the probability of the fixation of an allele
or the probability of a particular sequence of extinction are well studied (Kimura
1955; Littler 1975; Ewens 1979; Durrett 2008), the problem on the probability of
hitting a particular boundary point has not been thoroughly investigated before. For
the simplicity of discussion, we consider only the case of K = 3 in the following,
although the results can be generalized to any K in a straightforward manner.
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4.1 Without Selection

Theorem 6 (Probability of hitting and the time of occupying different boundary
points of three-allele diffusion without selection) Consider the diffusion model de-
scribing the frequencies X(t) = (X1,X2,1−X1 −X2) of three-alleles without selec-
tion. Suppose the initial state is X1(0) = x1 and X2(0) = x2, and let z2 = x2/(1−x1)

and r = n + 2. Then the probability density of first hitting the X1 = 0 boundary at
X2 = y is

pb(y;x1, x2) =
∞∑

n=0

(n + 2)n!(n + 2)!
(2n + 2)! (1 − x1)

r
2F1(r, r − 1;2r;1 − x1)

× P (1,1)
n (1 − 2y)P (1,1)

n (1 − 2z2)z2(1 − z2) (55)

And the mean time occupying X2 ∈ [y, y + δy] at the X1 = 0 boundary is
T (y;x1, x2)δy, where

T (y;x1, x2) =
∞∑

n=0

2(n + 2)n!n!
(2n + 2)! (1 − x1)

r
2F1(r, r − 1;2r;1 − x1)

× P (1,1)
n (1 − 2z2)z2(1 − z2)P

(1,1)
n (1 − 2y) (56)

Proof Apply the change of variables described in Lemma 1 to the diffusion opera-
tor of the K = 3 diffusion without selection. Then in terms of the z variables, the
probability density function of z should satisfy the continuity equation

∂p(z, t)

∂t
= −

2∑

i=1

∂Ji(z, t)

∂zi

(57)

where two currents are

J1(z, t) = −1

2

∂

∂z1

[
z1(1 − z1)p(z, t)

]
(58)

J2(z, t) = − 1

2(1 − z1)

∂

∂z2

[
z2(1 − z2)p(z, t)

]
(59)

The probability density of hitting the z1 = 0 boundary at z2 is then

P(z1 = 0, z2) = −
∫ ∞

0
J1(z1 = 0, z2, t) dt = 1

2

∫ ∞

0
p(z1 = 0, z2, t) dt

= G(x1, x2;x′
1 = 0, x′

2 = z2)

2
(60)

Using the expression of the Green’s function described in Theorem 2 leads to the first
part of the theorem.
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To calculate the mean occupation time spend at the boundary, we note that the
mean time spent at X2 = y is

T (y;x1, x2) =
∫ 1

0
pb(u;x1, x2)G(u, y) du (61)

where G(u,y) = 2u/yI (u < y) + 2(1 − u)/(1 − y)I (u ≥ y) is the one-dimensional
Green’s function without selection. Plug in the expression of pb(u;x1, x2) and note
that the integral can be evaluated by using

∫ 1

0
G(u,y)P (1,1)

n (1 − 2u)du

= 1

n + 2

2

y(1 − y)

∫ y

0
Pn+1(1 − 2u)du

= 1

(n + 2)(2n + 3)

1

y(1 − y)

[
Pn(1 − 2y) − Pn+2(1 − 2y)

]

= 2

(n + 1)(n + 2)
P (1,1)

n (1 − 2y)

where Pn is the Legendre polynomial. This leads to the formula of the mean occupa-
tion time. �

The formula for the probability density of hitting other boundaries and the corre-
sponding mean occupation time can be derived using a symmetry argument. In partic-
ular, according to the theorem, the probability density of first hitting the X1 +X2 = 1
boundary at X2 = y is pb(y;1 − x1 − x2, x2), and the mean times occupying
X2 ∈ [y, y + δy] at the X1 + X2 = 1 boundary is T (y;1 − x1 − x2, x2)δy.

4.2 With Selection

Theorem 7 (Probability of hitting different boundary points of three-allele diffu-
sion with selection) Consider the diffusion model describing the frequencies X(t) =
(X1,X2,1 − X1 − X2) of three-alleles with selection described in (13). Suppose the
initial state is X1(0) = x1 and X2(0) = x2, and let z2 = x2/(1 − x1) and r = n + 2.
Then

(a) The probability density of first hitting the X2 = 0 boundary at X1 = y1 is

p1
b(y1;x1, x2) =

∞∑

n=0

(n + 2)(2n + 3)

F̄ (n + 2, n + 1;2(n + 2);1;γ 2)

eγ (x1−y1)Φ̄n(x1, y1)

y1(1 − y1)2

× P (1,1)
n (1 − 2z2)z2(1 − z2) (62)

(b) The probability density of first hitting X1 = 0 boundary at X2 = y2 is

p2
b(y2;x1, x2) =

∞∑

n=0

(n + 2)(2n + 3)

(n + 1)F̄ (n + 2, n + 1;2(n + 2);1;γ 2)
eγ x1(1 − x1)

r
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× F̄
(
r, r − 1;2r;1 − x1;γ 2)

× P (1,1)
n (1 − 2y2)P

(1,1)
n (1 − 2z2)z2(1 − z2) (63)

Proof Apply the change of variables described in Lemma 2 to the diffusion operator
of the K = 3 diffusion with selection. Then in terms of the z variables, the probability
density function of z should satisfy the continuity equation

∂p(z, t)

∂t
= −

2∑

i=1

∂Ji(z, t)

∂zi

(64)

with the currents

J1(z, t) = −1

2

∂

∂z1

[
z1(1 − z1)p(z, t) + γ z1(1 − z1)p(z, t)

]
(65)

J2(z, t) = − 1

2(1 − z1)

∂

∂z2

[
z2(1 − z2)p(z, t)

