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Abstract Many complex systems in mathematical biology and other areas can be de-
scribed by the replicator equation. We show that solutions of a wide class of replicator
equations minimize the KL-divergence of the initial and current distributions under time-
dependent constraints, which in their turn, can be computed explicitly at every instant
due to the system dynamics. Therefore, the Kullback principle of minimum discrimina-
tion information, as well as the maximum entropy principle, for systems governed by the
replicator equations can be derived from the system dynamics rather than postulated. Ap-
plications to the Malthusian inhomogeneous models, global demography, and the Eigen
quasispecies equation are given.

Keywords Production of information · KL-divergence · Replicator equation · Global
demography · Quasispecies equation

1. Introduction

The principle of maximal entropy, stated most briefly, posits: “when we make inferences
based on incomplete information, we should draw them from that probability distribution
that has the maximum entropy permitted by the information we do have” (Jaynes, 1957).

Here, “entropy” means the Shannon–Gibbs entropy of a discrete distribution {pi},
S[p] = −∑

i pi logpi . Kullback (1959) formulated a similar (and, formally, a more gen-
eral) principle using the KL-divergence of the distribution p from m. KL-divergence is
defined in Kullback (1951) as

I [p : m] =
∫

A

p(x) log
p(x)

m(x)
dx = Ep

[

log
p(x)

m(x)

]

.

The value S[p : m] = −I [p : m] is also known as the relative or cross entropy or infor-
mation entropy. The KL-divergence allows for unequal prior probabilities m and remains
well defined for continuous distributions, in contrast to the Shannon–Gibbs entropy, which
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can become undefined for nondiscrete probabilities. The KL-divergence is always non-
negative but not symmetric, therefore, it is not a true distance between distributions.

The inference of p by minimizing I [p : m] (maximizing S[p : m]) is known as the
principle of minimum discrimination information, MinxEnt, which is equivalent to the
principle of maximum relative entropy, MaxEnt. Jaynes (1957, 2003) and his followers
have shown that essentially all known statistical mechanics can be derived from the Max-
Ent. During the last decades, these methods have been successfully applied to the analysis
of a vast number of phenomena.

The rationale of the MaxEnt method is substantially different from that of other sta-
tistical methods. According to Jaynes (2003), “the probability assignment which most
honestly describes what we know should be the most conservative assignment in the
sense that it does not permit one to draw any conclusions not warranted by the data.”
A similar rationale for the MinxEnt method was proposed by Kullback (1959): given new
facts, a new distribution p should be chosen, which is as hard to discriminate from the
original distribution m as possible; so that the new data produce as small an information
gain I [p : m] as possible. These facts, or knowledge, or experimental conditions, or given
physical (biological) constraints can typically be expressed as expectation values over the
unknown probability p. Shore and Johnson (1981) suggested an axiomatic explanation of
the MaxEnt method as a method for updating probabilities; this approach was developed
further by several researchers (e.g., Csiszar, 1996; Skilling, 1988).

In many biological applications the KL-divergence I [p : m] can be interpreted as pro-
duction of information (Eigen and Winkler, 1974); accordingly, MinxEnt can be reformu-
lated as the principle of minimal production of biological information.

Is it possible to derive the principle of maximal entropy from the basic laws and fun-
damental theories? This problem has been discussed in the literature for a long time.
Actually, it was clearly formulated by Einstein (1993) who argued that the statistics of a
system should follow from its dynamics and, in principle, could not be postulated a priori.

A partial solution of this problem is found for systems governed by so-called replicator
equations. Having in mind models of mathematical biology, we denote ni(t) the size of the
ith species at time t,N = ∑

i ni the total size of the system, xi = ni/N the concentration
of the ith species in the system, and Fi the per capita growth rate of the individuals of the
ith species. Then dni

dt
= Fini , and the concentrations solve the replicator equation

dxi

dt
=

(

Fi −
∑

j

xjFj

)

xi. (1)

The replicator equation (RE) is among the basic tools in mathematical ecology, genetics,
and mathematical theory of selection and evolution. The finite-dimension RE with i =
1, . . . ,m can be considered as a particular case of the Lotka–Volterra equation, but more
abstract RE with a set of “species” indexed by elements of a more complex set A are also
of use. For instance, the species can be indexed by the reproduction rate, and then A is
an interval, or species can be indexed by the birth and death rates, and then A may be a
rectangle, or species can consist of all individuals with a fixed set of genes, and then A

is a subset of all possible genotypes, that is, a set of the sequences formed by a 4-letter
alphabet.

During the last decades, it has been discovered that similar models (also known as
systems with inheritance or selection systems) appear not only in population genetics
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and selection theory (Desharnais and Costantino, 1982; Gorban and Khlebopros, 1988;
Gorban, 2007) but also in very different areas, such as theoretical ecology and dynamical
game theory (Hoffbauer and Sigmund, 2003).

The replicator equations naturally arise when mathematical models of systems with
intrinsic heterogeneity with respect to some inherited characters are considered; it is as-
sumed that the heterogeneity implies existence of selective differences between individ-
uals. The replicator equations describe the dynamics of the distribution of the characters
under selective forces. The changes of this distribution literally mean the production of
information, which can be measured with KL-divergence between the initial and current
distributions.

