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Abstract Many populations live and disperse in advective media. A fundamental ques-
tion, known as the “drift paradox” in stream ecology, is how a closed population can sur-
vive when it is constantly being transported downstream by the flow. Recent population-
level models have focused on the role of diffusive movement in balancing the effects of
advection, predicting critical conditions for persistence. Here, we formulate an individual-
based stochastic analog of the model described in (Lutscher et al., SIAM Rev. 47(4):749–
772, 2005) to quantify the effects of demographic stochasticity on persistence. Popula-
tion dynamics are modeled as a logistic growth process and dispersal as a position-jump
process on a finite domain divided into patches. When there is no correlation in the in-
terpatch movement of residents, stochasticity simply smooths the persistence-extinction
boundary. However, when individuals disperse in “packets” from one patch to another
and the flow field is memoryless on the timescale of packet transport, the probability of
persistence is greatly enhanced. The latter transport mechanism may be characteristic of
larval dispersal in the coastal ocean or wind-dispersed seed pods.

Keywords Population dynamics · Drift paradox · Demographic stochasticity ·
Stochastic simulation algorithm

1. Introduction

Many populations, including bacteria in the gut, plants with wind or waterborne seeds,
and animals in streams, estuaries, and the ocean live and disperse in advective media.
A fundamental question in population dynamics is how do such populations persist with-
out any net influx of new settlers when they are constantly being transported downstream
or downwind. Such a question is not only interesting from a theoretical standpoint, but
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has practical application in the design and management of environmental reserves and in
other restoration projects (Anderson et al., 2006).

In lotic ecosystems such as streams and rivers, the question of the persistence of a
population subject to downstream dispersal has been referred to as the “drift paradox”
and is mostly associated with drifting invertebrates such as mayfly, stonefly, caddis-
fly, and crustaceans which serve as a fish food source and are thus vital to the func-
tioning of the ecosystem (Hershey et al., 1993; Müller, 1974). The same question of
persistence has been considered for populations in the coastal ocean subject to tides
and long-shore currents (Alexander and Roughgarden, 1996; Byers and Pringle, 2006;
Gaines and Bertness, 1992). Many of the proposed resolutions to the drift paradox in-
volve some form of compensatory movement in opposition to the flow as a result of turbu-
lence (Speirs and Gurney, 2001), biased flight upstream before oviposition (Müller, 1982),
or individuals crawling sufficient distances against the flow along the benthos (Humphries
and Ruxton, 2002). Mathematical models has become a useful tool for evaluating the util-
ity of such hypotheses and suggesting new ones.

Recent models in the form of integrodifferential equations and reaction–advection–
diffusion equations have focused on the role of diffusive movement, whether it be due to
turbulence in the flow or individuals crawling upstream, in balancing the effects of advec-
tion for populations with a single life stage (Ballyk and Smith, 1999; Lutscher et al., 2005;
Pachepsky et al., 2005; Speirs and Gurney, 2001). Such models have shown that if the
rate of settlement upstream is sufficiently large to balance the loss due to death and down-
stream movement, then a population can persist on a sufficiently large domain. Predictions
regarding the critical flow speed or domain size can be made given a suitable model for the
growth and reproduction of the population. Indeed, the question of a “critical domain size”
dates back to Skellam’s work in the 1950s on reaction–diffusion equations for the logistic
growth of populations on bounded domains (Skellam, 1951). Such critical domain size
calculations involve linearizing the governing equations about the zero steady state and
solving a Sturm–Liouville problem to find conditions under which it is unstable (Okubo,
1980).

Although there has been much recent interest in population dynamics in advective
media, most models are deterministic and, therefore, do not address what effect, if any,
stochasticity has on persistence. For populations dispersing in advective media, stochas-
ticity can be attributed to variability in reproduction rates, movement rates, and distances
traveled by individuals. In addition, correlations in the dispersal activity of individuals can
greatly impact their density and thus the odds of persistence. An example of the latter is
large-scale eddy events in the coastal ocean which intermittently sweep larvae in groups
from one place to another. The location and timing of such events is highly variable within
a given spawning season and from season to season (Siegel et al., 2008). Another example
is wind-dispersed seed pods in a heterogeneous landscape.

It is well known that demographic stochasticity can have profound consequences in
small populations (Gurney and Nisbet, 1998). For example, consider a population con-
taining an integer number of individuals undergoing a simple birth-death process. If the
death rate exceeds the birth rate, extinction is unavoidable both deterministically and in
the stochastic model. However, when the birth rate exceeds the death rate, the determinis-
tic theory predicts persistence, while in the stochastic model the probability of extinction
may be nonnegligible for populations initially small in number. Thus, a critical condition
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for persistence for a deterministic model may not carry over when demographic stochas-
ticity is introduced.