]
(66)

Thus, the probability of hitting the X2 = 0 boundary is the total flux into z2 = 0
boundary, which is

P(z1, z2 = 0) = −
∫ ∞

0
J2(z1, z2 = 0, t) dt

= 1

2(1 − z1)

∫ ∞

0
p(z1, z2 = 0, t) dt (67)

= Ḡ(z1, z2 = 0)

2(1 − z1)
= 1

2
G(x1, x2;x′

1 = z1, x
′
2 = 0) (68)

where Ḡ(z1, z2) is the Green’s function of z variables, and G is the green function in
terms of x variables. And similarly, the probability of hitting the X1 = 0 boundary is
the total flux

P(z1 = 0, z2) = −
∫ ∞

0
J1(z1 = 0, z2, t) dt = 1

2

∫ ∞

0
p(z1 = 0, z2, t) dt

= 1

2
G(x1, x2;x′

1 = 0, x′
2 = z2) (69)

Substituting the expression of the Green’s function described in Theorem 3 leads to
the theorem. �

Theorem 8 (Mean occupation time at different boundaries of K = 3 diffusion
with selection) Consider the diffusion model describing the frequencies X(t) =
(X1,X2,1 − X1 − X2) of three-alleles with selection described in (13). Suppose the
initial state is X1(0) = x1 and X2(0) = x2, and let z2 = x2/(1 − x1) and r = n + 2.
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Then
(a) The mean time of occupying X1 ∈ [y1, y1 + δy] at the X2 = 0 boundary is

T 1(y1;x1, x2)δy, where

T 1(y1;x1, x2) =
∞∑

n=0

(n + 2)(2n + 3)

F̄ (n + 2, n + 1;2(n + 2);1;γ 2)
Ψn(x1, y1;γ )

× P (1,1)
n (1 − 2z2)z2(1 − z2) (70)

where function Ψn(x, y;γ ) = ∫ 1
0 eγ (x−u)Φ̄n(x,u)G(u;y,−γ )/[u(1 − u)2]du with

G(u;y,−γ ) = I (u ≤ y)
1 − e2γ u

1 − e2γ

1 − e2γ (1−y)

−γy(1 − y)

+ I (u > y)
e2γ u − e2γ

1 − e2γ

e−2γy−1

−γy(1 − y)
(71)

(b) The mean time of occupying X2 ∈ [y2, y2 + δy] at the X1 = 0 boundary is
T 2(y2;x1, x2)δy, where

T 2(y2;x1, x2) =
∞∑

n=0

2(2n + 3)

(n + 1)2F̄ (n + 2, n + 1;2(n + 2);1;γ 2)
eγ x1(1 − x1)

r

× F̄
(
r, r − 1;2r;1 − x1;γ 2)

× P (1,1)
n (1 − 2z2)z2(1 − z2)P

(1,1)
n (1 − 2y2) (72)

Proof To prove (a), note that after hitting the X2 = 0 boundary, the random drift
of X1 follows the one-dimensional diffusion with selection, for which the Green’s
function is G(u;y,−γ ) if the starting state is X1 = u.

So, the overall mean time spent in X1 = y after taking into the account the proba-
bility density of hitting different points of the boundary is

T 1(y1;x1, x2) =
∫ 1

0
p1

b(u, ;x1, x2)G(u;y,−γ )du (73)

Substituting into it the definition of Ψn leads to the result in part (a).
To prove (b), note that because the first allele is the wild-type allele, conditioned on

X1 = 0, the evolution of X2 follows a one-dimensional diffusion without selection.
Thus, the mean time spent in X2 = y2 is

T 2(y2;x1, x2) =
∫ 1

0
p2

b(u;x1, x2)G(u, y) du (74)

where G(u,y) = 2u/yI (x < y) + 2(1 − u)/(1 − y)I (x ≥ y) is the one-dimensional
Green’s function without selection. After evaluating the integral, we derive the result
in part (b). �
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4.3 Simulation Results

To confirm the accuracy of the above derivations of the Green’s functions and the
boundary occupation times, we performed a simulation study, and compared the re-
sults obtained from the theoretical calculations to the one obtained from computer
simulations.

The simulations were carried out using the Wright–Fisher model of the genetic
drift of K = 3 alleles, with one wild type allele and two mutant alleles. Throughout
the examples, the population size is chosen to be N = 500, and the initial frequencies
of two mutant alleles are chosen to be X1(0) = 0.15 and X2(0) = 0.5, respectively.
Because no additional mutations were introduced to the model, the population even-
tually converged to one of three allele types. For each Wright–Fisher run, we recorded
the total time spent at each of the states when all three allele types are present in the
population and the total time spent at each of the states when only two allele types
are present. To obtain the mean values of the occupation times, each run was repeated
500,000 times, which took about 6 hours in a Matlab implementation.

Figure 1 shows the mean occupation time spent at each state when all three al-
lele types are present in the population in two cases: (1) without selection (Fig. 1A,
B), and (2) with selection intensity of γ = 10 for the mutation alleles (Fig. 1C, D).
Plotted on top of the simulation results are calculations based on Theorems 2 and 3.
The results demonstrate a good consistency between the simulation results and the
theoretical calculations in both cases.

Figure 2 shows the boundary behavior, plotting the mean occupation time spent at
each of the states when one of the allele becomes extinct from the population. Also,
two cases are shown, without selection (Fig. 2A) or with selection (Fig. 2B). The
results obtained from the calculations described in Theorems 6 and 8 are also plotted,
and show a good consistency with the simulation results.

