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Abstract This paper studies a class of dynamical systems that model multi-species
ecosystems. These systems are ‘resource bounded’ in the sense that species compete to
utilize an underlying limiting resource or substrate. This boundedness means that the rele-
vant state space can be reduced to a simplex, with coordinates representing the proportions
of substrate utilized by the various species. If the vector field is inward pointing on the
boundary of the simplex, the state space is forward invariant under the system flow, a re-
quirement that can be interpreted as the presence of non-zero exogenous recruitment. We
consider conditions under which these model systems have a unique interior equilibrium
that is globally asymptotically stable. The systems we consider generalize classical multi-
species Lotka–Volterra systems, the behaviour of which is characterized by properties of
the community (or interaction) matrix. However, the more general systems considered
here are not characterized by a single matrix, but rather a family of matrices. We develop
a set of ‘explicit conditions’ on the basis of a notion of ‘uniform diagonal dominance’ for
such a family of matrices, that allows us to extract a set of sufficient conditions for global
asymptotic stability based on properties of a single, derived matrix. Examples of these
explicit conditions are discussed.

Keywords Model ecosystems · Global stability

1. Introduction

The study of the stability of ecosystems has a long history, both amongst ecologists
and mathematical modellers. The classical view, which prevailed amongst ecologists for
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a long time, was that the more complex a community is, the more stable it is (MacArthur,
1955; Elton, 1958). This intuitive view was radically challenged through studies of
various mathematical models by many authors (e.g. May 1972, 1973; Gilpin, 1975;
Goh and Jennings, 1977). In spite of this, doubt still remains about the relationship be-
tween complexity and stability in real communities, which may have special properties
not accounted for in the ‘random assemblage’ mathematical models usually cited in op-
position to the classical view (Begon et al., 1996, Chap. 23; Weiher and Keddy, 1999;
Loreau et al., 2002; Kondoh, 2003).

Most modelling approaches to stability issues have taken a demographic perspective,
concentrating on communities characterized by the number density, identity and inter-
actions of component species (Begon et al., 1996, pp. 792–793). In particular, the most
intensively explored class of models are those of Lotka–Volterra (L-V) type, defined by a
system of ordinary differential equations of the form:

dNi

dt
= Ni

(
ri +

n∑
j=1

aijNj

)
, 1 ≤ i ≤ n, (1)

where Ni is the population density of the ith species, ri is its intrinsic growth rate, and
aij is the (constant) interaction coefficient, specifying the manner in which species i in-
teracts with species j (positive, negative or zero), and the strength of this interaction.
The matrix A = (aij ) is called the community (or interaction) matrix, and much work
has been devoted to characterizing various stability properties (both local and global) in
terms of properties of this matrix (reviewed in Hofbauer and Sigmund, 1998, Chap. 15;
see also Siljak, 1978 and Logofet, 1993). One of the earliest and most fundamental of
such results says that if A is a dissipative matrix and the L-V system admits a positive
equilibrium point, then the equilibrium is both unique and globally stable (Volterra, 1931;
Harrison, 1979). A matrix is dissipative (called Volterra–Lyapunov stable by Hofbauer
and Sigmund, 1998, Section 15.3) if there exists a positive, diagonal matrix Q such that
QA + AT Q is negative definite. Sufficient conditions for A to be dissipative have been
studied by many authors: for example, A is dissipative if it is anti-symmetric (Case and
Casten, 1979). Of particular interest in the present context is the demonstration by Ikeda
and Siljak (1980) that A is dissipative if it has a dominant diagonal (Takayama, 1985,
Chap. 4).

In this paper we consider a more general class of ecosystem models than those of
L-V type described above—see Section 2, Equations (4)—designed to represent a funda-
mental aspect of competition. Competition mechanisms can be classified into two types:
exploitation and interference (Miller, 1967). Exploitation competition refers to compe-
tition arising from the joint exploitation of common limiting resources, and interfer-
ence competition refers to disruption of access to necessary resources for one species
by the activity of another species. For example, the famous model of MacArthur and
Levins (1967) analyses an exploitation-competition community in which the interac-
tion coefficients express the degree of resource overlap between competing species,
leading to a symmetric community matrix characterized in terms of niche partition-
ing. They showed that this system has a unique, globally stable equilibrium. The class
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of models we consider also focus primarily on exploitation competition—that is, on
ecosystems that are ‘resource bounded’—but leave open whether direct species-to-
species interactions are competitive or facilitative (Abrams, 1987; Bruno et al., 2003;
Day and Young, 2004).

We derive various conditions for the existence of a unique equilibrium that is globally
stable. In particular, we formulate and prove a generalization of the result of Ikeda and
Siljak (1980) that the community matrix of an L-V system is dissipative if it has a dom-
inant diagonal. This generalization leads to a set of explicit conditions that imply global
stability. For n-species systems, these explicit conditions are specified by a set-function
r : {1,2, . . . , n} → {0,1,2, . . . , n}, with each such function defining a subclass of poten-
tially globally stable systems. Such systems are then actually globally stable if a certain
matrix, defined by r , is an M-matrix (i.e., a matrix whose off-diagonal entries are non-
positive and all of whose successive principal minors are positive). We give examples for
2-species systems in which r(i) = 0 for each i = 1,2 (Example 4). We also consider a
specific subclass of our general class of models, which we call generalized L-V systems
(Example 5). These reduce to systems of classical L-V form (1) when there is a stable out-
come in which all the underlying limiting resources are exploited (i.e. no spare capacity).
However, we consider this class of n-species systems when this is not a possible outcome.
In this case, we show that species indices i for which r(i) = 0 determine a subsystem of
semi-neutral form (i.e. having no direct inter-species interactions). We also analyse gen-
eralized L-V systems when the explicit conditions are specified by the identity function
r(i) = i for each i.

The class of resource-bounded model ecosystems we consider is described in general
terms in Section 2. A crucial property that we impose on these dynamical systems is that
they should be ‘inward pointing’ on the boundary of their state space (a simplex). This
implies that no species can go extinct, a property that is guaranteed for systems with (sus-
tained) exogenous recruitment. The condition also implies that there is no stable state in
which all the underlying resources are exploited. Section 3 relates this inward-pointing
condition to the theory of the index of an equilibrium and the famous Poincaré–Hopf
Theorem (Milnor, 1965), from which general conditions for the existence, uniqueness
and global stability of an equilibrium can be obtained (Theorem 1). This is then related
to properties of the Jacobian of the dynamical system. We discuss what we call ‘semi-
neutral’ systems (Section 3.2). These are systems in which there are no direct species-to-
species interactions, except possibly negative self-interactions (i.e. intra-specific compe-
tition). Thus, semi-neutral systems exhibit (almost) pure exploitative competition and are
sustained by exogenous recruitment. Section 4 introduces diagonal dominance and its ex-
tension to ‘uniform diagonal dominance’. As noted above, our generalization of the result
of Ikeda and Siljak (1980) is then proved (Theorems 2 and 3), and associated explicit con-
ditions derived (Sections 4.3 and 4.4). Section 5 applies the general theory of Sections 3
and 4 to systems of quadratic form, and finds conditions for these to have a unique globally
stable equilibrium (Theorem 6 and Proposition 5). Section 6 gives examples of explicit
conditions for uniform row- and column-diagonal dominance for quadratic systems, in
particular for generalized L-V systems, as discussed above. Section 7 concludes with a
summary and general discussion. Appendix A contains the more technical mathematical
material.
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2. Resource-bounded ecosystems

2.1. The model

Consider a system (e.g. an ecosystem) that can sustain n ‘species’, numbered 1,2, . . . , n.
We assume that the system has a maximum carrying capacity K in the sense that the total
quantitative representation of the n species cannot exceed K . That is, if Ni is a quantitative
measure of the representation of species i in some common currency, then 0 ≤ Ni ≤ K

and N = ∑n

i=1 Ni ≤ K . A species must capture some part of the capacity K in order to
be represented in the system. We introduce the ‘spare capacity’ variable:

N0 = K − N, (2)

so that

N0 + N1 + · · · + Nn = K. (3)

We regard the species as competing for a common resource in the form of spare capacity,
some part of which they must capture in order to increase their representation. We refer
to this limiting resource as the substrate for the system.

How a species is represented depends on the nature of the system. For example, K and
Ni may be measured in the common currency of biomass, density or concentration. Thus,
the finite carrying capacity assumption implies that an ecosystem can support only a finite
quantity of biomass, which will depend on the underlying level of primary production
and the net flows of energy into and out of the system. For molecular species, the com-
mon currency is usually taken to be the concentrations of the constituent (bio-)chemical
species. Alternatively, if K is a fixed spatial area, and the species are all sessile organisms
that grow laterally into space, then the limiting substrate is a space, and Ni can be taken
as the area occupied by species i. This is typical of plant-species communities.

Now assume that the ecosystem dynamics has the quadratic form:

Ṅi =
n∑

j=0

a
j

i Nj +
n∑

j,k=0

b
jk

i NjNk (1 ≤ i ≤ n). (4)

In order to preserve the constraint (3), we take Ṅ0 = −Ṅ1 − · · · − Ṅn. This implies
that condition (3) is maintained along trajectories with initial conditions that satisfy (3).
However, additional constraints are required to ensure that trajectories remain in the bio-
logically meaningful positive quadrant Ni ≥ 0 for 0 ≤ i ≤ n. We discuss such constraints
later in this section.

The constants a
j

i and b
jk

i define species–environment and between-species interac-
tions respectively, and satisfy the symmetry condition b

jk

i = b
kj

i . In particular a0
i can be

regarded as the direct rate of recruitment from the external environment of species i onto
available substrate (spare capacity) N0, or induced production due to some external stimu-
lus. With this interpretation it is natural to assume that a0

i ≥ 0. The coefficient a
j

i for j ≥ 1
specifies a direct contribution of species j to the growth rate of species i that is mediated
neither by interaction with the underlying substrate N0 nor by interactions with other
species. For example, these terms could represent transition rates between life stages, size
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classes or condition states (from state j to state i), such as an organism in a juvenile
(pre-sexual) life stage moving to a mature (sexual) stage. Alternatively, species j could
produce a substance that is utilized by species i to enhance (or inhibit) its growth rate. For
j = i, a natural interpretation of ai

i is as a total mortality or emigration rate for species i

(i.e. the rate of transition to all other states, including death or the external environment),
in which case ai

i < 0. Thus, if ρi is the positive net death or emigration rate of species i,
then under this interpretation we require the ‘conservation’ condition ρi + ∑n

j=1 ai
j = 0.

In many of the examples considered in this paper we assume that a
j

i = 0 for j �= i, so that
ρi = −ai

i . However, this assumption is not necessary for the general theory.
The species–substrate interaction coefficient, 2b

j0
i , can be regarded as the rate of re-

cruitment of species i into the system due to the interaction of species j with the underly-
ing substrate; e.g. by production of propagules of species i, or by “preparing the ground”
by rendering the available substrate more (or less) favourable to external recruitment of
species i (effectively boosting or inhibiting a0

i ). This could be negative if the action of
species j inhibits access of species i to substrate, say by producing an inhibitory sub-
stance (i.e. interference competition). In particular, for j = i, 2bi0

i can be regarded as the
rate at which established species i utilizes available substrate to enhance its own recruit-
ment/growth if it is positive, or as a density-dependent inhibition effect on the intrinsic
recruitment rate a0

i if it is negative. On the other hand, b
jk

i for j, k ≥ 1 determines the rate
of recruitment/growth (or loss) of species i due to direct interaction between species j

and k: for example, if j and k interact to produce a substance that promotes (or inhibits)
the growth of species i. In particular, if b

ij

i < 0 and b
ij

j > 0, then b
ij

i can represent the rate

of loss of species i due to predation by species j , with b
ij

j the rate of gain of species j

due to predation on species i. If b
ij

i < 0 and b
ij

j < 0, then the interaction between species

i and species j is one of direct interference competition, and if b
ij

i > 0 and b
ij

j > 0, then
the interaction is mutualistic. Finally, it is perhaps most natural to suppose that b00

i = 0,
unless the “substrate” interacts with itself autocatalytically to either promote or inhibit re-
cruitment of species i. However, in general we shall not assume that b00

i = 0 in the formal
considerations that follow.