Here, we introduce a discrete-state continuous-time stochastic analog of the integrod-
ifferential equation developed in Lutscher et al. (2005) for the dynamics of a population
dispersing in advective media. The model allows us to explore the effects of demographic
stochasticity, both in reproduction and movement, as well as correlations in the dispersal
activity of individuals, on population persistence. The paper is organized as follows. In
Section 2, we briefly review the integrodifferential model, rewrite the system in terms of
nondimensional quantities, and discuss conditions on the flow speed and domain size for
persistence for different forms of boundary conditions under our parametrization. In Sec-
tions 3 and 4, we formulate the corresponding stochastic model, present the algorithms
used to simulate the stochastic population dynamics, and analyze the results. Finally, in
Section 5, we discuss the implications of our results for the persistence of populations in
advective media.

2. The model

2.1. Population dynamics

We consider the integrodifferential equation introduced in Lutscher et al. (2005) for the
spatio-temporal dynamics of a population in a one-dimensional domain. We focus our
attention on benthic organisms in a lotic environment such as a stream or river reach. The
model can be derived from the two-compartment drift–benthos (D–B) model formulated
in Pachepsky et al. (2005) as follows. Let p(x, t) and w(x, t) be the population density
at location x ∈ [0,L] along the benthos and drift, respectively, at time t . Furthermore,
suppose the benthic population grows logistically, the drifting population disperses via
an advection–diffusion process, and transfer between the two compartments occurs via a
Poisson process. Then the evolution of p and w is governed by the following system of
partial differential equations (Pachepsky et al., 2005):

∂w

∂t
= μp − αw − v

∂w

∂x
+ D

∂2w

∂x2
,

∂p

∂t
= rp

(
1 − p

K

)
− μp + αw,

(1)

where r is the intrinsic growth rate, K is the local carrying capacity, μ is the dispersal
rate, α is the settlement rate, v is the velocity of the medium (e.g., the wind speed or flow
speed), and the diffusion constant D represents the variability in speed.

Now, suppose the settlement rate, α, is much larger than the dispersal rate, μ. This
means that the characteristic time scale associated with drifting, 1/α, is much less than
the characteristic time scale associated with residing on the benthos, 1/μ. In the limit that
ε = μ/α → 0; v → ∞; D → ∞ with εv and εD finite, one may reduce the system to a
single integrodifferential equation for the benthic population (Lutscher et al., 2005):

∂p

∂t
(x, t) = rp(x, t)

(
1 − p(x, t)

K

)
− μp(x, t) + μ

∫ L

0
k(x, y)p(y, t) dy. (2)
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In the model, a population grows logistically on the benthos and movement takes place as
a position-jump process with dispersal kernel, k(x, y), giving the probability distribution
of stopping points along the benthos from an initial location y.

2.2. Dispersal kernel

To derive the dispersal kernel, consider the fast-scale movement dynamics in the drift
as decoupled from the slow-scale population dynamics on the benthos. Specifically, let
w(t, x;y) be the distribution of individuals in the drift who enter at time t = 0 from an
initial starting point y. Then the movement dynamics are described by an advection–
diffusion process with constant settlement rate α

∂w

∂t
= −αw − v

∂w

∂x
+ D

∂2w

∂x2
, (3)

and with initial density w(0, x;y) = δ(x − y). The dispersal kernel is related to the distri-
bution of drifters by k(x, y) = ∫ ∞

0 αw(t, x;y)dt . On an infinite domain, the kernel takes
the form of a two-sided exponential distribution (Lutscher et al., 2005)

k(x − y) ≡ k(ξ) =
{

Aea1ξ , ξ ≤ 0
Aea2ξ , ξ ≥ 0,

(4)

where

A = α√
v2 + 4αD

, a1,2 = v

2D
±

√
v2

4D2
+ α

D
. (5)

On a finite domain, the dispersal kernel depends on the precise form of the boundary
conditions for (3).

As in Lutscher et al. (2005), the kernel is not normalized. Thus, the dispersal process
results in additional mortality. First, consider movement not altered at the domain bound-
ary. An example of this would be a no-fishing zone or plants with wind or waterborne
seeds. Under these conditions, the dispersal kernel is equal to the kernel derived for an
infinite domain but cut off at the domain boundaries (Lutscher et al., 2005).