Selection intensity has a significant impact on the distribution of mean occupation
time at different states. Figure 3 shows the mean occupation time of different states
before reaching boundaries for different selection intensities (γ = 0, 10, 20, or 50).
With the increasing of γ , the center of mass of the diffusion is clearly shifted toward
the x1 + x2 boundary, corresponding to a much higher chance of the wild-type allele
becoming extinct first. This effect will have notable implications on the distribution
of the site-frequency spectrum for alleles under selection - namely it will lead to
much higher correlations between two allele frequencies that are complementary to
each other (i.e., sum to 1).

5 Site-frequency Spectrum of Linked Alleles

Next, we use the results presented in the previous sections to study the site-frequency
spectrum of linked alleles. We will consider a population of N chromosomes (or N

segments of DNA sequences), and assume an infinitely-many-sites model without
recombination.

Consider two mutations that have occurred within the chromosomes in the past
(Fig. 4). Suppose the first mutation a occurred at time t1, and the second mutation b
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Fig. 1 Comparison of the mean occupation time obtained by simulating the Wright–Fisher model (blue)
and the one calculated using the Green’s function formula (red). Panels (A) and (B) show the results
without selection, while panels (C) and (D) plot the results with selection (γ = 10). Panels (A) and (C)
plot the mean occupation time as a function of the frequency of the first allele (x1), while the frequency
of the second allele (x2) is fixed from the left-to-right direction at ten evenly distributed values between
0.05 and 0.95. Similarly, panels (B) and (D) plot the mean occupation time as a function of x2 while x1
is fixed. Number of different alleles K = 3, with the first two representing the mutant types and the third
representing the wild type. Population size N = 500, and the initial states are x1 = 0.15 and x2 = 0.5.
(Color figure online)
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Fig. 2 Comparison of the mean
occupation time at the
boundaries by simulating the
Wright–Fisher model (circles
and diamonds) and the one
calculated using the Green’s
function formula (lines).
Panel (A) shows the results
without selection, while
panel (B) plots the results with
selection (γ = 10). Number of
different alleles K = 3, with the
first two representing the mutant
types and the third representing
the wild type. Population size
N = 500, and the initial states
are x1 = 0.15 and x2 = 0.5. Two
boundaries are shown including
the x1 + x2 = 1 boundary (solid
lines) and the x1 = 0 boundary
(dashed lines)

occurred at time t2 with t1 < t2 < 0 (measured in the unit of N generations). In terms
of these two mutations, the chromosomes in the present population can be classified
into four allele types shown in Table 1. We use X1(t), X2(t), X3(t), and X4(t) to
denote the population frequencies of the four alleles.

According to the infinitely-many-sites model, the two mutations must have oc-
curred at different sites of the chromosomes. Suppose both sites are polymorphic in
the present population with frequencies p1 and p2 at the sites corresponding to mu-
tation a and b respectively. Our first goal is to calculate the joint distribution of p1

and p2 conditioned on the fact that 0 < p1,p2 < 1.
Next, we describe how to calculate the joint distribution of p1 and p2 in two

separate cases depending on in which allele type the second mutation occurred. In
each case, we further consider four evolutionary scenarios according to the selection
intensity associated with the mutant alleles.
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Fig. 3 Comparison of the Green’s functions with different selection intensities. Number of different al-
leles K = 3, with the first two representing the mutant types and the third representing the wild type.
Population size N = 500, and the initial states are x1 = 0.15 and x2 = 0.5. Shown here are the image
representations of the Green’s functions with values from high-to-low encoded by pseudo-colors from
red-to-blue. The selection intensity γ is equal to 0 (A), 10 (B), 20 (C), and 50 (D). (Color figure online)

Fig. 4 A diagram of two mutation events and the corresponding allele types. Mutation a and b occurred
at time t1 and t2, respectively. The mutation b can create a new allele type A2 if the mutation occurred
within the wild type allele, or A3 if the mutation occurred within the A1 allele. The two cases correspond
to two different boundary requirements, with the boundary of x1 + x2 = 1 considered for the first case and
the boundary of x1 = 0 considered for the second case

5.1 Joint Distribution of the Allele Frequencies of Two Polymorphic Sites

At the time when the second mutation occurred, the population consists of two allele
types (A1 or A4). Depending upon which allele type the second mutation landed
on, the newly derived allele can be either (1) an allele carrying mutation b only (A2),
or (2) an allele carrying both mutation a and b (A3). The chance of each case depends
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Table 1 List of four possible allele types after two mutations. Four selection scenarios are considered
according to the selection intensity of the mutant alleles: (1) γ1 = γ2 = γ3 = 0; (2) γ1 = γ2 = γ3 = γ ;
(3) γ1 = γ3 = γ , γ2 = 0; and (4) γ2 = γ3 = γ , γ1 = 0

Allele Frequency Allele type Selection

A1 X1 Carry mutation a only γ1

A2 X2 Carry mutation b only γ2

A3 X3 Carry both mutation a and b γ3

A4 X4 Wild type, no mutation 0

on the frequency of the A1 allele at the time t2, with the probability of seeing the
first case being 1 − X1(t2) and the second case being X1(t2). Because the two cases
involve two different boundary requirements, next we consider them separately.

5.1.1 Case 1: The Second Mutation Occurred Within the Wild Type Allele

In this case, the alleles present in the population after mutation b has occurred can
only be A1,A2, or A4 (Table 1). Conditioned on both of the mutation sites being
polymorphic, the alleles present at time t = 0 must include both A1 and A2 alleles.
But there is no constraint on the frequency of the wild type allele A4, which can either
be present, or become extinct in the present population. This means that we will need
to consider both the occupation time of different states within the boundary of the
K = 3 diffusion, and the occupation time at the boundary of X1 + X2 = 1.