2.2. Proportion variables

It is convenient to work with proportion variables, xi = Ni/K for 0 ≤ i ≤ n. Thus,
from (3) we have:

x0 + x1 + · · · + xn = 1. (5)

Since K is constant, the ecosystem dynamics (4) can be expressed in terms of the propor-
tion variables:

ẋi =
n∑

j=0

a
j

i xj +
n∑

j,k=0

γ
jk

i xj xk (1 ≤ i ≤ n), (6)

where γ
jk

i = Kb
jk

i , and ẋ0 = −ẋ1 − · · · − ẋn. It follows that the constraint (5) is main-
tained along trajectories. If the constraints xi ≥ 0 for 0 ≤ i ≤ n are also maintained along
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trajectories, then the biologically relevant state space for this dynamical system is the
n-dimensional simplex

Δ =
{

x = (x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤
n∑

j=1

xj ≤ 1

}
. (7)

Thus, we may write (6) in the form ẋ = g(x), where g : Δ → Rn defines a smooth
vector field on Δ.

By substituting x0 = 1 − ∑n

i=1 xi into (6), we may write

gi(x) = ci +
n∑

j=1

A
j

i xj +
n∑

j,k=1

Γ
jk

i xj xk (1 ≤ i ≤ n), (8)

where:

ci = a0
i + γ 00

i , (9a)

A
j

i = a
j

i − a0
i + 2γ

0j

i − 2γ 00
i , (9b)

Γ
jk

i = γ
jk

i − (
γ

j0
i + γ 0k

i

) + γ 00
i . (9c)

Here ci is the net rate of recruitment from or loss to the external environment; A
j

i is the net
direct effect of species j on the growth rate of species i; and Γ

jk

i is the net effect on the
growth rate of species i due to interactions between species j and k (and the substrate).
Thus, c = (c1, . . . , cn) is an n-vector, A = (A

j

i ) is an n × n matrix, and Γi = (Γ
jk

i ) is a
symmetric n × n matrix for each i, so that Γ = (Γ1, . . . ,Γn) is a (2,1)-tensor. We may
therefore write the vector field g : Δ → Rn in the form

g(x) = c + Ax + x · Γ x (x ∈ Δ). (10)

2.3. The inward-pointing condition

To ensure that the constraints (5) and xi ≥ 0 for 0 ≤ i ≤ n are maintained along trajectories
of the system (8), we assume that g is inward pointing on the simplex boundary ∂Δ.1 That
is, if ei is the ith unit standard coordinate vector in Rn, then gi(x) = ei ·g(x) > 0 whenever
xi = 0 (1 ≤ i ≤ n), and g0(x) = −e ·g(x) > 0 whenever x0 = 0 (where e = ∑n

i=1 ei ∈ Rn).
This means that Δ is forward invariant under the flow of the dynamical system ẋ = g(x)

on Rn. Because the inequalities on the boundary are strict, this also implies that no species,
once established, can become extinct. In particular g(x) is nowhere zero on ∂Δ. This
inward-pointing condition provides an important contribution to the self-sustaining nature
of globally stable ecosystems.

1This condition can be weakened in most of what follows. For ε > 0, let Uε = {x ∈ Δ : d(x, ∂Δ) < ε} be
the open ε-neighbourhood of ∂Δ in Δ. Assume there is an ε0 > 0, such that, for each 0 < ε < ε0, there is
a convex open set Mε in Δ with closure M̄ε ⊂ intΔ and boundary a smooth closed manifold, ∂Mε ⊂ Uε ,
with g inward pointing on ∂Mε . This implies that any arbitrarily small, non-zero representation of species
i will grow; i.e. once established, species i cannot die out. This is similar to the permanence condition
discussed by Hofbauer and Sigmund (1998, Section 12.2). However, for the sake of simplicity we shall
not consider this more general situation explicitly in this paper.
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Example 1 (1-species systems). For the case of one species, n = 1, we have:

g1(x0, x1) = a0
1x0 + a1

1x1 + γ 00
1 x2

0 + 2γ 01
1 x0x1 + γ 11

1 x2
1 ,

with x0 + x1 = 1. In the form (10) this is:

g1(x1) = (
a0

1 + γ 00
1

) + (
a1

1 − a0
1 + 2γ 01

1 − 2γ 00
1

)
x1 + (

γ 11
1 − 2γ 01

1 + γ 00
1

)
x2

1 .

To be inward pointing on the interval 0 ≤ x1 ≤ 1, we require g1(1,0) > 0 and g1(0,1) < 0.
That is,

g1(1,0) = a0
1 + γ 00

1 > 0 and g1(0,1) = a1
1 + γ 11

1 < 0.

For example, taking γ 00
1 = 0 (no interaction of the substrate with itself that affects the

growth of species 1), we then require the exogenous recruitment rate to available sub-
strate a0

1 > 0. We also require a1
1 + γ 11

1 < 0. For example, if γ 11
1 ≤ 0, then there is either

no autocatalytic action of species-1 on itself, or a self-interference effect (intra-specific
competition). If a1

1 < 0, then a1
1 + γ 11

1 < 0 is satisfied in either case. Here, as discussed
above, ρ1 = −a1

1 can be interpreted as the linear death rate of species-1, which may be
enhanced by self-interference if γ 11

1 < 0. The quadratic term 2γ 01
1 x0x1 can be interpreted

as the rate of growth of species-1 due to utilization of available substrate (e.g. through
endogenous recruitment).

Because g1(x1) is a quadratic in x1, being inward pointing is sufficient to guarantee the
existence and global stability of a unique interior equilibrium x̄1 ∈ (0,1). However, this is
clearly not the case in higher dimensions (more than 1 species).

Example 2 (2-species systems). In the notation of (10), a 2-species system has the
form

g1(x1, x2) = c1 + A1
1x1 + A2

1x2 + Γ 11
1 x2

1 + 2Γ 12
1 x1x2 + Γ 22

1 x2
2 , (11a)

g2(x1, x2) = c2 + A1
2x1 + A2

2x2 + Γ 11
2 x2

1 + 2Γ 12
2 x1x2 + Γ 22

2 x2
2 . (11b)

There are three inward-pointing conditions: ẋi > 0 when xi = 0 for i = 0,1,2. These give
three quadratic conditions

q1(x) = c1 + A2
1x + Γ 22

1 x2 > 0, (12a)

q2(x) = c2 + A1
2x + Γ 11

2 x2 > 0, (12b)

q0(x) = (
c1 + c2 + A2

1 + A2
2 + Γ 22

1 + Γ 22
2

)
+ {

A1
1 + A1

2 − A2
1 − A2

2 + 2
(
Γ 12

1 + Γ 12
2

) − 2
(
Γ 22

1 + Γ 22
2

)}
x

+ {
Γ 11

1 + Γ 11
2 − 2

(
Γ 12

1 + Γ 12
2

) + Γ 22
1 + Γ 22

2

}
x2 < 0, (12c)

for 0 ≤ x ≤ 1. In particular, (12a) is satisfied if c1 > 0, c1 + A2
1 + Γ 22

1 > 0 and Γ 22
1 ≤ 0.

Similarly, (12b) is satisfied if c2 > 0, c2 + A1
2 + Γ 11

2 > 0 and Γ 11
2 ≤ 0. Also, (12c) is

satisfied if c1 + c2 + A2
1 + A2

2 + Γ 22
1 + Γ 22

2 < 0, c1 + c2 + A1
1 + A2

1 + Γ 11
1 + Γ 11

2 < 0 and
Γ 11

1 + Γ 11
2 − 2(Γ 12

1 + Γ 12
2 ) + Γ 22

1 + Γ 22
2 ≥ 0.
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3. Equilibria

3.1. The index, uniqueness and global stability

Consider a C1 vector field g, defined on an open set in Rn containing Δ, and satisfying the
inward-pointing condition on ∂Δ. The inward-pointing condition implies that there exists
a sufficiently small δ > 0 such that f (x) = x + δg(x) ∈ Δ whenever x ∈ Δ (because
Δ is compact). Notice that f : Δ → Δ is a continuous map, and hence has at least one
fixed point in Δ by Brouwer’s Fixed Point Theorem (Milnor, 1965). Fixed points of f are
the same as zeros of g and hence they are equilibria of the dynamical system ẋ = g(x).
Further, since g(x) is nowhere zero on ∂Δ, every equilibrium lies in the interior of Δ.

Recall that x ∈ Δ is a regular point if detDg(x) �= 0. By Sard’s Theorem, almost all
points are regular (Milnor, 1965). We make the following genericity assumption.

Assumption 1. Every equilibrium of g(x) in Δ is regular.

This implies that g(x) is injective in a neighbourhood of an equilibrium by the Inverse
Function Theorem, and hence that every equilibrium is isolated. Assumption 1 almost
always holds for naturally arising systems, which are generic. If it does not hold, then an
ε-perturbation of the coefficients of g will suffice to obtain the assumption.

Given a (regular) equilibrium x̄ ∈ intΔ, the index of x̄ is defined by indg(x̄) =
sign detDg(x̄) (Milnor, 1965; Hofbauer and Sigmund, 1998). Note that the vector field
−g(x) points outwards on ∂Δ. Of course, this has the same equilibria as g(x), and it
is clear that ind−g(x̄) = (−1)n indg(x̄). The Poincaré–Hopf Theorem applies to outward-
pointing vector fields, and states that, for such vector fields,∑

equilibria x̄∈Δ

ind−g(x̄) = χ(Δ),

where χ(Δ) is the Euler-characteristic of Δ (Milnor, 1965). Since Δ is a simplex,
χ(Δ) = 1, and hence Ig = ∑

x̄ indg(x̄) = (−1)n. It now follows that there can be only
an odd number of (regular) equilibria in Δ.

We wish to find conditions under which there is exactly one equilibrium. This is clearly
true if sign detDg(x̄) is constant on Δ (either +1 or −1 for all x ∈ Δ). For then all equi-
libria have the same index, and Ig = ±m = (−1)n, where m is the number of equilibria in
Δ, and +1 or −1 is their common index. It follows that m = 1 and indg(x̄) = (−1)n for
the unique equilibrium x̄. We therefore look for conditions under which sign detDg(x)

is a non-zero constant on Δ. This Index Theorem implies existence and uniqueness of
an interior equilibrium. However, more than this, we seek conditions under which all the
eigenvalues of Dg(x) have negative real parts. Clearly this implies that Dg(x) is non-
singular and sign detDg(x) = (−1)n for each x ∈ Δ. However, although this implies that
there is a unique interior equilibrium, it is not enough to imply that this equilibrium is
globally stable. For this, we need the well-known sufficient condition for stability due to
Lyapunov.

Theorem 1. Suppose that g(x) is inward pointing on ∂Δ and that Assumption 1 holds.
Suppose also that there is a real, symmetric, positive definite n × n matrix Q such that
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QDg(x) is negative definite on Rn for all x ∈ Δ. Then there is a unique equilibrium
x̄ ∈ intΔ of the system ẋ = g(x), and x̄ is globally asymptotically stable.

Indeed, that QDg(x) is negative definite implies that Dg(x) has eigenvalues with
negative real parts, and hence that x̄ exists and is unique by the Index Theorem above. In
addition, L(x) = 1

2 g(x) · Qg(x) is a global Lyapunov function for x̄, which yields global
stability.

Note that the criterion of Theorem 1 is uniform in the sense that Q must be a constant
matrix, independent of x. It is elementary that a generic real matrix A has eigenvalues
with negative real parts if and only if there is a real, symmetric, positive definite matrix
Q such that QA is negative definite. However, the uniformity requirement of Theorem 1
is much stronger than this.

Remark 1. In fact, the existence of a Q satisfying the conditions of Theorem 1 is itself
sufficient to imply both the uniqueness of equilibrium and global stability, without ap-
peal to the Index Theorem. Here we have chosen to separate the issue of the existence
of a unique equilibrium from that of its global stability. Hence our appeal to the Index
Theorem.