As a second example, consider the case of a domain with a source at the top (x = 0) and
a sink at the bottom (x = L). In this case, one may impose a no-flux boundary condition
at the top and an absorbing boundary at the bottom:

vw(t,0) − D

(
∂w

∂x

)
x=0

= 0, w(t,L) = 0. (6)

The solution to this boundary value problem can be found in the Appendix of Lutscher et
al. (2005). It is important to note in this case that the kernel is anisotropic, i.e., k(x, y) 
=
k(x − y).

2.3. Nondimensionalization

We nondimensionalize the model as follows. Let t ′ = t/ts , x ′ = x/xs , and w′ = xsw with

ts = 1/r and xs =
√

D
r

. Then the dynamics in the drift can be expressed in terms of the
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nondimensional variables t ′, x ′, and w′ as

∂w′

∂t ′
= −α̃w′ − ṽ

∂w′

∂x ′ + ∂2w′

∂x ′2 , (7)

where ṽ = v√
Dr

and α̃ = α/r . With this change of variables, and dropping the prime

notation, the nondimensional dispersal kernel is given by k̃(x, y) = ∫ ∞
0 α̃w(t, x;y)dt

and on an infinite domain can be written as

k̃(ξ) =
{

Ãeã1ξ , ξ ≤ 0
Ãeã2ξ , ξ ≥ 0,

(8)

where

ã1,2 = xsa1,2 = ṽ

2
±

√
ṽ2

4
+ α̃, Ã = xsA = α̃√

ṽ2 + 4α̃
. (9)

This temporal and spatial scaling yields the following rescaled integrodifferential
equation for the population dynamics on the benthos:

∂p

∂t
(x, t) = p(x, t)

(
1 − p(x, t)

K

)
− μ̃p(x, t) + μ̃

∫ L̃

0
k̃(x, y)p(y, t) dy, (10)

with μ̃ = μ/r and L̃ = L/xs . Note that K is not scaled out (as it is in Lutscher et al.,
2005) because we are interested in the combined effects of demographic stochasticity
and nonlinearity on persistence. Population and movement dynamics are controlled by
the carrying capacity K and three additional dimensionless quantities: μ̃, L̃, and ṽ. The
first dimensionless quantity, μ̃, corresponds to the average number of sojourns to the
drift made by an individual in time ts . Note that ts is the time for a small population
to grow by a factor of e and is the same order of magnitude as the doubling time. The
dimensionless quantity L̃ is the ratio of the domain length L to xs = √

D/r = √
Dts .

Thus, L̃ may be interpreted as a measure of the length of habitat relative to the diffusive
spread of the population in time ts . The last quantity, ṽ = v√

Dr
= vts√

Dts
, is the reciprocal

of the coefficient of variation of the dispersal process in time ts . When ṽ > 1, dispersion
is dominated by advection, while when ṽ < 1 it is dominated by diffusion. Note that
in deriving the integrodifferential equation it is assumed there is a separation in time
scales in the population and movement dynamics. In this limit, for any dispersal to take
place, it is necessary that both D → ∞ and v → ∞ as μ/α → 0. This ensures that the
nondimensional flow velocity ṽ is finite.

2.4. Stability and critical domain size

In Lutscher et al. (2005), Pachepsky et al. (2005), the authors derived expressions for
the critical domain size and flow speed in terms of parameters related to dispersal and
settlement. The critical domain size is defined as the length of habitat below which a
population cannot persist while the critical velocity is the flow speed above which no
population can persist. An expression relating the two can be derived by linearizing the
model equations and determining the stability of the zero steady-state solution from the
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eigenvalues. For the D–B model with μ > 1 and a reflecting boundary at the top of the
domain and an absorbing boundary at the bottom (Pachepsky et al., 2005), the critical
domain size L̃c and velocity ṽc are related by the smallest real solution to Pachepsky et
al. (2005):

√
4α̃

μ̃−1 − ṽ2
c

ṽc

+ tan

(
Lc

2

√
4α̃

μ̃ − 1
− ṽ2

c

)
= 0. (11)

When α � μ, this expression is a good approximation to the critical domain size for
the integrodifferential equation with an anisotropic kernel k(x, y) given by the solution
to (3) with boundary conditions (6). The scaled asymptotic velocity, v∗, above which no
population can survive on any length of domain, may be obtained by setting the expression
inside the square root of (11) equal to zero and is given by

v∗2 = 4α̃

μ̃ − 1
. (12)

In Lutscher et al. (2005), the authors obtained the following expression for L in terms of
the dominant eigenvalue ν of the integral operator in (2) and the dispersal related constants
from the dimensional kernel (4):