Let δ = 1/N denote the frequency of a mutant when it first appeared. Denote
P(X1(t2) = u|X1(t1) = δ) the transition probability of X1 from δ at t1 to u at t2, and
P(X1(0) = x1,X2(0) = x2|X1(t2) = u,X2(t2) = δ) the transition probability of X1

and X2 from u and δ at t2 to x1 and x2 at time 0. Then the probability of X1(0) = x1
and X2(0) = x2 is proportional to

f1(x1, x2) =
∫ 0

−∞
dt2

∫ t2

−∞
dt1

∫ 1

0
du(1 − u)P

(
X1(t2) = u|X1(t1) = δ

)

× P
(
X1(0) = x1,X2(0) = x2|X1(t2) = u,X2(t2) = δ

)
(75)

after integrating over all possible mutation times, and the intermediate value of
X1(t2). Using Theorem 1, f1 can be rewritten as

f1(x1, x2) =
∫ 1

0
(1 − u)G(δ;u)T1(u, δ;x1, x2) du (76)

where G(δ;u) is the Green’s function of the one-dimensional diffusion, and T1(u, δ;
x1, x2) represents the mean time spent in X1 = x1 and X2 = x2 when the starting
frequencies are u and δ respectively. T1(u, δ;x1, x2) consists of two components: one
corresponds to the case of x1 +x2 < 1 (i.e., the Green’s function calculated inside the
boundary of the diffusion), and the other one corresponds to the case of x1 + x2 = 1
(i.e., diffusion along the boundary of x1 + x2 = 1).
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Both G and T1 can be calculated explicitly as described in the previous sections.
We consider the following four scenarios according to the selection intensity associ-
ated with the two mutant alleles, denoted by γ1 and γ2 for allele A1 and A2, respec-
tively. Let T N

I and T N
B denote the functions defined respectively in (17) and (56), and

let T I
γ , T B

γ , and T B ′
γ denote the functions defined in (37), (72), and (70), respectively.

1. γ1 = γ2 = 0 (Both mutant alleles are neutral.). The one-dimensional Green’s func-
tion G(δ;u) = 2δ/u, and function T1 can be expressed as

T1(u, δ;x1, x2) = T N
I (δ,u;x2, x1) + T N

B (x2;1 − u − δ, δ)δ(x1 + x2 − 1) (77)

The δ(·) function is used to constrain x1 and x2 to be sum 1 along the boundary.
2. γ1 = γ2 = γ (Both alleles are under selection.). The one-dimensional Green’s

function G(δ;u) = 2δ(1 − e−2γ (1−y))/[(1 − e−2γ )y(1 − y)], and T1 can be ex-
pressed as

T1(u, δ;x1, x2) = T I
γ (1 − u − δ, δ;1 − x1 − x2, x2)

+ T B
γ (x2;1 − u − δ, δ)δ(x1 + x2 − 1) (78)

3. γ1 = γ and γ2 = 0 (Allele A1 is under selection and A2 is neutral.). The
one-dimensional Green’s function corresponding to A1 is G(δ;u) = 2δ(1 −
e−2γ (1−y))/[(1 − e−2γ )y(1 − y)]. To use the Green’s function formulas derived
above, notice that the selection intensity vector (γ,0,0) associated with the three
alleles can be equivalently represented as (0,−γ,−γ ). Consequently, function T1
can be expressed as

T1(u, δ;x1, x2) = T I−γ (u, δ;x1, x2) + T B ′
−γ (x1;u,1 − u − δ)δ(x1 + x2 − 1) (79)

4. γ1 = 0 and γ2 = γ (Allele A1 is neutral and A2 is under selection.). The one-
dimensional Green’s function corresponding to A1 is G(δ;u) = 2δ/u. Function
T1 can be expressed as

T1(u, δ;x1, x2) = T I−γ (δ, u;x2, x1) + T B ′
−γ (x2; δ,1 − u − δ)δ(x1 + x2 − 1) (80)

5.1.2 Case 2: The Second Mutation Occurred Within the A1 Allele

In this case, the alleles present in the population after mutation b can only be
A1, A3, or A4. The population frequencies of the two mutation sites at t = 0 are
X1(0) + X2(0) and X2(0), respectively. Conditioned on the fact that both mutation
sites are polymorphic, the alleles present at t = 0 must include both A3 and A4, that
is, X3(0) > 0 and X4(0) > 0. The A4 allele must be present because otherwise the
first mutation site would appear fixed in the population. However, X1(0) can be zero
because the first mutation site will be polymorphic as long as A3 is present.

Similar to the argument presented in Case 1, the probability of X1(0) = x1 and
X3(0) = x3 is proportional to

f2(x1, x3) =
∫ 1

0
uG(δ;u)T2(u, δ;x1, x3) du (81)
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where T2(u, δ;x1, x3) represents the mean time spent in X1 = x1 and X3 = x3 when
the starting frequencies are u and δ, respectively. T2(u, δ;x1, x2) also consists of two
components: one corresponds to the case of x1 + x2 < 1, as in Case 1, and the other
one corresponds to the case of x1 = 0, corresponding to the extinction of the A1
allele.

Again, T2 can be calculated explicitly using the results from the previous sections.
Both the one-dimensional Green’s functions and the Green’s function corresponding
to diffusion inside the boundaries are the same as those described in Case 1. The only
difference is the contribution resulting from the different boundary. We consider the
following four scenarios according to the selection intensity associated with the two
mutant alleles, denoted by γ1 and γ3 for allele A1 and A3, respectively.

1. γ1 = γ3 = 0 (Both alleles are neutral.). G(δ;u) = 2δ/u, and function T2 is

T2(u, δ;x1, x3) = T N
I (δ,u − δ;x3, x1) + T N

B (x3;u − δ, δ)δ(x1) (82)

2. γ1 = γ3 = γ (Both alleles are under selection.). G(δ;u) = 2δ(1 − e−2γ (1−y))/

[(1 − e−2γ ), and function T2 is

T2(u, δ;x1, x3) = T I
γ (1 − u, δ;1 − x1 − x3, x3)

+ T B ′
γ (1 − x3;1 − u,u − δ)δ(x1) (83)

Note that this scenario can arise in two situations. One corresponds to the choice
of γ1 = γ2 = γ3 = γ , for which we assume that the epistatic interactions between
the two mutation sites are antagonistic. One example of such a scenario is the two
loss-of-function mutations occurred at two nearby sites within the same gene. The
second situation corresponds to the choice of γ1 = γ3 = γ and γ2 = 0, that is, only
the alleles carrying the first mutation are under selection.