3.2. Semi-neutral systems

Semi-neutral systems provide an example in which the uniformity assumption on Q in
Theorem 1 can be weakened. By a semi-neutral system we mean a system of the form
(6) in which the n species do not interact directly with each other but compete only for
the underlying substrate. However, we allow the possibility of intra-specific competition.
If there is no intra-specific competition, the system is strictly neutral. Thus, in a semi-
neutral system a

j

i = 0 for j �= i,1 ≤ j ≤ n, and γ
jk

i = 0 for all 0 ≤ j, k ≤ n, except
possibly the substrate interaction coefficients γ i0

i and the self-interaction coefficients γ ii
i .

Assume that ai
i = −ρi , where ρi > 0 is the death (or emigration) rate of species i, and

also that 2γ i0
i = λi . As discussed in Section 2, if λi > 0, this can be interpreted as the

growth rate of established species i due to utilization of available substrate, and if λi < 0,
it can be interpreted as a density effect, with established species i inhibiting recruitment
and/or growth of new representatives. We write κi = −γ ii

i and assume that κi ≥ 0, so
that this coefficient represents a self-inhibitory term. We interpret a0

i > 0 as the intrinsic
exogenous recruitment rate of species i onto available substrate. The system (6) therefore
reduces to the form

ẋi = a0
i x0 − ρixi + λixix0 − κix

2
i (1 ≤ i ≤ n). (13)

This can be written as ẋi = (a0
i + λixi)x0 − ρixi − κix

2
i , and we assume that the net

substrate utilization rate a0
i + λixi is always positive (even when λi < 0). This is the

case if a0
i > −λi . Also, (13) can be written as ẋi = a0

i x0 − (ρi − λix0)xi − κix
2
i . Assume

that species i cannot persist without exogenous recruitment (a0
i = 0). This is the case

if ρi − λix0 is always positive (even when λi > 0). Thus, assume that ρi > λi . Clearly,
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ẋi > 0 when xi = 0, provided there is exogenous recruitment (a0
i > 0) and some available

substrate (x0 > 0). Also,

ẋ0 = −
n∑

i=1

ẋi = (ρ · x) + (
κ · x2

) − (
a0 + (λ · x)

)
x0,

where a0 = ∑n

i=1 a0
i . It follows that ẋ0 > 0 when x0 = 0. The inward-pointing conditions

are therefore satisfied.
Define a positive definite, diagonal matrix Q(x) = diag{d1(x1), . . . , dn(xn)}, by taking

di(xi) = 1

a0
i + λixi

. (14)

It is shown in Appendix A that Q(x)Dg(x) is negative definite for all x ∈ Δ, from
which it follows that the eigenvalues of Dg(x) all have negative real parts. Hence, from
the Index Theorem (Section 3.1), there is a unique equilibrium x̄ ∈ intΔ. Further, we
show in Appendix A that L(x) = 1

2g(x) · Q(x)g(x) is a global Lyapunov function for the
system, and hence that x̄ is globally asymptotically stable.

Observe from (13) that the unique equilibrium satisfies the equations

x̄i = 1

2κi

{−(ρi − λix̄0) +
√

(ρi − λix̄0)2 + 4κia
0
i x̄0

}
(1 ≤ i ≤ n). (15)

Since ρi > λi , it follows that x̄i → 0 as a0
i → 0. Thus, if there is no exogenous recruitment

(a0
i = 0), then species i is eliminated by competitive exclusion. This shows that, under the

given assumptions, the non-zero equilibrium representation of any of the species depends
essentially on exogenous recruitment.

4. Diagonal dominance

In this section we recall the basic theory of diagonal dominance for an n × n matrix. We
then extend this to define a notion of uniform diagonal dominance for a matrix-valued
function. This is used to determine explicit conditions under which a general differen-
tiable dynamical system ẋ = g(x), defined on a simplex, admits a unique, globally stable
equilibrium. These conditions are then applied to quadratic systems of the form (10).

4.1. Diagonal dominance

Let Mn(R) be the space of real, n×n matrices, and M+
n (R) ⊂ Mn(R) the positive cone of

those matrices having positive diagonal elements. For Ω ∈ Mn(R), define the derived ma-
trix Ω̂ ∈ Mn(R) by: ω̂ii = |ωii | and ω̂ij = −|ωij | for i �= j . Thus, Ω̂ has non-negative di-
agonal entries, and non-positive off-diagonal entries. Clearly, Ω̂ ∈ M+

n (R) if Ω ∈ M+
n (R),

and in this case ω̂ii = ωii . For vectors u,v ∈ Rn we write u > v (resp. u ≥ v) to mean
ui > vi (resp. ui ≥ vi) for 1 ≤ i ≤ n. A vector u is said to be positive (resp. non-negative)
if u > 0 (resp. u ≥ 0).
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Recall that Ω ∈ Mn(R) has a row-dominant diagonal if there exists a positive vector
d = (d1, . . . , dn)

T ∈ Rn such that Ω̂d > 0. Explicitly, this means that there are positive
constants d1, . . . , dn such that

di |ωii | >
∑
j �=i

dj |ωij |, 1 ≤ i ≤ n. (16a)

A matrix Ω has a column-dominant diagonal if its transpose, ΩT , has a row-dominant
diagonal, that is, if there exists c > 0 such that ΩT c > 0. Equivalently:

ci |ωii | >
∑
j �=i

cj |ωji |, 1 ≤ i ≤ n. (16b)

A key result concerning matrices with a dominant diagonal (either row or column) is:

Proposition 1. If Ω ∈ Mn(R) has a dominant diagonal then it is non-singular. If, in
addition, Ω ∈ M+

n (R), then the eigenvalues of Ω all have positive real parts.

See Takayama (1985, Chap. 4, Theorems 4.C.1 and 4.C.2).
The row-dominant diagonal condition Ω̂d > 0 is equivalent to the so-called Hawkins–

Simon (H-S) conditions for Ω̂ :

Ω̂(k) = det

⎛
⎜⎜⎜⎝

ω̂11 ω̂12 · · · ω̂1k

ω̂21 ω̂22 · · · ω̂2k

...
...

...

ω̂k1 ω̂k2 · · · ω̂kk

⎞
⎟⎟⎟⎠ > 0 for 1 ≤ k ≤ n. (17)

That is, Ω̂ is an M-matrix (a matrix with non-positive off-diagonal entries all of whose
successive principal minors are positive). See Takayama (1985, Chap. 4, Theorem 4.C.5).
In fact, the H-S conditions imply that all the principal minors of Ω̂ are positive (i.e. the de-
terminants of the submatrices obtained by choosing elements ω̂ij for i, j in any non-empty
subset S ⊆ {1,2, . . . , n}). See Takayama (1985, Chap. 4, Corollary to Theorem 4.C.5). In
particular, |ωii | = ω̂ii > 0 for 1 ≤ i ≤ n.

Remark 2. Clearly Ω̂ is an M-matrix if and only if Ω̂T is an M-matrix. It therefore
follows that row-diagonal dominance and column-diagonal dominance are equivalent. If
Ω ∈ M+

n (R) (i.e. has positive diagonal entries), the row- or column-diagonal dominance
conditions suffice to ensure that there exists a positive diagonal matrix Q such that QΩ is
positive definite—see Araki and Kondo (1972), Ikeda and Siljak (1980), and Theorem 2
below.

4.2. Uniform diagonal dominance

Let Ω : Δ → Mn(R) be a continuous, matrix-valued function. The derived function Ω̂ :
Δ → Mn(R) is then also continuous, and takes values in M+

n (R) if Ω does.
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We say that Ω has a uniformly row-dominant diagonal if there exists a vector d > 0
such that Ω̂(x)d > 0 for all x ∈ Δ. Explicitly, there are positive constants d1, . . . , dn

(independent of x) such that

fi(x) = di

∣∣ωii(x)
∣∣ −

∑
j �=i

dj

∣∣ωij (x)
∣∣ > 0, (18)

for all x ∈ Δ and 1 ≤ i ≤ n. If ΩT : Δ → Mn(R) is the transpose function defined by
ΩT (x) = Ω(x)T , then Ω has a uniformly column-dominant diagonal if ΩT has a uni-
formly row-dominant diagonal, that is, if there exists a constant vector c > 0 such that
ΩT (x)c > 0. Note that if Ω has a uniformly (row or column) dominant diagonal, then Ω̂

and Ω̂T take values in M+
n (R), whether or not Ω does.

Remark 3. Note that Ω(x) having a row-dominant diagonal implies that it also has a
column-dominant diagonal (Remark 2). However, there is no reason to suppose that
Ω(x) having a uniformly row-dominant diagonal implies that it has a uniformly column-
dominant diagonal (or vice versa). In particular, if Ω takes values in M+

n (R), we cannot
conclude that there is a constant positive diagonal matrix Q such that QΩ(x) is positive
definite for all x.

To apply these notions to a dynamical system ẋ = g(x) on a neighbourhood of Δ,
consider the Jacobian matrix. Thus, if g(x) is quadratic we can write −Dg(x) in the form

−Dg(x) = Ω(x) =
n∑

r=0

Ω(r)xr , Ω(r) = (
ω

(r)
ij

)
, 0 ≤ r ≤ n. (19)

In spite of the fact that row- and column-diagonal dominance are not in general equiv-
alent, if it happens to be true that Ω has both a uniformly row- and a uniformly column-
dominant diagonal, then it is the case that a suitable Q can be found for the application of
Theorem 1. This is shown in the following theorem, proved in Appendix A.

Theorem 2. Let g(x) be a C1 vector field defined on a neighbourhood of Δ in Rn that is
inward-pointing on ∂Δ and which satisfies Assumption 1. Suppose that Ω = −Dg : Δ →
M+

n (R) has both a uniformly row- and a uniformly column-dominant diagonal. Then there
is a positive diagonal matrix Q such that QDg(x) is negative definite on Δ. Hence there
is a unique equilibrium x̄ ∈ intΔ of the system ẋ = g(x), and x̄ is globally asymptotically
stable.

A stronger theorem than Theorem 2 can be proved under the assumption that Ω has
either a uniform row- or column-dominant diagonal, but not necessarily both. This does
not rely on finding a symmetric, positive definite matrix Q as in Theorem 2. Instead,
different Lyapunov functions are used than that used in Theorem 1. The proof of the
following theorem is given in Appendix A.

Theorem 3. Let g(x) be a C1 vector field defined on a neighbourhood of Δ in Rn that is
inward-pointing on ∂Δ and which satisfies Assumption 1. Suppose that Ω = −Dg : Δ →
M+

n (R) has either a uniformly row-dominant diagonal or a uniformly column-dominant
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diagonal. Then there is a unique equilibrium x̄ ∈ intΔ of the system ẋ = g(x), and x̄ is
globally asymptotically stable.

4.3. General conditions for uniform diagonal dominance

We now consider conditions under which Ω : Δ → Mn(R) has a uniformly dominant
diagonal. We develop these conditions for row dominance, but analogous conditions for
column dominance can be obtained by replacing Ω by ΩT .

Let e0 = 0 ∈ Rn be the vector obtained by taking x1 = · · · = xn = 0 (equivalently,
x0 = 1), and er the vector obtained by taking xr = 1 (and xs = 0 for s �= r) for 1 ≤ r ≤ n.

Proposition 2. Let Ω : Δ → Mn(R) be continuous. Suppose that |ωii(x)| is a concave
function of x ∈ Δ, and |ωij (x)| is a convex function of x ∈ Δ for i �= j . Then fi(x) defined
in (18) takes its minimum value f

i
= infx∈Δ fi(x) at (at least) one of the extreme points

x = e0, e1, . . . , en, that is,

f
i
= min

{
fi(e0), fi(e1), . . . , fi(en)

}
. (20)

Proof: Write fi(x) = hi(x) − ki(x), where hi(x) = di |ωii(x)|, and ki(x) =∑
j �=i dj |ωij (x)|. By assumption, hi(x) is concave and ki(x) is convex, and hence fi(x)

is concave. We may write x ∈ Δ as a convex combination of the extreme points of Δ;
i.e. x = x0e0 + x1e1 + · · · + xnen, with x0 + x1 + · · · + xn = 1. Then fi(x) being concave
implies that fi(x) ≥ x0fi(e0)+x1fi(e1)+· · ·+xnfi(en), and (20) follows immediately. �

Under the conditions of Proposition 2, it follows that Ω(x) has a uniformly row-
dominant diagonal provided there is a d > 0 for which f

i
> 0 for all 1 ≤ i ≤ n. From

(18) and (20) f
i

has the form

f
i
= difii −

∑
j �=i

djfij , (21)

with fii > 0 and fij ≥ 0. Thus, f
i
> 0 for all i is equivalent to the matrix F = (fij )

having a row-dominant diagonal. This in turn is equivalent to the H-S conditions (17) for
the matrix F̂ = (f̂ij ). Thus, if we can identify the fij in terms of components of Ω , to
show uniform row-diagonal dominance, we are reduced to verifying a set of n determinant
conditions for the derived matrix F̂ .