L =
4 tan−1

[(√ 4a1|a2|
ν(a1−a2)2 − 1

)−1]
(a1 − a2)

√
4a1|a2|

ν(a1−a2)2 − 1
. (13)

The dominant eigenvalue ν is related to the dominant eigenvalue ν̃ of the integral op-
erator in (10) by ν̃ = μ̃ν. Note that expression (13) remains unchanged under our spa-
tial rescaling and is thus satisfied by L̃ and ã1,2, the latter of which are functions of ṽ.
The critical domain size L̃c may be obtained implicitly as a function of ṽc by setting
μ̃ν = μ̃ − 1 ⇒ ν = μ̃−1

μ̃
in expression (13). The asymptotic velocity v∗ can be obtained

by setting the denominator of (13) equal to zero and with a little algebra can be shown to
be equivalent to expression (12). This is not surprising, since when the length of domain
becomes infinite, the precise form of the boundary conditions is not important.

We now consider some specific parameters. Suppose, for example, that μ̃ = 50. This
corresponds to the case where individuals make on average 50 trips into the drift in
the time a small population grows by a factor of e and might be typical of certain in-
vertebrate populations in streams (Elliott, 2002). In addition, suppose α̃ = 1000 so that
μ̃/α̃ = μ/α = 0.05. This means that individuals spend on average 5% of their time in the
drift and is consistent with the approximation made in the derivation of (2) from the D–B
model. For these parameters, v∗ ≈ 9.04. In Fig. 1, we plot the persistence and extinction
boundary using expressions (11) and (13). One can see from the figure that in both cases
L̃ approaches infinity as ṽ → v∗. When ṽ = 0 (diffusion dominated case), the minimum
critical domain size for population persistence is L̃c = 0.63 with movement not altered
and L̃c = 0.35 for the D–B model with reflecting and absorbing boundaries. Thus, when
individuals do not alter movement at the domain boundaries, there is a higher domain size
threshold for population persistence. In both cases, decreasing μ̃ increases v∗.
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Fig. 1 Critical domain size L̃ as a function of the nondimensional parameter ṽ.

3. Stochastic formulation

In this section, we formulate a continuous time Markov chain representation of (10)
and show how realizations of the stochastic process can be performed using the sto-
chastic simulation algorithm (SSA) (Gillespie, 2007). Stochastic simulations are often
the only practical technique available for the study of nonlinear multivariate Markov
processes (Gillespie, 2007). We use this stochastic formulation to study the effects of
demographic stochasticity on population persistence.

3.1. Stochastic simulation algorithm

The SSA was originally developed as an exact procedure for the numerical simula-
tion of the evolution of well-stirred chemically reacting systems in continuous time,
but may easily be adapted for the simulation of discrete-population stochastic models
arising in ecology. In the stochastic formulation of (10), space is discretized into N

patches of width �x. The patch width �x sets the size of the domain on which indi-
viduals compete for resources. Using the terminology of SSA, we define the state vector,
Z(t) = (Z1(t),Z2(t), . . . ,ZN(t)), where Zi(t) ∈ {0,1,2, . . .} is the number of individuals
in patch i at time t ∈ [0,∞). A change in a local population is a consequence of one of
three events: a birth, death, or relocation. Since these three events can occur in any of
N different patches, there is a total of M = 3N possible events. The events are math-
ematically characterized by their propensity functions, aj (z), and state-change vectors,
νj , for j = 1,2, . . . ,M . Given Z(t) = z, the probability that a single event j occurs in
a sufficiently small time interval �t is aj (z)�t . Thus, the propensity function gives the
stochastic event rate. The state-change vector is the population change vector associated
with a single occurrence of an event. If the population is at state z and event j occurs,
z → z + νj . The following table summarizes the propensity functions and state-change
vectors associated with a birth, death, and relocation event in patch i.



Effects of Demographic Stochasticity on Population Persistence 1261

Event (patch i) Propensity function State-change vector

Birth b̃1zi(t) + b̃2zi(t)
2 (0, . . . ,0, +1,︸︷︷︸

ith column

0, . . . ,0)

Death d̃1zi(t) + d̃2zi(t)
2 (0, . . . ,0, −1,︸︷︷︸

ith column

0, . . . ,0)

Relocation μ̃zi(t) (0, . . . ,0, +1,︸︷︷︸
rth column

0, . . . ,0, −1,︸︷︷︸
ith column

0, . . . ,0)

For this to correspond to the logistic growth process from (10), b̃1 − d̃1 = 1 and K−1 =
d̃2 − b̃2. We consider the case that d̃2 = 0, so that the per capita death rate remains constant
while the per capita birth rate is a decreasing function of population size. This implies
that b̃2 = −1/K . To ensure the birth rate never becomes negative, we supplement its
propensity function with the condition that the birth rate is 0 whenever zi(t) > b1K .