3. γ1 = γ and γ3 = 0 (Allele A1 is under selection and A3 is neutral.). G(δ;u) =
2δ(1 − e−2γ (1−y))/[(1 − e−2γ ), and function T2 is

T2(u, δ;x1, x3) = T I−γ (u − δ, δ;x1, x3) + T B−γ (x3;u − δ, δ)δ(x1) (84)

4. γ1 = 0 and γ3 = γ (Allele A1 is neutral and A3 is under selection.). G(δ;u) =
2δ/u, and function T2 is

T2(u, δ;x1, x3) = T I−γ (δ, u − δ;x3, x1) + T B ′
−γ (x3; δ,u − δ)δ(x1) (85)

5.1.3 Joint Frequency Distribution

Combining the two cases described above, we conclude that the probability of the
frequencies of the two polymorphic sites being p1 and p2 is equal to

g(p1,p2) = f1(p1,p2) + f2(p1 − p2,p2)I (p1 > p2) (86)

up to a difference in normalization constant.
In many cases, we are interested in the allele frequency distribution of two segre-

gating sites within a sample of n chromosomes. Suppose the population size is large,
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then the chromosomes can be approximated as sampling from the population with
replacement (Griffiths 2003). So, for the Case 1 considered above, the frequency of
observing b1 A1 alleles and b2 A2 alleles should be proportional to

q1(b1, b2) =
∫ 1

0
dy1

∫ 1−y1

0
dy2

n!
b1!b2!(n − b1 − b2)!

y
b1
1 y

b2
2 (1 − y1 − y2)

n−b1−b2f1(y1, y2) (87)

And similarly, we can find the sample frequency distribution of the A1 and A3 alleles
considered in Case 2. Combining them, we can then derive the joint frequency dis-
tribution q(b1, b2) of two segregating sites within a given sample, and symmetrize q

when the order of mutations is unknown.
Table 2 shows the joint distribution on the allele frequencies of two segregating

sites in a sample of size n = 8, calculated for both Cases 1 and 2, when all mutant
alleles are neutral or under selection with equal intensity. Note the high probabili-
ties associated with the antidiagonal entries in Case 1, which is even more prominent
for models with selection (Table 2c). This reflects a significant contribution from the
occupation time spent at the boundary of the diffusion, corresponding to the extinc-
tion of the wild type allele in the population. The joint distribution after combining
Cases 1 and 2 is shown in Table 3. Note that the combined distribution is mostly
dominated by the contribution from Case 1, with a ratio of 2.94 between Case 1 and
Case 2 for the neutral case and 3.78 for the selection case.

We used Matlab to calculate the Jacobi polynomials and hypergeometric functions.
We found the series in the Green’s functions converge quickly, and used only the first
100 terms to evaluate the functions. The integrations were done numerically using
the trapezoidal method. Overall, the computation is fast and the results reported here
can be found within a few seconds using a modest laptop.

5.2 Site-frequency Spectrum Covariance

Suppose there are S segregating sites in a sample of n chromosomes. Let (u1, u2, . . . ,

uS) denote the frequency of mutant allele at each of these sites. Denote ηk the number
of sites where the mutant allele has frequency k, i.e., ηk = ∑S

i=1 I (ui = k). The above
calculations can also be used to calculate the summary statistics of ηk . In particular,
the mean of ηk is

E[ηk] =
S∑

i=1

E
[
I (ui) = k

] = SE
[
I (ui) = k

] = Sqk (88)

where qk is the marginal distribution of q(b1, b2), the joint frequency distribution of
two sites. And the covariance is

Var[ηkηl] = E[ηkηl] − S2qkql = (
S2 − S

)
qkl + Sqk(δkl − Sql) (89)

Table 4 shows the covariance matrix of the site frequency spectrum in a sample
of size n = 8 that contains S = 10 segregating sites. Note that cross-covariance terms
are all negative except those entries at the antidiagonal. And the positive correlations
at the antidiagonal entries increase significantly when the selection is introduced.
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Table 2 Joint distribution of the allele frequencies of two segregating sites in a sample of size n = 8 for
two selection models: (a, b) Without selection, and (c, d) with equal selection intensity (γ1 = γ2 = γ3 = γ )
in both Cases 1 and 2. b1 and b2 denote the number of samples carrying the first and the second mutation,
respectively

b1 \ b2 1 2 3 4 5 6 7

1 0.1701 0.0549 0.0262 0.0151 0.0097 0.0071 0.0295

2 0.1030 0.0375 0.0192 0.0116 0.0082 0.0312 0

3 0.0687 0.0270 0.0146 0.0096 0.0331 0 0

4 0.0480 0.0200 0.0118 0.0356 0 0 0

5 0.0342 0.0156 0.0388 0 0 0 0

6 0.0249 0.0434 0 0 0 0 0

7 0.0517 0 0 0 0 0 0

(a) Without selection: Case 1

b1 \ b2 1 2 3 4 5 6 7

1 0.1418 0 0 0 0 0 0

2 0.0492 0.0934 0 0 0 0 0

3 0.0492 0.0210 0.0727 0 0 0 0

4 0.0492 0.0210 0.0123 0.0606 0 0 0

5 0.0492 0.0210 0.0123 0.0083 0.0523 0 0

6 0.0492 0.0210 0.0123 0.0083 0.0061 0.0463 0

7 0.0492 0.0210 0.0123 0.0083 0.0061 0.0047 0.0417

(b) Without selection: Case 2

b1 \ b2 1 2 3 4 5 6 7

1 0.0255 0.0111 0.0070 0.0056 0.0054 0.0101 0.0843

2 0.0195 0.0099 0.0071 0.0065 0.0113 0.0889 0

3 0.0170 0.0099 0.0081 0.0129 0.0942 0 0

4 0.0163 0.0110 0.0151 0.1006 0 0 0

5 0.0172 0.0187 0.1085 0 0 0 0

6 0.0256 0.1188 0 0 0 0 0

7 0.1340 0 0 0 0 0 0

(c) With selection: Case 1 (γ = 10)