4.4. Explicit conditions for uniform diagonal dominance

To proceed further involves identifying, for each i, which of the extreme values fi(er )

determine the minimum f
i

(see (20)). In principle, this may be different for different d .
However, we shall seek more specialized conditions under which the minimizing extreme
value is the same for all d > 0. Such conditions are provided by the following proposition.

Proposition 3. Let Ω : Δ → Mn(R) satisfy the assumptions of Proposition 2, and write
Ω(er ) = Ω(r) = (ω

(r)
ij ) for 0 ≤ r ≤ n. Then sufficient conditions that f

i
= fi(er ) for all
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d > 0 are:∣∣ω(s)
ii

∣∣ ≥ ∣∣ω(r)
ii

∣∣ for 0 ≤ s ≤ n, (22a)∣∣ω(r)
ij

∣∣ ≥ ∣∣ω(s)
ij

∣∣ for 1 ≤ j ≤ n, j �= i and 0 ≤ s ≤ n. (22b)

Proof: f
i
= fi(er ) for all d > 0 only if �

(r,s)
i (d) = fi(es) − fi(er ) ≥ 0 for 0 ≤ s ≤ n and

all d > 0. But, from (18), fi(er ) = di |ω(r)
ii | − ∑

j �=i dj |ω(r)
ij |. Hence,

�
(r,s)
i (d) = di

{∣∣ω(s)
ii

∣∣ − ∣∣ω(r)
ii

∣∣} +
∑
j �=i

dj

{∣∣ω(r)
ij

∣∣ − ∣∣ω(s)
ij

∣∣}.
It follows that �

(r,s)
i (d) ≥ 0 for all d > 0 if conditions (22) hold. �

If the conditions of the form (22) hold for each i, then we can identify an r(i) ∈
{0,1, . . . , n} such that f

i
= fi(er(i)) for all d > 0 and 1 ≤ i ≤ n. This defines a function

r : {1,2, . . . , n} → {0,1,2, . . . , n}. Given such a function, the coefficients fij in (21) are
precisely identified, and so the n H-S determinant conditions (17) for the associated matrix
F̂ = (f̂ij ) can be evaluated. If these conditions are satisfied, together with the assumptions
of Proposition 2, then we can conclude that A has a uniformly row-dominant diagonal.
However, as noted in Remark 3, uniform row-diagonal dominance does not in general
imply uniform column-diagonal dominance. In particular, Theorem 2 cannot be applied.

Nevertheless, under some circumstances, uniform row and column diagonal domi-
nance are equivalent, and hence Theorem 2 can be applied. The simplest case occurs when
r is a constant function; i.e. r(i) = m for some m ∈ {0,1, . . . , n} and all 1 ≤ i ≤ n. In this
case, f̂ii = |ω(m)

ii | and f̂ij = −|ω(m)
ij | for j �= i, and conditions (22) are: |ω(s)

ii | ≥ |ω(m)
ii |

for 1 ≤ i ≤ n and 0 ≤ s ≤ n, and |ω(m)
ij | ≥ |ω(s)

ij | for 1 ≤ i, j ≤ n, j �= i and 0 ≤ s ≤ n.

If the H-S conditions (17) also hold for F̂ = (f̂ij ), then we conclude that Ω has a uni-
formly row-dominant diagonal. However, conditions (22) also imply that |ω(m)

ji | ≥ |ω(s)
ji |

for 1 ≤ i, j ≤ n, j �= i and 0 ≤ s ≤ n, and the H-S conditions for F̂ are equivalent to the
H-S conditions for F̂ T . Thus, Propositions 2 and 3 imply that Ω has both a uniformly row
and a uniformly column-dominant diagonal. Theorem 2 can then be applied to obtain:

Theorem 4. Let g(x) be a C1 vector field defined on a neighbourhood of Δ in Rn that
is inward-pointing on ∂Δ and which satisfies Assumption 1. Let Ω = −Dg(x) : Δ →
M+

n (R), and suppose that ωii(x) is a concave function of x ∈ Δ for 1 ≤ i ≤ n, and |ωij (x)|
is a convex function of x ∈ Δ for 1 ≤ i, j ≤ n, j �= i. Assume there is an m ∈ {0,1, . . . , n}
such that ω

(s)
ii ≥ ω

(m)
ii for 1 ≤ i ≤ n,0 ≤ s ≤ n, and |ω(m)

ij | ≥ |ω(s)
ij | for 1 ≤ i, j ≤ n, j �= i

and 0 ≤ s ≤ n. Suppose also that the H-S conditions (17) hold for the matrix F̂ = (f̂ij )

with entries f̂ii = ω
(m)
ii and f̂ij = −|ω(m)

ij | for j �= i. Then there is a positive diagonal ma-
trix Q such that is QDg(x) is negative definite on Δ. Hence, there is a unique equilibrium
x̄ ∈ intΔ of the system ẋ = g(x), and x̄ is globally asymptotically stable.

In the more general case in which r : {1,2, . . . , n} → {0,1,2, . . . , n} is not a con-
stant function, Theorem 3 can be applied to obtain Theorem 5 below. We state the result
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for row-diagonal dominance, but an analogous statement can be obtained for column-
diagonal dominance by transposition.

Theorem 5. Let g(x) be a C1 vector field defined on a neighbourhood of Δ in Rn that
is inward-pointing on ∂Δ and which satisfies Assumption 1. Let Ω = −Dg(x) : Δ →
M+

n (R), and suppose that ωii(x) is a concave function of x ∈ Δ for 1 ≤ i ≤ n, and
|ωij (x)| is a convex function of x ∈ Δ for 1 ≤ i, j ≤ n, j �= i. Assume there is a func-
tion r : {1,2, . . . , n} → {0,1,2, . . . , n} such that ω

(s)
ii ≥ ω

(r(i))
ii for 1 ≤ i ≤ n,0 ≤ s ≤ n,

and |ω(r(i))
ij | ≥ |ω(s)

ij | for 1 ≤ i, j ≤ n, j �= i and 0 ≤ s ≤ n. Suppose also that the H-S con-

ditions (17) hold for the matrix F̂ = (f̂ij ) with entries f̂ii = ω
(r(i))
ii and f̂ij = −|ω(r(i))

ij |
for j �= i. Then there is a unique equilibrium x̄ ∈ intΔ of the system ẋ = g(x), and x̄ is
globally asymptotically stable.

5. Applications to quadratic systems

In this section, we apply the preceding discussion to quadratic systems of the form (10).
To do this we require that Ω = −Dg take values in M+

n (R). From (10),

Dijg(x) = ∂gi(x)

∂xj

= A
j

i + 2
n∑

r=1

Γ
jr

i xr = A
j

i x0 +
n∑

r=1

(
A

j

i + 2Γ
jr

i

)
xr ,

and hence, comparing with (19),

ω
(0)
ij = −A

j

i , ω
(r)
ij = −(

A
j

i + 2Γ
jr

i

)
for 1 ≤ r ≤ n. (23)

To apply the theory of previous sections, we require the diagonal entries ω
(r)
ii to be positive

for 1 ≤ i ≤ n, 0 ≤ r ≤ n. We therefore make the following assumption.

Assumption 2. The coefficients Ai
i and Ai

i + 2Γ ir
i are negative for 1 ≤ i, r ≤ n.

It now follows from (23) that ωii(x) = ∑n

r=0 ω
(r)
ii xr > 0, and hence that Ω : Δ →

M+
n (R).
Suppose the quadratic system g(x) defined by (10) is inward pointing on ∂Δ and that

Assumptions 1 and 2 hold for g(x). Suppose also that there is a (constant) real, symmetric,
positive definite matrix Q such that QDg(x) is negative definite on Rn. From (19), this
implies that the quadratic form on Rn given by q(u, x) = u · QΩ(x)u is positive definite
for each x ∈ Δ. This is the case if and only if q(r)(u) = u · QΩ(r)u is positive definite
for 0 ≤ r ≤ n. Applying (19) and (23) together with Theorem 1 to this situation therefore
yields:

Theorem 6. Suppose that the vector field g(x) defined by (10) is inward-pointing on ∂Δ

and that Assumptions 1 and 2 hold. Let A = (A
j

i ) and Gr = (A
j

i + 2Γ
jr

i ) for 1 ≤ r ≤ n,
and suppose that there is a real, symmetric, positive definite n×n matrix Q such that QA

and QGr are negative definite on Rn for 1 ≤ r ≤ n. Then there is a unique equilibrium
x̄ ∈ intΔ of the system ẋ = g(x), and x̄ is globally asymptotically stable.
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Example 3 (2-species systems). For the 2-species system (11), assume that g(x1, x2) is
inward pointing on ∂Δ. The 2 × 2 matrices A,G1,G2 are

A =
(

A1
1 A2

1

A1
2 A2

2

)
, Gr =

(
A1

1 + 2Γ 1r
1 A2

1 + 2Γ 2r
1

A1
2 + 2Γ 1r

2 A2
2 + 2Γ 2r

2

)
(r = 1,2).

Suppose there is a positive diagonal matrix Q = diag{d1, d2} such that QA,QG1,QG2

are negative definite. This is the case if and only if the symmetric parts of these matrices
are negative definite: i.e., if and only if

σ(QA) =
(

d1A
1
1

1
2 (d1A

2
1 + d2A

1
2)

1
2 (d1A

2
1 + d2A

1
2) d2A

2
2

)
,

σ (QGr) =
(

d1(A
1
1 + 2Γ 1r

1 ) 1
2 {d1(A

2
1 +2Γ 2r

1 ) + d2(A
1
2 +2Γ 1r

2 )}
1
2 {d1(A

2
1 +2Γ 2r

1 ) + d2(A
1
2 +2Γ 1r

2 )} d2(A
2
2 + 2Γ 2r

2 )

)

are negative definite. Each of these symmetric matrices has negative eigenvalues (and
hence are negative definite) if and only if they have negative trace and positive determi-
nant. A symmetric 2 × 2 matrix can have both these properties only if its diagonal entries
are negative. We therefore obtain the following.

Proposition 4. For a 2-species ecosystem (11) satisfying the inward-pointing conditions
(Example 2) and Assumption 1, suppose there are positive constants d1 and d2 such that:

Ai
i,A

i
i + 2Γ ir

i < 0 for 1 ≤ i, r ≤ 2, (24a)

A1
1A

2
2 >

1

4d1d2

(
d1A

2
1 + d2A

1
2

)2
, (24b)

(
A1

1 + 2Γ 1r
1

)(
A2

2 + 2Γ 2r
2

)
>

1

4d1d2

{
d1

(
A2

1 + 2Γ 2r
1

) + d2

(
A1

2 + 2Γ 1r
2

)}2
,

for r = 1,2. (24c)

Then the conclusion of Theorem 6 holds.

To apply Proposition 4, observe that it suffices to assume that d1 + d2 = 1. If the left-
hand sides of (24b), (24c) are �(r) and the right-hand sides are h(r)(d1, d2),0 ≤ r ≤ 2, we
can define three sets:

D(r) = {
d = d1 ∈ (0,1) : d1 + d2 = 1 and �(r) > h(r)(d1, d2)

}
(0 ≤ r ≤ 2).