In order to simulate sample realizations of the stochastic process, one must generate
properly distributed random variables for the time τ and index j of the next event. It
follows from the basic laws of probability that the interevent times are exponentially dis-
tributed (Gillespie, 2007). One of the most straightforward numerical Monte Carlo meth-
ods for generating simulated trajectories of Z(t) is the first reaction method described in
Gillespie (1976). The idea behind the method is to generate M prospective event times τj

by sampling the exponential distribution with rate constant aj (z) and then choose the one
that occurs first. The basic algorithm is as follows:

0. Initialize the time t = t0 and the initial state z = zo.
1. Evaluate the propensity functions aj (z).
2. Draw M random variables r1, . . . , rM on (0,1).
3. Generate prospective reaction times τj = − ln(rj )

aj (z) , j = 1, . . . ,M .
4. Take τm = min{τj }.
5. Update the system state: t ← t + τm and z ← z + νm.
6. Return to Step 1, or if reached desired simulation time, end the simulation.

This algorithm was used to generate sample realizations of the stochastic process and
compute persistence probabilities for the population as a function of simulation time by
averaging over multiple realizations. Analysis and a discussion of the implications of
these results for populations in advective media will be postponed until Section 4. Note
that the first reaction method becomes inefficient for large K due to explosive exponential
growth, and thus requires the implementation of more advanced algorithms (Gillespie,
2007). In this paper, we restrict our study to populations undergoing density dependent
growth with sufficiently small K .

3.2. Simulating the movement dynamics

Movement takes place as a position-jump process with dispersal distance drawn from the
redistribution kernel k(x, y). As discussed in Section 2.2, the kernel was derived from the



1262 Kolpas and Nisbet

fast-scale movement dynamics described by an advection–diffusion process with constant
settlement rate α. Thus, to determine the position of a relocating individual, we freeze the
main population dynamics timestepper τ , while simulating the movement dynamics as
a biased random walk across the lattice of patches. For the movement dynamics at the
individual-based level to correspond to an advection–diffusion process at the population-
level, we set the time step �s = �x2/2, the probability of moving one patch to the right
qr = 1

2 + ṽ
4 �x, and the probability of moving one patch to the left ql = 1

2 − ṽ
4 �x. For �s

and �x sufficiently small, this closely approximates an advection–diffusion process (Bai-
ley, 1964). To determine the number of steps m of length �s an individual random walker
takes, we sample the exponential distribution of stopping times p(s) = α̃e−α̃s . A time S

may be sampled from the exponential distribution by drawing a random number u on
(0,1) and taking S = − ln(u)/α̃. The number of steps m in the random walk is then taken
to be the nearest integer m which satisfies m�s = S. If an individual in patch i relocates
to patch r at the end of the random walk, the population count is decremented by 1 in
patch i and incremented by 1 in patch r via the state change vector νi .

We now discuss our implementation of the boundary conditions. Recall that the disper-
sal process contributes to mortality because we make the assumption that individuals can
leave the domain boundary. First, consider the case where movement is not altered at the
domain boundary. In this case, if at the end of the random walk an individual has left the
domain boundary, it is removed from the population for the remainder of the simulation.
Now, instead, consider the case of a domain with a source at the upstream end and a sink
at the downstream end. We implement these boundary conditions as follows. If a random
walker reaches the upstream boundary, it remains stationary with probability ql and moves
one patch to the right with probability qr . If an individual reaches the downstream bound-
ary, it moves one patch to the left with probability ql and is removed from the simulation
with probability qr . This microscopic description of the movement dynamics agrees with
the macroscopic model of movement as an advection–diffusion process with no-flux and
absorbing boundary conditions (Bailey, 1964; Lutscher et al., 2006).

3.3. Packet dispersal

In our current model of dispersal, there is no correlation in individual movement. Disper-
sal distances are independent and identically-distributed (iid) random variables. However,
in some cases, it may be more reasonable to assume that there are correlations in dispersal.
For example, the dispersal of larvae in the coastal ocean may be driven by stochastic eddy
events which carry many individuals in “packets” from one location to another (Siegel et
al., 2008). Another good example is wind dispersed seed pods.