b1 \ b2 1 2 3 4 5 6 7

1 0.0459 0 0 0 0 0 0

2 0.0320 0.0254 0 0 0 0 0

3 0.0404 0.0132 0.0198 0 0 0 0

4 0.0534 0.0178 0.0083 0.0184 0 0 0

5 0.0752 0.0257 0.0120 0.0067 0.0198 0 0

6 0.1148 0.0404 0.0193 0.0108 0.0068 0.0243 0

7 0.1916 0.0702 0.0342 0.0194 0.0121 0.0082 0.0339

(d) With selection: Case 2 (γ = 10)
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Table 3 Joint distribution of the allele frequencies of two segregating sites in a sample of size n = 8 after
combining Cases 1 and 2 for two selection models: (a) without selection, and (b) with equal selection
intensity. The distribution is symmetrized to account for the situation where the order in which the two
mutations occurred is unknown

b1 \ b2 1 2 3 4 5 6 7

1 0.1629 0.0651 0.0416 0.0298 0.0226 0.0182 0.0365

2 0.0651 0.0517 0.0199 0.0145 0.0115 0.0305 0.0027

3 0.0416 0.0199 0.0293 0.0095 0.0284 0.0016 0.0016

4 0.0298 0.0145 0.0095 0.0419 0.0011 0.0011 0.0011

5 0.0226 0.0115 0.0284 0.0011 0.0133 0.0008 0.0008

6 0.0182 0.0305 0.0016 0.0011 0.0008 0.0118 0.0006

7 0.0365 0.0027 0.0016 0.0011 0.0008 0.0006 0.0106

(a) Without selection

b1 \ b2 1 2 3 4 5 6 7

1 0.0298 0.0154 0.0137 0.0142 0.0168 0.0261 0.1064

2 0.0154 0.0132 0.0081 0.0088 0.0145 0.0864 0.0073

3 0.0137 0.0081 0.0106 0.0119 0.0814 0.0020 0.0036

4 0.0142 0.0088 0.0119 0.0834 0.0007 0.0011 0.0020

5 0.0168 0.0145 0.0814 0.0007 0.0041 0.0007 0.0013

6 0.0261 0.0864 0.0020 0.0011 0.0007 0.0051 0.0009

7 0.1064 0.0073 0.0036 0.0020 0.0013 0.0009 0.0071

(b) With selection (γ = 10)

6 Conclusion

In conclusion, we have used diffusion approximation to derive an analytical formula
on the distribution of allele frequencies of linked polymorphic sites for models with
or without selection. The main technique we use is based on constructing the Green’s
functions of the multiallele diffusion equations by expanding the Green’s functions
with orthogonal polynomials. We used numerical simulations to confirm the theoret-
ical calculations. We found that the allele frequencies of linked sites are highly cor-
related, more prominently between the frequencies that are complementary to each
other, and the correlation between complementary frequencies can be significantly
affected by the selection intensities associated with mutant alleles.

In this paper, we have focused our analysis on the joint distribution of the allele
frequencies of two linked sites. However, the Green’s function results obtained here
can be further used to derive the joint distribution on the frequencies of more than
two sites, and thus allow us to consider even higher order statistics.

The site-frequency spectrum covariance can also be derived using the coalescence
approximation when there is no selection (Fu 1995). However, for models with selec-
tion, the coalescence method is not applicable, and thus cannot be used to extend the
Poisson random field model for estimating selection intensities. Our methods based
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Table 4 The covariance matrix of the site-frequency spectrum in a sample of size n = 8 that contains
S = 10 segregating sites

C 1 2 3 4 5 6 7

1 3.0500 −1.0761 −0.8490 −0.7155 −0.6241 −0.5340 0.7487

2 −1.0761 2.0077 −0.5385 −0.4293 −0.3377 0.8984 −0.5245

3 −0.8490 −0.5385 1.5849 −0.3013 0.9269 −0.4564 −0.3665

4 −0.7155 −0.4293 −0.3013 2.5129 −0.4370 −0.3485 −0.2811

5 −0.6241 −0.3377 0.9269 −0.4370 0.9787 −0.2802 −0.2267

6 −0.5340 0.8984 −0.4564 −0.3485 −0.2802 0.9092 −0.1885

7 0.7487 −0.5245 −0.3665 −0.2811 −0.2267 −0.1885 0.8387

(a) Without selection

C 1 2 3 4 5 6 7

1 0.2803 −1.3240 −1.1017 −0.9428 −0.7607 −0.2781 4.1270

2 −1.3240 0.4552 −0.8378 −0.7109 −0.3628 3.6336 −0.8533

3 −1.1017 −0.8378 0.5391 −0.3589 3.5537 −0.9145 −0.8798

4 −0.9428 −0.7109 −0.3589 4.6919 −0.8954 −0.8926 −0.8913

5 −0.7607 −0.3628 3.5537 −0.8954 0.2735 −0.8959 −0.9124

6 −0.2781 3.6336 −0.9145 −0.8926 −0.8959 0.3055 −0.9580

7 4.1270 −0.8533 −0.8798 −0.8913 −0.9124 −0.9580 0.3678

(b) With selection (γ = 10)

on diffusion approximation offer several additional advantages. First, we are able to
derive the full joint distribution of allele frequencies rather than just correlations.
Second, it can be easily generalized to derive higher order correlations.