Then (24b), (24c) are satisfied simultaneously only if D̂ = ⋂2
r=0 D(r) is non-empty. This

situation is illustrated in Fig. 1.
Note that the left-hand sides �(r), 0 ≤ r ≤ 2, involve only the diagonal entries of the

matrices A,G1,G2, and the right-hand sides h(r)(d1, d2) involve only the off-diagonal en-
tries. Further, it is easy to show that D(r) → (0,1) as �(r) → ∞. It follows that (24b), (24c)
will always hold provided minr �(r) is sufficiently large. From (24a), for a fixed set of other
parameters, this is the case if Ai

i are sufficiently large and negative for i = 1,2. Thus, by
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Fig. 1 The curves h(r)(d1, d2) for d1 = d , d2 = 1 − d with 0 < d < 1 and r = 0 (solid black curve;
right-hand side of (24b)), r = 1 (long-dashed curve; right-hand side of (24c)) and r = 2 (dotted curve;
right-hand side of (24c)). The values �(r) on the vertical axis are the left-hand sides of inequalities
(24b), (24c). The heavy horizontal line associated with each of these values shows the (open) range of
values of d for which the corresponding inequality holds; i.e. the sets D(r) , 0 ≤ r ≤ 2. The intersection of
these regions is D̂, indicated by the heavy black line on the d-axis. This is the (non-empty) range of values
of d , for which the three inequalities (24b), (24c) hold simultaneously

boosting these negative, self-limiting terms sufficiently (while leaving other terms fixed),
the 2-species system can always be made globally asymptotically stable.

To apply Theorem 5 to quadratic systems, we consider explicit conditions under which
Ω has a uniformly row-dominant dynamic for (10). Clearly, ωii(x) = ∑n

r=0 ω
(r)
ii xr is

positive (by Assumption 2) and linear, and hence is a concave function of x. Similarly,
ωij (x) = ∑n

r=0 ω
(r)
ij xr is linear, and hence |ωij (x)| is a convex function of x for j �= i. This

shows that Ω satisfies the hypotheses of Proposition 2. We can therefore apply Proposi-
tion 3 to obtain explicit conditions (22) for quadratic systems. We distinguish two cases:
f

i
= fi(e0) and f

i
= fi(er ) for r ≥ 1. Using Assumption 2 and (22) we obtain the fol-

lowing.

Proposition 5. Under Assumption 2:

(i) Sufficient conditions that f
i
= fi(e0) for any d > 0 are:

Ai
i < 0, (25a)

Γ is
i ≤ 0 for 1 ≤ s ≤ n, (25b)

If Γ
js

i �= 0, then signA
j

i = − signΓ
js

i for j �= i, 1 ≤ s ≤ n, (25c)∣∣Aj

i

∣∣ ≥ ∣∣Γ js

i

∣∣ for j �= i,1 ≤ s ≤ n, (25d)

(ii) Necessary and sufficient conditions that f
i

= fi(er ) with 1 ≤ r ≤ n, for any
d > 0 are:

Γ ir
i ≥ 0, (26a)

Ai
i + 2Γ ir

i < 0, (26b)
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Γ is
i ≤ Γ ir

i for 1 ≤ s ≤ n, (26c)

If Γ
jr

i and A
j

i have opposite signs for j �= i, then |Aj

i | ≤ |Γ jr

i |, (26d)∣∣Aj

i + 2Γ
js

i

∣∣ ≤ ∣∣Aj

i + 2Γ
jr

i

∣∣ for j �= i,1 ≤ s ≤ n. (26e)

Proof: (i) Assumption 2 gives (25a), and (22a) for r = 0 gives (25b). Condition (22b)
gives |Aj

i | ≥ |Aj

i + 2Γ
js

i | for j �= i and 1 ≤ s ≤ n. If Γ
js

i �= 0, this can hold if and only if
A

j

i and Γ
js

i have opposite signs and |Aj

i | ≥ |Γ js

i |, which yields (25c), (25d).
(ii) Equation (26a) follows from (22a) for s = 0. Equation (26b) is Assumption 2 for r .

Equation (26c) follows from (22a) and Assumption 2 for s ≥ 1. Note that (26a) and (26b)
imply that Ai

i < 0, while (26b) and (26c) imply that Ai
i +2Γ is

i < 0 for all 1 ≤ s ≤ n. Thus,
(26a)–(26c) imply Assumption 2. Condition (22b) for s = 0 gives |Aj

i | ≤ |Aj

i + 2Γ
jr

i |.
This is always true if either A

j

i or Γ
jr

i is 0, or both have the same sign. If A
j

i and Γ
jr

i

have opposite signs, then this holds if and only if |Aj

i | ≤ |Γ jr

i |. Equation (26e) follows
from (22b) for s ≥ 1. �

6. Examples of quadratic systems

Example 4 (Explicit conditions for 2-species systems). Consider the 2-species system
(11). Assume that r(i) = 0 for i = 1,2, so that conditions (25) hold for both species. If
Γ 12

1 �= 0, for species-1, these conditions reduce to2:

A1
1 < 0, (27a)

Γ 11
1 ,Γ 12

1 ,Γ 22
1 ≤ 0, (27b)

A2
1 ≥ max

{−Γ 12
1 ,−Γ 22

1

}
. (27c)

Thus Γ rs
1 ≤ 0 for all r, s, and A2

1 is positive. In particular, these conditions imply that
species-1 has a net negative direct effect on its own growth rate through the term A1

1,
but species-2 has a net positive direct effect on species-1, through the term A2

1, but no
or negative effect through direct species–species interactions, through the terms Γ rs

1 ≤ 0.
Similar conditions apply for species-2.

Given these conditions, it remains to verify the single H-S condition det F̂ > 0:

det F̂ =
(

ω
(0)

11 −|ω(0)

12 |
−|ω(0)

21 | ω
(0)

22

)
=

(−A1
1 −A2

1

−A1
2 −A2

2

)
,

that is,

A1
1A

2
2 > A1

2A
2
1. (28)

2Condition (25b) implies that Γ 11
1 ,Γ 12

1 ≤ 0. If Γ 12
1 �= 0, then Γ 21

1 = Γ 12
1 < 0 and (25c) with i = s = 1

and j = 2 implies that signA2
1 = − signΓ 21

1 = +1. Hence, either Γ 22
1 = 0, or (25c) with i = 1 and

j = s = 2 implies that signΓ 22
1 = − signA2

1 = −1. That is, Γ 22
1 ≤ 0.
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The theory developed in previous sections implies that, subject to verification of the
inward-pointing condition (Example 2), the above set of conditions on the coefficients
of (11) is sufficient to ensure that there is a unique interior equilibrium that is globally
asymptotically stable.

Further discussion
In terms of the notation of (6), and assuming γ 00

i = 0, the system (11) is:

ẋ1 = a0
1x0 + a1

1x1 + a2
1x2 + 2γ 01

1 x0x1 + 2γ 02
1 x0x2 + γ 11

1 x2
1

+ 2γ 12
1 x1x2 + γ 22

1 x2
2 , (29a)

ẋ2 = a0
2x0 + a1

2x1 + a2
2x2 + 2γ 01

2 x0x1 + 2γ 02
2 x0x2 + γ 11

2 x2
1

+ 2γ 12
2 x1x2 + γ 22

2 x2
2 . (29b)

Note from (9a) that ci = a0
i , and hence to obtain the inward-pointing conditions (12a),

(12b), we require a0
i > 0 for i = 1,2. Thus, there is positive external recruitment to avail-

able substrate for each species.
From (9c), Γ

jk

i = γ
jk

i − (γ
j0
i + γ 0k

i ), which is non-positive by (25b). Thus,
γ

j0
i + γ 0k

i ≥ γ
jk

i . This gives the relations:

(i) 2γ 01
1 ≥ γ 11

1 , (ii) γ 01
1 + γ 02

1 ≥ γ 12
1 , (iii) 2γ 02

1 ≥ γ 22
1 , (30a)

(i) 2γ 01
2 ≥ γ 11

2 , (ii) γ 01
2 + γ 02

2 ≥ γ 12
2 , (iii) 2γ 02

2 ≥ γ 22
2 . (30b)

We also require Ai
i < 0, and from (9b) this implies:

(i) 2γ 01
1 + a1

1 < a0
1 , (ii) 2γ 02

2 + a2
2 < a0

2 . (31)

If we interpret ρi = −ai
i as the (positive) death rate of species i, then ai

i < 0. On the
other hand, λi = 2γ 0i

i can be interpreted as the growth rate of species i due to utilization
of the substrate if it is positive, or as a density-dependent inhibition of recruitment and/or
growth if it is negative (Section 2). In the latter case (λi ≤ 0), (31) always holds. In the
former case (λi > 0), (31) can be interpreted as:

Growth rate − death rate < recruitment rate. (32)

This always holds, for example, if the death rate is greater than the growth rate, in which
case the species cannot persist without external recruitment. We call systems satisfying
(32) essentially recruitment limited.

Finally, (9b), (9c) together with (27c) yields:

(i) a2
1 + γ 02

1 + γ 12
1 − γ 01

1 ≥ a0
1 , (ii) a2

1 + γ 22
1 ≥ a0

1 , (33a)

(i) a1
2 + γ 01

2 + γ 12
2 − γ 02

2 ≥ a0
2 , (ii) a1

2 + γ 11
2 ≥ a0

2 . (33b)
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Since a0
1 > 0, (33a) implies that there must be net positive effects of species-2 on

the growth rate of species-1, acting either directly through a2
1 or indirectly through pair-

wise interactions. In particular, if a2
1 = 0, then (30a)(iii) and (33a)(ii) imply that γ 02

1 and
γ 22

1 must be positive (in fact 2γ 02
1 ≥ γ 22

1 ≥ a0
1 > 0). That is, species-2 has the effect of

“preparing the ground” (rendering the resource environment more favourable) for the
growth of species-1. However, this does not preclude the possibility that γ 12

1 is nega-
tive (though from (33a)(i) this requires 2γ 02

1 > 2a0
1 + λ1); i.e. direct interactions between

the two species are detrimental to the growth rate of species-1. Analogous considerations
apply to the effects of species-1 on species-2.

Example 5 (Generalized Lotka–Volterra systems). Consider an n-species system of the
form

ẋi = a0
i x0 + ai

i xi + 2γ 0i
i x0xi +

n∑
j=1

γ
ij

i xixj . (34)

The coefficients may be interpreted as: a0
i > 0 is the (positive) recruitment rate of species i

onto available substrate (represented by x0) from the external environment; ρi = −ai
i > 0

is the mortality rate of species i;λi = 2γ 0i
i is the utilization rate by established species i

(represented by xi) of available substrate (represented by x0) when this is positive, and
is a density-dependent inhibition of recruitment and/or growth rate when it is negative.
Finally, γ

ij

i represents the effect (positive, negative or zero) on the growth rate of species
i resulting from direct interaction with species j . We refer to a system of the form (34) as a
generalized Lotka–Volterra (L-V) system. Note that, when x0 = 0, it reduces to a classical
L-V system of the form defined by Eq. (1). However, the inward-pointing condition that
we require implies that x0 cannot remain equal to zero.

In particular, when xi = 0, ẋi = a0
i x0, so that the species i population is re-established

through recruitment from the external environment onto available substrate (unless there
is no available substrate; i.e. unless x0 = 0). Species i is then in competition with every
other species to recruit onto this substrate. If there is no available substrate (i.e. x0 = 0),
then x1 + x2 + · · · + xn = 1, and ẋ0 = −ẋ1 − ẋ2 − · · · − ẋn, which yields:

ẋ0 =
n∑

i=1

{
−ai

i −
n∑

j=1

γ
ij

i xj

}
xi.

To obtain the inward-pointing condition, we require this to be positive (so that substrate
becomes instantaneously available); i.e.

n∑
j=1

γ
ij

i xj < −ai
i whenever

n∑
j=1

xj = 1.

Recalling that ρi = −ai
i > 0, this condition holds if and only if

γ
ij

i < ρi for all 1 ≤ i, j ≤ n. (35)
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From (9b), (9c), with γ 00
i = 0, we have:

Ai
i = λi − ρi − a0

i , (36a)

A
j

i = −a0
i for j �= i, (36b)

Γ ii
i = γ ii

i − λi, (36c)

Γ
ij

i = γ
ij

i − 1

2
λi for j �= i, (36d)

Γ
jk

i = 0 for i /∈ {j, k}. (36e)

The Assumption 2 conditions Ai
i < 0 again imply that growth rate minus death rate is

less than external recruitment rate, as in (32): i.e.