Define τc as the timescale over which the interpatch movement of residents is cor-
related. To simulate correlations in dispersal, at the beginning of the time window τc ,
N iid dispersal distances are drawn from the redistribution kernel k(x, y) so that there
is a single dispersal distance associated with each patch. This sets up a fixed dispersal
network of activity across patches. We refer to this as “packet” dispersal since over the
time window τc , individuals from a given patch are subject to the same dispersal condi-
tions, and thus on a coarser time scale can be thought of as moving in packets upstream
or downstream (or remain stationary) of their initial starting location. In the next section,
we will quantify the effects of packet dispersal on population persistence as a function of
the correlation time τc .
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Table 1 Summary of dimensionless model parameters

Parameter Symbol Values explored

Carrying capacity K 500–5000
Intrinsic growth rate r̃ 1
Dispersal rate μ̃ 50
Settlement rate α̃ 1000
Domain length L̃ 2
Patch size �x 0.01–0.05
Diffusivity D̃ 1
Flow speed ṽ 7.9–9.2
Correlation time τc 0–0.2

Fig. 2 Sample realization of the spatio-temporal dynamics of a population initially at carrying capacity on
a domain of length L̃ = 2 with a no-flux boundary at the upstream end (x = 0) and an absorbing boundary
at the downstream end (x = 2). The flow speed, ṽ = 9.2, is above the critical flow speed ṽc = 8.6. After
an initial growth phase, the population goes extinct in approximately 50 time units.

4. Results

4.1. The effects of demographic stochasticity

To quantify the effects of stochasticity on persistence, multiple realizations of the model
were performed using the stochastic simulation algorithm to simulate sequentially in con-
tinuous time, birth, death, and relocation events. See Table 1 for a summary of the para-
meters used in the simulations. Note that for the rest of our analysis, we will focus on the
case of a domain with a source at the upstream end and a sink at the downstream end.
However, the results are similar for Dirichlet boundary conditions. Figure 2 shows a sam-
ple realization of the process on a domain with a source at the top and a sink at the bottom
at a velocity exceeding the critical value. After an initial transient in which the population
grows in size, it eventually decays and goes extinct after approximately 50 time units.
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Fig. 3 Probability of persistence as a function of time for four different flow speeds: (blue) ṽ = 8.6,
(green) ṽ = 8.8, (orange) ṽ = 9.0, (red) ṽ = 9.2. (Color figure online.)

Persistence probability time series were computed by averaging the stochastic simula-
tion results across three hundred realizations. Figure 3 shows the time dependence of the
probability of persistence of a population initially comprised of forty individuals for vari-
ous flow speeds. After an initial transient, the persistence curves decay exponentially, with
a more rapid decay as ṽ is increased. This is in accordance with what one would expect
from a simple birth-death process where the intrinsic growth rate is nonpositive (Allen,
2003; Nisbet and Gurney, 2003). This makes sense because the solution to the linearized
integrodifferential equation (10) can be written in an eigenfunction expansion as

p(x, t) =
∞∑

n=1

ane
λntφn(x) (14)

with eigenvalues λn = 1 − μ̃ + ν̃n and eigenfunctions φn(x). Note that ν̃n are the eigen-
values associated with the integral operator in (10). Averaging across the spatial variable,
it follows that the rate of decay of solutions in time is the sum of exponentials, and thus
controlled by the principle eigenvalue. Indeed, estimates of the decay rates of the persis-
tence curves agree to within a factor of two of the principle eigenvalue associated with the
eigenfunction expansion; see Table 2. Since the eigenvalues vary smoothly with the flow
speed ṽ, it is no surprise that there is a continuous transition in persistence probability as
ṽ is varied; see Fig. 4.

Figure 4 shows the persistence probability after 100 time units as a function of ṽ for
three different birth and death rates: (1) b̃1 = 2.0, d̃1 = 1.0, (2) b̃1 = 3.0, d̃1 = 2.0, and
(3) b̃1 = 4.0, d̃1 = 3.0. All three cases correspond to the same deterministic model since
r̃ = b̃1 − d̃1 = 1.0. The persistence probability curves decrease as b̃1 and d̃1 are increased
simultaneously keeping b̃1 − d̃1 constant. We expect such a decrease in persistence to a
given time since increasing the turnover rates increases the variability in production. Note
that the persistence probability curves become more jagged as b̃1 is increased. This is
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Table 2 Comparison of decay rates in deterministic and stochastic model

Flow speed (ṽ) Estimate from persistence curves Principle eigenvalue (1 − μ̃ + ν̃)