Although not explored here, the formula we have derived here should be able to be
utilized to extend the Poisson random field model for estimating selection intensities.
A straightforward extension would be to consider a Markov model that accounts for
the correlation between neighboring sites. It would be interesting to investigate how
the extended model can improve the selection estimation.

A factor we have not considered in this paper is the recombination between poly-
morphic sites, which can have a significant effect on the site-frequency spectrum
(Hill and Robertson 2009; Przeworski et al. 2001). Recombination can be incor-
porated into the diffusion model by adding the effect of recombination into the
drift term as follows (Ohta and Kimura 1969; Durrett 2008). Consider two segre-
gating loci, each having two alleles separated by recombination with a probabil-
ity r per generation. Let X = (X1,X2,X3,X4) denote the frequencies of the four
haplotypes (aB,Ab,ab,AB) (Table 1). Assume a Wright–Fisher model with ran-
dom union of gametes. If the model is run at a rate of N generations, then X

can be approximated by a K = 4 diffusion in (1) with the infinitesimal drift vec-
tor bi(x) = xi

∑K
j=1(γi − γj )xj + RD(x)ηi and the infinitesimal covariance vector

aij (x) = xi(δij − xj ), where η = (−1,−1,1,1), R = Nr , and D(x) = x3x4 − x1x2,
representing linkage disequilibrium. A future direction would be to extend the tech-
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niques developed here to calculate the Green’s function of the diffusion equation with
recombination. There are, however, significant obstacles, since the diffusion equation
is not easily amenable to mathematical analysis after recombination is introduced.
More likely, numerical methods would be needed to obtain a solution.
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Appendix: Proof of Theorem 4

To prove the theorem, we first introduce two lemmas.

Lemma A.1 Consider the following differential equation:

x(1 − x)y′′ − μ

1 − x
y′ = νy (90)

where x ∈ [0,1], μ ≥ 0, and the boundary condition is y(0) = y(1) = 0. A solution
exists only when ν takes one of the following eigenvalues

ν = −(n + r)(n + r + 1) (91)

for n = 0,1, . . . , where r = (1 + √
1 + 4μ)/2. And the corresponding eigenfunction

is x(1 − x)rP
(1,2r−1)
n (1 − 2x).

Proof Let y(x) = (1 − x)rg(x). Then

LHS = (1 − x)r
(

x(1 − x)g′′ − 2rxg′ +
[
r(r − 1) − μ

1 − x
− [

r(r − 1) + ν
]
]

g

)

(92)

If r = 1+√
1+4μ
2 , then r(r − 1) = μ. Thus

x(1 − x)g′′ − 2rxg′ − [
r(r − 1) + ν

]
g = 0 (93)

subject to boundary condition g(0) = 0 if r > 0. Let g(x) = xf (x), then

x(1 − x)f ′′ + [
2 − (2 + 2r)x

]
f ′ − [

r(r + 1) + ν
]
f = 0 (94)

subject to boundary condition f (0) = finite and f (1) = finite. The solution is the
Gauss hypergeometric function f (x) = 2F1(a, b; c;x), with c = 2;a + b = 2r +
1;ab = r(r + 1) + ν. Note that because c − a − b = 1 − 2r ≤ −1, 2F1(a, b; c;x)

diverges at x = 1 unless the series is finite. In this case, the Gauss series reduces
to a polynomial of degree n in x when a or b is equal to −n, (n = 0,1,2, . . .). In
another word, ν = −n(n + 2r + 1) − r(r + 1) = −(n + r)(n + r + 1). In this case,
2F1(a, b; c;x) = 1

n+1P
(1,2r−1)
n (1 − 2x). �
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A special case of the Lemma is when μ = (m + 1)(m + 2) with m = 0,1, . . . .
Then r = m + 2 and ν = −(n + m + 2)(n + m + 3) for all n = 0,1, . . . .

Lemma A.2 Let

LM =
M∑

i=1

zi(1 − zi)

2
∏

j<i(1 − zj )

∂2

∂z2
i

(95)

with M ≥ 1. Suppose f is an eigenfunction of LM , that is, LMf = λf (z), with
boundary condition f (z) = 0 for all z with zi = 0 or 1 for all i = 0, . . . ,M . Let
lj = 0,1, . . . for all j = 1, . . . ,M , and ni = ∑M

j=i lj + M − i for all i = 1, . . . ,M .
Then the eigenvalues, indexed by (l1, . . . , lM), are

λl1,...,lM = − (n1 + 1)(n1 + 2)

2
(96)

And the corresponding eigenfunction is

φ(l1,...,lM)(z1, . . . , zM) =
M∏

j=1

zj (1 − zj )
rj P

(1,2rj −1)

lj
(1 − 2zj ) (97)

where rj = nj+1 + 2 with nM+1 ≡ −1.