λi − ρi < a0
i . (37)

It is convenient to analyse this system in the case in which Ω = −Dg has a uniformly
column-dominant diagonal. As discussed in Section 4, explicit conditions implying the
existence and global asymptotic stability of a unique equilibrium are determined by a
function r : {1, . . . , n} → {0,1, . . . , n}. We show in Appendix A that the explicit condi-
tions (25) arising from the choice r(i) = 0 are only possible for generalized L-V systems
if Γ

ij

i = 0 for all j �= i. In this case, the set of indices i for which r(i) = 0 defines a
semi-neutral subsystem, of the form (13), of the generalized L-V system.

Here we consider only functions r : {1, . . . , n} → {1, . . . , n}, with associated explicit
conditions of the form (26) (transposed for column dominance). The form of these con-
ditions for a general function r is complicated (see Appendix A). As an illustration, we
consider only the simple case in which r is the identity function r(i) = i. In this case,
conditions (26) are as follows (see Appendix A)3:

(26a): γ ii
i ≥ λi, (38a)

(26b): 2γ ii
i < λi + ρi + a0

i , (38b)

(26c): λi ≤ 2
(
γ ii

i − γ
ij

i

)
, j �= i, (38c)

(26e): λj ≤ 2γ
ij

j ≤ 2a0
j + λj , j �= i. (38d)

Clearly, (38c), (38d) imply that 0 ≤ γ
ij

j ≤ γ
jj

j for j �= i if λj ≥ 0. Hence, the system (34)

is cooperative in this case. However, if λj < 0, the signs of γ
ij

j and γ
jj

j are undetermined
by these conditions.

It now follows from (20) and (21) that fii = ω
(i)
ii and fij = |ω(i)

j i | for j �= i. Thus,
fii = −Ai

i − 2Γ ii
i = a0

i + λi + ρi − 2γ ii
i and fij = |Ai

j + 2Γ ii
j | = |Ai

j | = a0
j by (36b),

(36e). Thus, the derived matrix F̂ = (f̂ij ) has entries f̂ii = fii , and f̂ij = −fij = −a0
j .

We conclude from Theorem 5 that, if the H-S conditions (17) hold for F̂ , the system (34)
has a unique interior equilibrium x̄ that is globally asymptotically stable. That is, we
require

3In Appendix A we show that condition (26d) always holds for generalized L-V systems.



1992 Seymour et al.

F̂(k) = det

⎛
⎜⎜⎜⎝

a0
1 + λ1 + ρ1 − 2γ 11

1 −a0
2 · · · −a0

k

−a0
1 a0

2 + λ2 + ρ2 − 2γ 22
2 · · · −a0

k
...

...
...

−a0
1 −a0

2 · · · a0
k + λk + ρk − 2γ kk

k

⎞
⎟⎟⎟⎠

> 0,

for 1 ≤ k ≤ n. This follows from (38b) when k = 1. To evaluate F̂(k) for k > 1, write

Ri = 1 + λi + ρi − 2γ ii
i

a0
i

. (39)

Condition (38b) implies that Ri > 0. Then F̂(k) can be written as

F̂(k) =
(

k∏
i=1

a0
i

)
D{R1, . . . ,Rk},

where

D{R1, . . . ,Rk} = det

⎛
⎜⎜⎜⎜⎝

R1 −1 · · · −1

−1 R2

...
...

...
. . . −1

−1 −1 · · · Rk

⎞
⎟⎟⎟⎟⎠ . (40)

Thus F̂(k) > 0 if and only if D{R1, . . . ,Rk} > 0.
For example,

D{R1,R2} = (1 + R1)(1 + R2) − (1 + R1) − (1 + R2) = R1R2 − 1,

and

D{R1,R2,R3}
= (1 + R1)(1 + R2)(1 + R3) − (1 + R1)(1 + R2) − (1 + R2)(1 + R3)

− (1 + R1)(1 + R3)

= R1R2R3 − R1 − R2 − R3 − 2.

These cases are illustrated in Fig. 2.
More generally, in the matrix in (40), subtract the (i − 1)-th row from the ith row for

1 < i ≤ k to obtain

D{R1, . . . ,Rk} = det

⎛
⎜⎜⎜⎜⎜⎜⎝

R1 −1 · · · −1 −1
−(1 + R1) 1 + R2 · · · 0 0

...
...

. . .
...

...

0 0
. . . 1 + Rk−1 0

0 0 · · · −(1 + Rk−1) 1 + Rk

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 2 The darker surface is D{R1,R2,R3} = R1R2R3 − R1 − R2 − R3 − 2 = 0 in the positive
quadrant of (R1,R2,R3)-space. The lighter surface is D{R1,R2} = R1R2 − 1 = 0. The condition
D{R1,R2,R3} > 0 holds in the region lying above the dark grey surface. The condition D{R1,R2} > 0
holds in the region above the light grey surface in the plane R3 = 0

Now expand the determinant by the kth column to obtain

D{R1, . . . ,Rk} = (1 + Rk)D{R1, . . . ,Rk−1} −
k−1∏
i=1

(1 + Ri). (41)

This shows that D{R1, . . . ,Rk} > 0 implies D{R1, . . . ,Rk−1} > 0. Hence, the H-S condi-
tions reduce to the single condition D{R1, . . . ,Rn} > 0.

Clearly, D{R1} = R1, and by induction on n ≥ 2 using (41), we obtain:

D{R1, . . . ,Rn} =
n∏

i=1

(1 + Ri) −
n∑

i=1

n∏
j=1
j �=i

(1 + Rj) for n ≥ 2. (42)

It follows from (42) that the condition D{R1, . . . ,Rn} > 0 holds if and only if

n∑
i=1

1

1 + Ri

< 1. (43)

This result shows the existence of a large class of globally asymptotically stable
ecosystems of generalized Lotka–Volterra type. However, it also shows that, the more
species there are in the system (i.e. the larger n is), the larger, on average, the coefficients
Ri must be to maintain the stability condition (43).
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7. Discussion

In this paper we have introduced and presented a preliminary analysis of a class of
‘resource-bounded’ model ecosystems, designed to model a fundamental aspect of inter-
specific competition: exploitation competition (Miller, 1967). This refers to competition
arising from the joint exploitation by several species of a common limiting resource pool,
which we refer to as the underlying substrate. This is in contrast to most analyses of clas-
sical Lotka–Volterra (L-V) systems, defined by Eq. (1), which focus on direct species-to-
species interactions, whether competitive or otherwise; i.e. on properties of the commu-
nity matrix (e.g. MacArthur, 1970; May, 1973; Shigesada et al. 1984, 1989; reviewed in
Hofbauer and Sigmund, 1998, Chap. 15).

The models we consider admit several interpretations—hence our use of the neutral
term ‘substrate’ for the underlying resource. For example, the common resource could
be space into, or over which sessile organisms can grow, such as assemblages of terres-
trial plants, or marine benthic organisms such as corals (with their associated fish stocks),
which recruit from planktonic larval pools that may be supplied from many non-local
sources. A particular focus of recent research interest is the evolutionary ecology of mi-
crobial communities, whether organized as biofilms or host-adapted ‘commensal’ com-
munities. Such communities are thought to exhibit a variety of complex interactions, both
direct and indirect, many mediated by signalling molecules. A feature of these commu-
nities is their exposure to fluxes from the external environment of the host, their adapta-
tion to particular micro-environments within the host, and their extreme resilience in the
face of disturbance (Czárán et al., 2002; Horner-Devine et al., 2003; Rainey et al., 2005;
Ley et al., 2006; IWA Task Group, 2006; Dethlefsen et al., 2007). Alternatively, the sub-
strate could be interpreted in the sense of (bio-)chemistry, with the ‘species’ being vari-
eties of molecule that react both with the substrate and each other to form a biochemical
reaction system (Érdi and Tóth, 1989).

The results we have obtained concern conditions under which these model ecosystems
admit a unique (internal) equilibrium that is globally asymptotically stable. However, the
conditions we have found are rather general in character, and we have not focused here
on applications to specific example systems that have particular biological characteristics.
Nevertheless, an aspect of these globally stable systems we have emphasized is the impor-
tant role of exogenous recruitment of constituent species onto substrate. Such recruitment
guarantees that none of the constituent species can go extinct (though their equilibrium
representation may be small), and, technically, is necessary for the associated vector field
to be inward pointing on the boundary of state space (a simplex—see Section 2.2). This
condition allows us to apply the powerful index theory and the Poincaré–Hopf Theorem
(see Section 3.1).

The technical apparatus we have assembled allows us to construct suitable global Lya-
punov functions. In particular, the starkest form of exploitation competition arises in what
we refer to as ‘neutral systems’ (Section 3.2). These are systems in which the constituent
species react only with the substrate and not directly with each other. If we also allow
self-interference within each species (intra-specific competition), we call these systems
‘semi-neutral’. By constructing an explicit Lyapunov function, we show that such sys-
tems are always globally stable whenever there is positive exogenous recruitment of each
species. However, as exogenous recruitment of a species tends to zero, the species will
become extinct through competitive exclusion. Versions of such neutral systems, which
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incorporate stochastic exogenous recruitment (and by implication, elimination) have been
proposed as models that better account for the characteristics of real ecological communi-
ties than do traditional interaction-competition models (Hubbell, 2001). However, the role
of interaction competition remains unresolved (e.g. Tilman, 2004, who also emphasizes
the key role of exogenous recruitment). Our stability result for deterministic versions of
these neutral and semi-neutral models is clearly relevant to this debate, in that it shows
how stable ecosystems can arise from assemblages of species with only intrinsic proper-
ties.

For more general systems, which admit direct inter-species interactions, we generalize
the result of Ikeda and Siljak (1980) for classical L-V systems, that if the community ma-
trix has a dominant diagonal, then it is dissipative, and hence the system is globally stable
when it admits a positive equilibrium point. Our generalization requires consideration of
an extended form of diagonal dominance, which we call ‘uniform diagonal dominance’.
This property is used to construct suitable global Lyapunov functions (Theorems 2, 3).
We consider in detail explicit conditions under which uniform diagonal dominance holds
(Propositions 3 and 5) and unpack the implications for global stability (Theorems 4 and 5).
In particular, these conditions are applied to quadratic systems (Section 6).

The explicit conditions for an n-species system derived in Proposition 5 are specified
by a set-function r : {1,2, . . . , n} → {0,1,2, . . . , n}. Each such specification determines a
class of ecosystem models, and for each system in this class, an associated n×n matrix F̂ .
The system is globally stable provided F̂ is an M-matrix; i.e. the Hawkins–Simon condi-
tions (17) are satisfied. The examples of quadratic systems we consider in Section 6 are de-
fined by two simple choices of a set-function r : two-species systems with r(1) = r(2) = 0
(Example 4), and n-species generalized L-V systems with r(i) = i (Example 5), though
for the latter we detail the constraints arising from more general set-functions in Appen-
dix A. In particular, the set of species i for which r(i) = 0 defines (with suitably modified
parameters) a semi-neutral subsystem of the generalized L-V system. Thus, when r is the
identity function, the generalized L-V system has no such semi-neutral subsystems. For
species in such a subsystem, competition is purely exploitative, via the substrate. How-
ever, species in this subsystem may have direct interactive effects on species outside it.

In addition to the positive exogenous recruitment rates, a0
i , other key parameters that

feature in our analyses are the net species death (or emigration) rates ρi , and the species–
substrate interaction coefficients, λi = 2γ i0

i . We consider two possible interpretations for
the latter:

a. If λi > 0, it can be interpreted as the utilization rate of substrate by established repre-
sentatives of species i.

b. If λi < 0, it can be interpreted as a density-dependent inhibition of recruitment and/or
substrate-utilization by established species i.