8.6 −0.0055 0
8.7 −0.0157 −0.0234
8.8 −0.0287 −0.0431
8.9 −0.0356 −0.0642
9.0 −0.0483 −0.0847
9.1 −0.0573 −0.1053
9.2 −0.0964 −0.1271

Fig. 4 Probability of persistence after 100 time units as a function of ṽ with L̃ = 2. The parameters are
�x = 0.05, K = 1000, μ̃ = 50, α̃ = 1000, and r̃ = 1 and the results were averaged over 300 replicates.
The effects of demographic stochasticity were explored by increasing b1 and d1 while maintaining r̃ . We
consider three cases: (blue) b1 = 2.0, d1 = 1.0, (green) b1 = 3.0, d1 = 2.0, and (red) b1 = 4.0, d1 = 3.0.
The results of the deterministic theory are shown for comparison (black). (Color figure online.)

due to the fact that there is more variability in the population dynamics. Finally, we note
some results regarding nonlinear effects. We find that decreasing the carrying capacity
lowers the persistence probabilities uniformly across the range of flow speeds considered.
We also find that the persistence probabilities are affected by the spatial scale of den-
sity dependence. Specifically, decreasing �x, while scaling K accordingly, decreases the
persistence probabilities uniformly across ṽ.

4.2. The effects of packet dispersal on persistence

We explored the effects of packet dispersal on persistence by simulating the model for a
wide range of correlation times τc and different flow speeds ṽ. We consider correlation
times that are up to a factor of ten times the mean time between dispersal events td =
1/μ̃ = 0.02. In all cases, we find that correlations in the dispersal activity of individuals
can have a large positive impact on persistence. In Fig. 5, we compare the persistence
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Fig. 5 Probability of persistence after 100 time units as a function of correlation time τc . The parameters
are L̃ = 2, �x = 0.05, K = 1000, μ̃ = 50, α̃ = 1000, and r̃ = 1 and the results were averaged over 300
replicates. Here, we compare the impact of introducing a correlation in dispersal patterns on three different
flow speeds: (blue) ṽ = 8.9, (green) ṽ = 9.2, and (red) ṽ = 9.5. (Color figure online.)

probability after 100 time units as a function of τc for three different flow speeds. Each
data point was averaged over three hundred realizations of the stochastic model. In all
cases, packet dispersal has the greatest impact on persistence when the correlation time
is of similar magnitude to td . For example, when ṽ = 8.9, the probability of persistence
goes from 0.08 when τ = 0 (no correlation in dispersal activity) to a maximum of 0.97
when τc = 0.03. For larger flow speeds, the trend is the same, but the magnitude of effect
decreases with ṽ.

We can understand the effects of packet dispersal on population persistence as follows.
When τc ≥ td , individuals from a particular patch complete on average at least one jump
to the same destination before the dispersal network changes. At the coarse-grained level,
this corresponds to a single dispersal event carrying a packet of “meta-individuals” from
one patch to another. When τc ≈ td , the dispersal network changes after on average one
jump so that there is no correlation with the previous dispersal events from that patch. This
corresponds to the case in which samples of the local wind or flow speed and direction
are uncorrelated on the timescale of τc steps. Figure 6 shows a sample of the population
dynamics when τc = 0.03, which is the peak in response of the model to the introduction
of correlations in dispersal activity. At the coarse-grained level, meta-individuals undergo
a biased random walk, just as individuals do in the original model. Dispersal events carry
entire packets (as opposed to single individuals) downstream, upstream, or leave them
stationary with respect to their initial location. Unlike single individuals, meta-individuals
are able to maintain a firmer foothold upstream, since the more individuals there are, the
less of an effect demographic stochasticity has on the population dynamics.

When τc � td , the dispersal network remains fixed as packets move from patch to
patch. Because of this, one may no longer think of the packets of meta-individuals as
undergoing a biased random walk. Instead, meta-individuals are subject to the dynamics
imposed by the fixed dispersal network. Indeed, if τc is sufficiently large so that packets
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Fig. 6 Sample realizations of the stochastic process with correlation time (left) τ = 0.03 and (right)
τ = 0.2. Parameters: L̃ = 2, �x = 0.05, b̃1 = 2, d̃1 = 1, μ̃ = 50, α̃ = 1000, K = 1000, ṽ = 9.2, and
ṽc = 8.6. No-flux boundary at the top of the domain and absorbing boundary at the bottom.

are carried along multiple time steps in the network, they will eventually settle to local
sinks. When the meta-individuals have been carried a sufficient distance downstream,
they are absorbed at the downstream end. This can be clearly seen in the second panel
of Fig. 6.