Proof We prove the lemma by induction.
When M = 1, the eigenvalues are λl1 = −(l1 +1)(l1 +2)/2 and the corresponding

eigenfunction is z1(1 − z1)P
(1,1)
l1

(1 − 2z1). So, the result holds.
Now suppose the lemma is true for M = m. Then Lm+1f becomes

Lm+1f = z1(1 − z1)

2

∂2

∂z2
1

f + 1

1 − z1
Lm(z2, . . . , zM)f (98)

Let f = g(z1)φ(l2,...,lM)(z2, . . . , zM). Then

Lm+1[f ] =
[
z1(1 − z1)

2
g′′(z1) + λl2,...,lM

1 − z1
g(z1)

]

φ(l2,...,lM)(z2, . . . , zM)

= − (l1 + r)(l1 + r + 1)

2

× z1(1 − z1)
rP

(1,2r−1)
l1

(1 − 2z1)φ(l2,...,lM)(z2, . . . , zM)

where r = 1+√
1−8λl2,...,lM

2 = n2 + 2. In addition, n1 = l1 + r − 1 = l1 +n2 + 1. Thus,
the result also holds true for M = m + 1. By induction, the result has to be true for
all M > 1. �

Proof of Theorem 4

Proof To prove the theorem, we go through three steps.
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Step 1. Change of variables
Let z1 = x1 and zi = xi/(1 − ∑

j<i xj ) for all i > 1. Then in terms of zi , (4) can be
rewritten as

[
z1(1 − z1)

2

∂2

∂z2
1

+
M∑

i=2

zi(1 − zi)

2
∏

j<i(1 − zj )

∂2

∂z2
i

]

G(z; z′)

= − 1
∏M

i=1(1 − zi)M−i
δ(z − z′) (99)

subject to boundary condition

G(z; z′) = 0 for all z with zi = 0 or 1 for any i (100)

Step 2. Expansion using orthogonal polynomials
We expand the Green’s function in variable z2, . . . , zM in terms of orthogonal poly-
nomials

G(z1, z2, . . . , zM) =
∑

l∈NM−1

Al(z1)φl(z2, . . . , zM) (101)

where l = (l2, . . . , lM) is a M − 1 dimensional index with each li = 0,1, . . . , that is,

li ∈ N. φl(z2, . . . , zM) = ∏M
j=2 zj (1 − zj )

rj P
(1,2rj −1)

lj
(1 − 2zj ).

Substituting it to (99), we have

∑

l∈NM−1

[
z1(1 − z1)

2
A′′

l (z1) + λl

1 − z1
Al

]

φl(z2, . . . , zM)

= − 1
∏M

i=1(1 − zi)M−i
δ(z − z′) (102)

where λl = −(n2 + 1)(n2 + 2)/2 with n2 = ∑M
j=2 lj + M − 2. Multiply both sides

by
∏M

j=2(1 − zj )
rj −1P

(1,2rj −1)

l′j
(1 − 2zj ), integrate over z2, . . . , zM , and use the or-

thogonal property of Jacobi polynomials

∫ 1

0
xα(1 − x)βP (α,β)

m (1 − 2x)P (α,β)
n (1 − 2x)dx

= Γ (n + α + 1)Γ (n + β + 1)

(2n + α + β + 1)Γ (n + α + β + 1)n!δnm

We have

z1(1 − z1)

2
A′′

l (z1) + λl

1 − z1
Al = −Clδ(z1 − z′

1)

s.t Al(0) = Al(1) = 0

(103)
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where

Cl =
M∏

j=2

(2lj + 2rj + 1)(lj + 2rj )

lj + 1

P
(1,2rj −1)

lj
(1 − 2z′

j )

(1 − z′
1)

M−1
∏M

j=2(1 − z′
j )

M−j−rj +1
(104)

Step 3. Derivation of the one-dimensional Green’s function
Our next step is to find a solution to (103), which is the Green’s function for a one-
dimensional second-order ODE.

Let Al(z1) = (1 − z1)
rφ(z1) and substitute it to (103). We find that the left side of

(103) becomes

LHS = 1

2
(1 − z1)

r

[

z1(1 − z1)φ
′′ − 2rz1φ

′ − r(r − 1)φ − r(r − 1) − 2λl

1 − z1
φ

]

= 1

2
(1 − z1)

r
[
z1(1 − z1)φ

′′ − 2rz1φ
′ − r(r − 1)φ

]

where the second equation holds if we choose r satisfying r(r − 1) = 2λl , i.e., r =
n2 + 2.

With the choice of r , function φ(x) is the solution of

x(1 − x)φ′′ − 2rxφ′ − r(r − 1)φ = − 2Cl

(1 − x)r
δ(x − x′)

s.t. φ(0) = 0 and φ(1) = finite

(105)

It can be shown that the two homogenous solutions of the above equation are
φ(1)(x) = x2F1(r, r + 1;2;x) and φ(2)(x) = 2F1(r, r − 1;2r;1 − x), where φ(1) sat-
isfies the boundary condition at x = 0 and φ(2) satisfies the boundary condition at
x = 1. Consequently, the two homogenous solutions of (103) are

A1(x) = (1 − x)rx2F1(r, r + 1;2;x) (106)

A2(x) = (1 − x)r 2F1(r, r − 1;2r;1 − x) (107)

where A1(x) satisfies boundary condition at x = 0 and A2(x) satisfies boundary con-
dition at x = 1. Thus, the solution of (103) is Al(z1, z

′
1) = dφl(z1, z

′
1), where

φl(z1, z
′
1) =

{
A1(z1)A2(z

′
1) if z1 < z′

1
A1(z

′
1)A2(z1) if z1 > z′

1
(108)

and d = 2Cl/[W(A1,A2)(z
′
1)z

′
1(1 − z′

1)], where

W(A1,A2)(x) ≡ A′
1(x)A2(x) − A1(x)A′

2(x) (109)

is the Wronskian function, and should be a constant since (103) does not contain
the first derivative of An(z1). So, W(A1,A2)(x) = W(A1,A2)(0) = A2(0) for all
x ∈ [0,1], that is,

W(A1,A2)(x) = 2F1(r, r − 1;2r;1) = Γ (2r)

Γ (r)Γ (r + 1)
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= (2n2 + 3)!
(n2 + 1)!(n2 + 2)! (110)

for all x ∈ [0,1]. So,

Al(z1) = 2Cl(n2 + 1)!(n2 + 2)!
(2n2 + 3)!

φl(z1, z
′
1)

z′
1(1 − z′

1)
(111)

Substituting the expression of Al(z1) back to (101) gives the final formula of the
Green’s function, and thus completes the proof. �
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