For example, in case a, if the substrate is space over which sessile organisms grow,
then λi is just the lateral growth rate of species i. In case b, residents could inhibit each
other’s growth, or could render establishment of new recruits more difficult through res-
ident advantage in gaining necessary resources. These interpretations have implications
for the examples we consider in Section 6. Thus, for both Examples 4 and 5, in interpre-
tation a (λi > 0), the explicit conditions imply that the ecosystem must be ‘essentially
recruitment limited’, in the sense that growth rate − death rate < recruitment rate. How-
ever, in interpretation b, this condition is automatically satisfied, and so does not constrain
the system.
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These interpretations also have consequences for how the explicit conditions constrain
the direct species-to-species interaction coefficients, γ

jk

i (the effect on the growth rate of
species i due to direct interactions between species j and species k). In particular, for the
generalized L-V systems considered in Example 5, the coefficients γ

ij

i cannot be negative
under interpretation a, so that these systems are essentially cooperative. However, under
interpretation b, there are no such limitations on the sign of these coefficients. Of course,
mixed interpretations are possible, with λi = λa

i − λb
i , where λa

i is a substrate utilization
rate and λb

i is a (positive) density-dependent inhibition rate. Which of these effects domi-
nates, determines the sign of λi .

There is still much work to be done in understanding the systems considered in this
paper. In particular, it will be instructive to map out in detail the ecological implications
of the various possible explicit conditions arising from Proposition 5. Further, stochastic
effects, particularly as they affect exogenous recruitment, are clearly fundamental, though
our stability results imply that, once established, many multi-species communities will be
extremely resilient in the face of disturbances. However, the main message of this paper
is that there is a large and rich class of very robust (i.e. globally asymptotically stable)
resource-bounded model ecosystems, based on exploitation competition of an underly-
ing limiting resource, which should find application in modelling a variety of real-world
domains.
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Appendix A

A.1 Semi-neutral systems

Consider a semi-neutral system of the form (13) described in Section 3.2. Here we prove
the assertion that L(x) = 1

2 g(x) · Q(x)g(x), with Q(x) = diag{d1(x1), . . . , dn(xn)} and
di(xi) = 1/(a0

i + λixi) given by (14), defines a global Lyapunov function for the system
(13). From (13) and (14):

∂ẋi

∂xj

= −(
a0

i + λixi

) − δij (ρi − λix0 + 2κixi) = − 1

di(xi)
− δij ci(x),

where ci(x) = ρi − λix0 + 2κixi . Note that ci(x) > 0, since we are assuming that ρi > λi

and κi ≥ 0. It follows that

−Q(x)Dg(x) = E + diag
{
d1(x1)c1(x), . . . , dn(xn)cn(x)

}
,
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where E is the constant matrix all of whose entries are 1. Clearly, the diagonal matrix
is positive definite. Also, for any u ∈ Rn, we have Eu = (e · u)e, where e ∈ Rn is the
vector all of whose entries are 1. Thus u · Eu = (e · u)2 ≥ 0. It follows that Q(x)Dg(x)

is negative definite for each x ∈ Δ, and hence that the eigenvalues of Dg(x) all have
negative real parts. The Index Theorem (Section 3.1) then guarantees the existence of a
unique equilibrium x̄ ∈ intΔ.

Now consider Q̇(x) = diag{ḋ1(x1), . . . , ḋn(xn)}. We have:

ḋi (xi) = − λiẋi

(a0
i + λixi)2

= −di(x)
λi ẋi

a0
i + λixi

,

and from (13):

λiẋi

a0
i + λixi

= λix0 −
(

λixi

a0
i + λixi

)
(ρi + κixi)

= λix0 −
(

1 − a0
i

a0
i + λixi

)
(ρi + κixi)

=
(

a0
i

a0
i + λixi

)
(ρi + κixi) + κixi − (ρi − λix0 + 2κixi)

= di(xi)a
0
i (ρi + κixi) + κixi − ci(x).

Thus:

ḋi (xi) = di(xi)ci(x) − di(xi)hi(x),

where hi(x) = κixi + di(xi)a
0
i (ρi + κixi), which is clearly positive. Hence:

Q̇(x) = diag
{
d1(x1)c1(x), . . . , dn(xn)cn(x)

}
− diag

{
d1(x1)h1(x), . . . , dn(xn)hn(x)

}
.

We now obtain:

−L̇(x) = g(x) ·
[
−Q(x)Dg(x) − 1

2
Q̇(x)

]
g(x)

= g(x) ·
[
E + diag

{
d1(x1)c1(x), . . . , dn(xn)cn(x)

}

− 1

2
diag

{
d1(x1)c1(x), . . . , dn(xn)cn(x)

}
+ 1

2
diag

{
d1(x1)h1(x), . . . , dn(xn)hn(x)

}]
g(x)

= g(x) ·
[
E + 1

2
diag

{
d1(x1)c1(x), . . . , dn(xn)cn(x)

}

+ 1

2
diag

{
d1(x1)h1(x), . . . , dn(xn)hn(x)

}]
g(x).
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Clearly the diagonal matrices in this expression are positive definite. Also, as noted above,
u ·Eu = (e ·u)2 ≥ 0. It follows that L̇(x) < 0 for all x �= x̄, and hence that L(x) is a global
Lyapunov function for this system.

In fact, using the formulae (15), we can derive the unique equilibrium for semi-neutral
systems explicitly. Thus, adding the formulae (15) for 1 ≤ i ≤ n and using (5) gives the
relation H(x̄0) = 1, where

H(x0) = x0 +
n∑

i=1

1

2κi

{−(ρi − λix0) +
√

(ρi − λix0)2 + 4κia
0
i x0

}
.

Clearly H(0) = 0 and H(1) > 1. Further, it is easily shown that H(x0) is a monoton-
ically increasing function of x0, and hence that there is a unique x̄0 ∈ (0,1) satisfying
H(x̄0) = 1. This provides an elementary proof of the uniqueness of equilibrium for semi-
neutral systems.

A.2 Proof of Theorem 2

We adapt an argument originally due to Araki and Kondo (1972). Let c and d be pos-
itive vectors such that Ω̂d > 0 and Ω̂T c > 0 (for brevity, the argument x is tem-
porarily suppressed). Let C = diag{c1, . . . , cn},D = diag{d1, . . . , dn} and Q = CD−1 =
diag{q1, . . . , qn}, where qi = ci/di . Note that Qd = c. Thus, (QΩ̂ + Ω̂T Q)d = QΩ̂d +
Ω̂T c > 0, since Q is a positive diagonal matrix and hence Qx > 0 for any positive vec-
tor x.

Now let Π = QΩ + ΩT Q. Then πij = qiωij + qjωji . Thus, π̂ii = |πii | = 2qi |ωii | =
(QΩ̂ + Ω̂T Q)ii , and for j �= i, π̂ij = −|πij | ≥ −qi |ωij | − qj |ωji | = qiω̂ij + qj ω̂ji =
(QΩ̂ + Ω̂T Q)ij . It follows that

(Π̂d)i =
∑

j

π̂ij dj ≥
∑

j

(
QΩ̂ + Ω̂T Q

)
ij
dj = [(

QΩ̂ + Ω̂T Q
)
d
]
i
> 0,

for each i, since (QΩ̂ + Ω̂T Q)d > 0. Reinstating the argument x, this shows that
Π̂(x)d > 0 for all x ∈ Δ and hence that Π(x) has a uniformly row-dominant diago-
nal. Since Π(x) is symmetric and has positive diagonal entries, it is positive definite by
Proposition 1. That is, QΩ(x) is positive definite for all x ∈ Δ. The result now follows
from Theorem 1.

A.3 Proof of Theorem 3

By Assumption 2, Ω(x)has positive diagonal entries. Thus, if Ω(x) has a uniformly dom-
inant diagonal (either row or column), then, by Proposition 1, the eigenvalues of Ω(x) all
have positive real parts. Since Dg(x) = −Ω(x), the eigenvalues of Dg(x) all have nega-
tive real parts, and hence that sign detDg(x) = (−1)n for all x ∈ Δ. By the Index Theorem
(Section 3.1), this implies that ẋ = g(x) has exactly one equilibrium x̄ ∈ intΔ.

Let v ∈ Rn be a fixed vector, and suppose x ∈ Δ with x �= x̄. Since Δ is convex,
θx + (1 − θ)x̄ ∈ Δ for 0 ≤ θ ≤ 1. Define a scalar function ϕv : [0,1] → R by ϕv(θ) =
v · g(θx + (1 − θ)x̄). Then

ϕ′
v(θ) = v · Dg

(
θx + (1 − θ)x̄

)
(x − x̄).
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By the Mean Value Theorem, there is a θ ∈ (0,1)such that ϕv(1)−ϕv(0) = ϕ′
v(θ). That is,

v · (g(x) − g(x̄)
) = v · Dg

(
θx + (1 − θ)x̄

)
(x − x̄). (A.1)

Now define a function

Lv(x) = v · (x − x̄). (A.2)

Then, since ẋ = g(x), it follows from (A.1) that

L̇v(x) = v · g(x) = v · (g(x) − g(x̄)
) = v · Dg(x̃)(x − x̄), (A.3)

where x̃ = θx + (1 − θ)x̄.
We consider two cases.

Case 1: First suppose that Ω = −Dg has a uniformly column-dominant diagonal.
Take v to be the vector defined by vi = di sign(xi − x̄i ). Then from (A.2), Lv(x) =∑n

i=1 di |xi − x̄i |. Clearly, Lv(x) ≥ 0 with equality if and only if x = x̄. Also, from (A.3):

L̇v(x) = −v · Ω(x̃)(x − x̄) = −
∑
i,j

viωij (x̃)(xj − x̄j )

= −
∑
i,j

di sign(xi − x̄i )ωij (x̃)(xj − x̄j )

= −
∑
i,j

dj sign(xj − x̄j )ωji(x̃)(xi − x̄i ) (interchanging i and j )

= −
n∑

i=1

(xi − x̄i )

{
diωii(x̃) sign(xi − x̄i ) +

∑
j �=i

djωji(x̃) sign(xj − x̄j )

}

= −
n∑

i=1

∣∣(xi − x̄i )
∣∣{diωii(x̃) + sign(xi − x̄i )

∑
j �=i

djωji(x̃) sign(xj − x̄j )

}

≤ −
n∑

i=1

∣∣(xi − x̄i )
∣∣diωii(x̃) +

n∑
i=1

∣∣(xi − x̄i )
∣∣∑

j �=i

dj

∣∣ωji(x̃)
∣∣

= −
n∑

i=1

∣∣(xi − x̄i )
∣∣{diωii(x̃) −

∑
j �=i

dj

∣∣ωji(x̃)
∣∣} < 0,

for x �= x̄, since Ω has a uniformly column-dominant diagonal. This shows that Lv(x) is
a global Lyapunov function on Δ, and hence that x̄ is globally asymptotically stable.

Case 2: Now suppose that Ω = −Dg has a uniformly row-dominant diagonal. Let i∗
be an index for which

max
i

{ |xi − x̄i |
di

}
= |xi∗ − x̄i∗ |

di∗
,
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and in (A.2) take vi = 0 for i �= i∗ and vi∗ = sign(xi∗ − x̄i∗)/di∗ . Then,

Lv(x) = |xi∗ − x̄i∗ |
di∗

.

Clearly, Lv(x) ≥ 0 with equality if and only if x = x̄. Also, from (A.3):

L̇v(x) = − 1

di∗

∑
j

sign(xi∗ − x̄i∗)ωi∗j (x̃)(xj − x̄j )

= − 1

di∗

{
|xi∗ − x̄i∗ |ωi∗i∗(x̃) + sign(xi∗ − x̄i∗)

∑
j �=i∗

ωi∗j (x̃)(xj − x̄j )

}

≤ − 1

di∗

{
Lv(x)di∗ωi∗i∗(x̃) −

∑
j �=i∗

dj

∣∣ωi∗j (x̃)
∣∣ |xj − x̄j |

dj

}

≤ − 1

di∗
Lv(x)

{
di∗ωi∗i∗(x̃) −

∑
j �=i∗

dj

∣∣ωi∗j (x̃)
∣∣} < 0

for x �= x̄, since Ω has a uniformly row-dominant diagonal. This shows that Lv(x) is a
global Lyapunov function on Δ, and hence that x̄ is globally asymptotically stable.