5. Discussion

We have introduced a stochastic model for population dynamics in advective media to
explore the effects of demographic stochasticity, both in reproduction and movement, on
the population dynamics. When there are no correlations in dispersal activity, we observe
a continuous transition in probability from persistence to extinction as the flow speed ṽ is
varied. In the physics literature, this smooth transition from one state (persistence) to an-
other state (extinction) is referred to as a second order or continuous phase transition and
has been noted in a wide range of spreading processes which transition into an absorbing
state (Hinrichsen, 2000).

Our results show that the deterministic theory is quite robust to noise effects: demo-
graphic stochasticity simply smooths the persistence and extinction boundary and does
not result in any catastrophic phenomena such as discontinuities in the transition. How-
ever, because of this smooth transition in persistence probability, there is a range of flow
speeds ṽ < ṽc for which the deterministic theory predicts persistence but the stochastic
model indicates that the population may go extinct in a finite number of time units. Thus,
demographic stochasticity can lead to the extinction of a population, even under condi-
tions for which the deterministic theory implies that a population will survive indefinitely.
This is something that should be kept in mind if critical domain size estimates are invoked
in environmental management.

Complementary studies on the effects of demographic stochasticity on invasion speeds
have been done in Kawasaki et al. (2006), Kot et al. (2004), Lewis (2000), Mollison
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(1977), Snyder (2003). For linear systems on an infinite domain, it was shown that sto-
chasticity does not generally slow invasions. For nonlinear systems, variability in pro-
duction and movement typically slows invasions, however, see Kawasaki et al. (2006) for
an example where it speeds them up. It was noted in Pachepsky et al. (2005) that the
asymptotic velocity above which no population can survive on any length of domain is
equivalent to the critical speed in which an invasion front switches from advancing up-
stream to retreated downstream. Therefore, the predictions regarding invasion speeds may
be interpreted as suggesting that for nonlinear models; stochasticity can result in a shift
in the persistence and extinction boundary. In our study, for a domain of length L̃ = 2,
a shift in the critical flow speed can be observed. Specifically, suppose we take the crit-
ical velocity in the stochastic model as the flow speed for which the population has a
50% probability of persistence. Then the critical velocity shifts to smaller values when
the variability in production is increased or the carrying capacity is lowered. See Fig. 4
for an example of the former.

We have quantified the effects of introducing correlations in the dispersal activity of
individuals on population persistence. Our findings indicate that when there is approxi-
mately no correlation in the sampled flow field from a given patch on the timescale that a
packet moves from one patch to another, the movement of individuals in packets greatly
enhances population persistence. This is due to the fact that packets of individuals are
less susceptible to extinction than single individuals under the influence of demographic
stochasticity. Our results provide insight into the mechanisms contributing to population
persistence under conditions where dispersers are transported in packets such as larvae in
the coastal ocean or wind-dispersed seed pods.

In Siegel et al. (2008), it was shown that packet dispersal may be the primary means of
transport for fish and invertebrate populations in the coastal ocean with an obligate larval
stage. The driving mechanism behind packet transport is coastal eddies which intermit-
tently sweep larvae from one location to another in settlement pulses. The source and
destination of these settlement pulses is highly variable within each season and across
multiple spawning seasons leading to heterogeneity in connectivity among subpopula-
tions. This same mechanism of transport is built into our continuous-time model when we
assume there is no correlation in the destination of individuals from a given patch on the
timescale in which a packet moves from one patch to another.

It was demonstrated in Berkley et al. (2010) and in work by Mitarai et al. highlighted
in a review article by Cowen and Sponaugle (2009) that the dispersal of individuals in
packets can bring about species coexistence under conditions which would otherwise pre-
clude it. In the study highlighted in Cowen and Sponaugle (2009), an idealized coastal
circulation model was coupled with a Lagrangian particle tracking model to simulate the
transport of larvae in packets in the coastal ocean. The population dynamics were formu-
lated in discrete time using a Beverton–Holt competition model. In the simulations, one
species was initially introduced upstream and the other downstream. When dispersal was
simulated as a simple advection–diffusion process, only the upstream species ultimately
persisted. In contrast, the dispersal of individuals in packets promoted coexistence. The
ability of subpopulations to settle upstream was the driving mechanism behind this result,
allowing groups of downstream individuals to get a foothold in less densely occupied
spaces upstream. The same mechanism is at work in our single-species model, allowing
populations to persist over much longer timescales.
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