A.4 Generalized L-V systems

Consider a function r : {1, . . . , n} → {0,1, . . . , n} defining explicit conditions for a gen-
eralized L-V system of the form (34), as discussed in Section 6.

First consider indices i for which r(i) = 0. If such an i exists, then the correspond-
ing explicit conditions are (25). For s = j �= i, (25b) and (36d) imply that Γ

ji

j = γ
ji

j −
1
2λj ≤ 0. That is, 2γ

ji

j ≤ λj . On the other hand, if Γ
ji

j �= 0, then (25c) and (36b) with

s = i �= j imply that signΓ
ij

j = − signAi
j = +1, and hence 2γ

ji

j > λj . This is a contra-

diction. The only other possibility is Γ
ji

j = 0 for all i �= j . That is, 2γ
ji

j = λj .

If i is an index for which r(i) = 0, then substituting γ
ij

i = 1
2λi forj �= i and using∑

j �=i xj = 1 − x0 − xi , shows that Eq. (34) reduces to the form:

ẋi = a0
i x0 −

(
ρi − 1

2
λi

)
xi + 1

2
λix0xi −

(
1

2
λi − γ ii

i

)
x2

i ,

where ρi = −ai
i and λi = 2γ i0

i . This has the form of a semi-neutral system (13):

ẋi = a0
i x0 − ρ̃ixi + λ̃ix0xi − κ̃ix

2
i , (A.4)

where ρ̃i = ρi − 1
2λi, λ̃i = 1

2 λi and κ̃i = 1
2λi − γ ii

i . Note that (35) implies that ρi > γ
ij

i =
1
2λi for any j �= i, and hence ρ̃i > 0. Also, (25b) implies that Γ ii

i ≤ 0, and hence, from
(36c), λi − γ ii

i ≥ 0. This gives λ̃i + κ̃i ≥ 0. Note also that (25a) and (36a) imply that
λi − ρi < a0

i , and hence that λ̃i − ρ̃i < a0
i . That is, the derived system (A.4) is essentially

recruitment limited in the sense of (32).
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We have shown that the set of indices i for which r(i) = 0 and the explicit conditions
(25) hold, determines a semi-neutral subsystem of the generalized L-V system.

Now consider indices i for which r(i) �= 0. The relevant explicit conditions are (26).
We describe these conditions as they apply to generalized L-V systems below.

Condition (26a): Γ
ir(i)
i ≥ 0.

If r(i) = i, (36c) ⇒ γ ii
i ≥ λi. (A.5)

If r(i) �= i, (36d) ⇒ γ
ir(i)
i ≥ 1

2
λi. (A.6)

Condition (26b): Ai
i + 2Γ

ir(i)
i < 0.

If r(i) = i, (36a), (36c) ⇒ 2γ ii
i < λi + ρi + a0

i . (A.7)

If r(i) �= i, (36a), (36d) ⇒ 2γ
ir(i)
i < ρi + a0

i . (A.8)

Condition (26c): Γ is
i ≤ Γ

ir(i)
i for 1 ≤ s ≤ n.

If s = r(i), the condition holds trivially.
If s = i �= r(i), then the condition is Γ ii

i ≤ Γ
ir(i)
i . This reduces to γ ii

i − λi ≤ γ
ir(i)
i −

1
2λi , which gives:

2
(
γ ii

i − γ
ir(i)
i

) ≤ λi, r(i) �= i. (A.9)

If s = j �= i, r(i), the condition is Γ
ij

i ≤ Γ
ir(i)
i . That is, γ

ij

i − 1
2λi ≤ γ ii

i − λi if r(i) = i,

and γ
ij

i − 1
2 λi ≤ γ

ir(i)
i − 1

2λi if r(i) �= i. Thus:

λi ≤ 2
(
γ ii

i − γ
ij

i

)
, r(i) = i �= j, (A.10)

γ
ij

i ≤ γ
ir(i)
i , r(i) �= i �= j �= r(i). (A.11)

Condition (26e): |Ai
j + 2Γ is

j | ≤ |Ai
j + 2Γ

ir(i)
j | for j �= i, s ≥ 1.

If j �= i, r(i) this reduces to |Ai
j + 2Γ is

j | ≤ |Ai
j | by (36e). If s �= j then Γ is

j = 0
again by (36e), and the condition holds trivially. If s = j , the condition is: |−a0

j +
2γ

ij

j − λj | ≤ a0
j . This holds if and only if:

λj ≤ 2γ
ij

j ≤ λj + 2a0
j , j �= i, r(i). (A.12)

If j = r(i) �= i, then (26e) reduces to |Ai
r(i) + 2Γ is

r(i)| ≤ |Ai
r(i) + 2Γ

ir(i)

r(i) |. If s = r(i), this

holds trivially. If s �= r(i), the condition reduces to |Ai
r(i)| ≤ |Ai

r(i) + 2Γ
ir(i)

r(i) | by (36e).

That is, a0
r(i) ≤ |−a0

r(i) + 2γ
ir(i)

r(i) − λr(i)|, which gives

Either: 2γ
r(i)i

r(i) ≤ λr(i), (A.13)

Or: 2γ
r(i)i

r(i) ≥ λr(i) + 2a0
r(i). (A.14)
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Condition (26d): If Γ
ir(i)
j and Ai

j have opposite signs for j �= i, then |Ai
j | ≤ |Γ ir(i)

j |.
Sign Ai

j = −1 by (36b), and so this condition is non-empty only if Γ
ir(i)
j > 0.

If j �= i, r(i), then Γ
ir(i)
j = 0 and the condition is empty.

If j = r(i) �= i, then either 2Γ
ir(i)
j = 2Γ

ij

j = 2γ
ij

j − λj ≤ 0 if (A.13) holds, in which

case the condition is empty, or 2Γ
ir(i)
j = 2Γ

ij

j = 2γ
ij

j − λj ≥ 2a0
j > 0 if (A.14) holds, in

which case the condition holds trivially since |Ai
j | = a0

j .
Hence condition (26d) always holds for generalized L-V systems.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Abrams, P.A., 1987. Alternative models of character displacement and niche shift. 2. Displacement when
there is competition for a single resource. Am. Nat. 130, 271–282.

Araki, M., Kondo, B., 1972. Stability and transient behaviour of composite nonlinear systems. IEEE Trans.
Automat. Control 17, 537–541.

Begon, M., Harper, J.L., Townsend, C.R., 1996. Ecology: Individuals, Populations and Communities.
Blackwell Scientific, Oxford.

Bruno, J.F., Stachowicz, J.J., Bertness, M.D., 2003. Inclusion of facilitation into ecological theory. Trends
Ecol. Evol. 18, 119–125.

Case, T.J., Casten, R.G., 1979. Global stability and multiple domains of attraction in ecological systems.
Am. Nat. 113, 705–714.

Czárán, T.L., Hoekstra, R.F., Pagie, L., 2002. Chemical warfare between microbes promotes biodiversity.
Proc. Natl. Acad. Soc. USA 99, 786–790.

Day, T., Young, K.A., 2004. Competitive and facilitative evolutionary diversification. BioScience 54, 101–
109.

Dethlefsen, L., McFall-Ngai, M., Relman, D.A., 2007. An ecological and evolutionary perspective on
human–microbe mutualism and disease. Nature 449, 811–818.

Elton, C., 1958. The Ecology of Invasion by Animals and Plants. Methuen, London.
Érdi, P., Tóth, J., 1989. Mathematical Models of Chemical Reactions. Nonlinear Science: Theory and

Applications. Manchester University Press, Manchester.
Gilpin, M.E., 1975. Stability of feasible predator–prey systems. Nature 254, 137–139.
Goh, B.S., Jennings, L.S., 1977. Feasibility and stability in randomly assembled Lotka–Volterra models.

Ecol. Mod. 3, 63–71.
Harrison, G.W., 1979. Global stability of food chains. Am. Nat. 114, 455–457.
Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University

Press, Cambridge.
Horner-Devine, M.C., Carney, K.M., Bohannan, B.J.M., 2003. An ecological perspective on bacterial bio-

diversity. Proc. R. Soc. Lond. B 271, 113–122.
Hubbell, S.P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Monographs in Popu-

lation Biology. Princeton University Press, Princeton.
Ikeda, M., Siljak, D.D., 1980. Lotka–Volterra equations: decomposition, stability and structure. J. Math.

Biol. 9, 65–83.
IWA Task Group on Biofilm Modeling, 2006. Mathematical Modeling of Biofilms, Scientific and Technical

Report No. 18, IWA Publishing.
Kondoh, M., 2003. Foraging adaptation and the relationship between food—web complexity and stability.

Science 299, 1388–1391.
Ley, R.E., Petersen, D.A., Gordon, J.I., 2006. Ecological and evolutionary forces shaping microbial diver-

sity in the human intestine. Cell 124, 837–848.
Logofet, D.O., 1993. Matrices and Graphs: Stability Problems in Mathematical Ecology. CRC Press, Boca

Raton.



Conditions for Global Dynamic Stability of a Class 2003

Loreau, M., Naeem, S., Inchausti, P., 2002. Biodiversity and Ecosystem Functioning. Oxford University
Press, Oxford.

MacArthur, R.H., 1955. Fluctuations of animal populations, and a measure of community stability. Ecol-
ogy 36, 522–526.

MacArthur, R.H., Levins, R., 1967. The limiting similarity, convergence, and divergence of coexisting
species. Am. Nat. 101, 377–385.

MacArthur, R.H., 1970. Species packing and competitive equilibria for many species. Theor. Popul. Biol.
1, 1–11.

May, R.M., 1972. Will a large complex ecosystem be stable? Nature 238, 413–414.
May, R.M., 1973. Stability and Complexity in Model Ecosystems. Monographs in Population Biology,

vol. 6. Princeton University Press, Princeton.
Miller, R.S., 1967. Pattern and process in competition. Adv. Ecol. Res 4, 1–74.
Milnor, J.W., 1965. Topology from the Differentiable Viewpoint. University of Virginia Press, Char-

lottesville.
Rainey, P.B., Brockhurst, M.A., Buckling, A., Hodgson, D.J., Kassen, R., 2005. The use of model

Pseudomonas fluorescens populations to study the causes and consequences of microbial diversity. In:
Bardgett, R., Hopkins, D., Usher, M. (Eds.), Soil Biodiversity and Ecosystem Function, Cambridge
University Press, Cambridge.

Shigesada, N., Kawasaki, K., Teramoto, E., 1984. The effect of interference competition on stability, struc-
ture and invasion of a multi-species system. J. Math. Biol. 21, 97–113.

Shigesada, N., Kawasaki, K., Teramoto, E., 1989. Direct and indirect effects of invasions of predators on
a multiple-species community. Theor. Popul. Biol. 36, 311–338.

Siljak, D.D., 1978. Large Scale Dynamical Systems: Stability and Structures. North-Holland, Amsterdam.
Takayama, A., 1985. Mathematical Economics, 2nd edn. Cambridge University Press, Cambridge.
Tilman, D., 2004. Niche trade-offs, neutrality, and community structure: a stochastic theory of resource

competition, invasion, and community assembly. Proc. Natl. Acad. Soc. USA 101, 10845–11176.
Volterra, V., 1931. Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris.
Weiher, E., Keddy, P., 1999. Ecological Assembly Rules: Perspectives, Advances, and Retreats. Cambridge

University Press, Cambridge.


	Conditions for Global Dynamic Stability of a Class of Resource-Bounded Model Ecosystems
	Abstract
	Introduction
	Resource-bounded ecosystems
	The model
	Proportion variables
	The inward-pointing condition

	Equilibria
	The index, uniqueness and global stability
	Semi-neutral systems

	Diagonal dominance
	Diagonal dominance
	Uniform diagonal dominance
	General conditions for uniform diagonal dominance
	Explicit conditions for uniform diagonal dominance

	Applications to quadratic systems
	Examples of quadratic systems 
	Further discussion

	Discussion
	Acknowledgements
	Appendix A:  
	Semi-neutral systems
	Proof of Theorem 2 
	Proof of Theorem 3 
	Generalized L-V systems

	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