In this paper, we study the dynamical model of an inhomogeneous population, which
we also refer to as a selection system. We show that (1) the solutions a wide class of repli-
cator equations have the form of time-dependent Boltzmann distributions; conversely,
every time-dependent Boltzmann distribution satisfies a replicator equation; (2) the dis-
tribution of the characters of a selection system solves a replicator equation; conversely,
each replicator equation can be associated with a selection system whose distribution
solves that replicator equation; and (3) the solution of a replicator equation minimizes
at every instant the KL-divergence of the initial and current distributions (or the produc-
tion of information) at some natural constraints; these constrains, in their turn, can be
computed explicitly at every moment due to the selection system dynamics. The main
conclusion follows from these results: the minimal KL-divergence between current and
initial distributions is an intrinsic property of the solutions of replicator equations, and
hence the MinxEnt principle can be derived from the dynamics of the associated selection
system instead of being postulated. The obtained results are applied to some particular
selection systems, namely, the Malthusian inhomogeneous models, the model of global
demography, models of tree stand self-thinning, and the quasispecies theory.

2. MaxEnt algorithm and the Boltzmann distributions

The principle of maximum entropy is useful only when applied to testable information,
i.e., when one can determine whether a given distribution is consistent with it. Informally,
we suppose that we can measure only a finite set of traits of interest; as a rule, the testable
information is given as the mean of these measurable values. So, assume that expected
values of some n variables ϕs over the unknown pdf p, Ep[ϕs], are given:

Ep[ϕs] = As, s = 1, . . . , n. (2)

The variables ϕs(a), a ∈ A, which we will also refer to as traits, are supposed to be defined
on a probabilistic space (A,A,m). The distribution p∗ that maximizes the relative entropy
S[p : m] subject to the constraints (2) is

p∗(a) = 1

B
exp

(

−
n∑

s=1

λsϕs(a)

)

m(a). (3)

The normalization factor B(λ) = ∫
A

exp(−∑n

s=1 λsϕs)m(a)da where λ = (λ1, . . . , λn);
B(λ) is known in statistical physics as the partition function and exp(−∑n

s=1 λsϕs(a)) is
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the Boltzmann factor. The Lagrange multipliers λs solve the system

−∂ lnB/∂λs = As.

The maximum value of the cross entropy is equal to S[p∗ : m] = lnB(λ) + ∑n

s=1 λsAs .
Probability distribution (3) is the least-biased distribution consistent with the available

information (2) because by construction, it contains this information alone. The distribu-
tion of the form (3) is often called the Boltzmann distribution. Thus, the equilibrium states
of all systems to which the MaxEnt principle can be applied is described by Boltzmann
distributions (3).

Let us define the generalized time-dependent Boltzmann distribution

Pt(a) = exp(Φ(t,a))

Z(t)
P0(a) (4)

where Φ(t,a) is a smooth functions of time, P0(a) is a given initial distribution and
Z(t) = E0[exp(Φ(t, .)] is the normalization factor.

Hereinafter, we use the notation Et [f ] = ∫
A

f (a)Pt (a)da. Remark that exp(Φ) and Z

are analogues of the Boltzmann factor and the partition function, respectively. The relative
entropy of the generalized Boltzmann distribution is equal to

S[Pt : P0] = −Et [ln(Pt/P0)] = lnZ(t) − Et [Φ(t, .)]
= lnE0[exp(Φ)] − E0[Φ exp(Φ)]/E0[exp(Φ)]. (5)

Below, we prove that the distributions of a wide class of inhomogeneous population mod-
els are the generalized Boltzmann distributions (4), which coincide with the distributions
computed according to the MaxEnt algorithm at the constraints taken as the current mean
values of the traits. It implies that the MaxEnt principle is valid for this class of dynamical
systems not only in the equilibrium, but at each point of the system trajectory, even when
the system is far from equilibrium and even if the system has no equilibrium at all.

3. Replicator equations, selection systems, and generalized Boltzmann distributions

Instead of the simplest population model and replicator equation (1), let us explore a more
general replicator equation

dPt (a)/dt = Pt(a)
(
F(t,a) − Et [F(t,a)]), (6)

where F(t,a) is a smooth function of t and a measurable function of a. We show that
this equation describes the evolution of the parameter distribution in the “associated” se-
lection system. Let us consider an inhomogeneous population in which every individual
is characterized by its own value of the vector-parameter a = (a1, . . . , an). In general, the
parameters ai may have different origin; the vector a can be considered as the microstate
of the system. Let l(t,a) be the density of individuals in the state a at the moment t , so that∫

v
l(t,a)da is the total number of individuals having parameter values a in the phase vol-

ume v. Let F(t,a) be the (Malthusian) fitness of an individual; in general, it depends on
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its state a and on the “environment” that may changes with time. The associated selection
system is defined by the following equations

dl(t,a)/dt = l(t,a)F (t,a),
(7)

Pt(a) = l(t,a)/N(t)

where N(t) = ∫
A

l(t,a)da is the total population size at t instant. The initial distribu-
tion P0(a) and the initial population size N(0) are supposed to be given. The statements
collected in the following proposition are actually known in different contexts.

Proposition 1.

(i) The current pdf Pt(a) of the associated selection system (7) solves the replicator
equation (6);

(ii) The total population size satisfies the equation dN/dt = NEt [F ];
(iii) Replicator equation (6) for a given initial distribution P0(a) has a unique solution.

Proof: Indeed,

dN

dt
= d

dt

∫

A

l(t,a)da =
∫

A

l(t,a)F (t,a)da = N(t)Et [F ];

d

dt
Pt (a) = d

dt

l(t,a)

N(t)
= l(t,a)F (t,a)

N(t)
− l(t,a)

N2(t)

dN(t)

dt

= Pt(a)(F (t,a) − Et [F(t,a)]).
Next, let P 1

t , P 2
t solve the replicator equation and P 1

0 = P 2
0 . Then

d

dt
ln

(
P 1

t (a)

P 2
t (a)

)

= 0, hence
P 1

t (a)

P 2
t (a)

= const = P 1
0 (a)

P 2
0 (a)

= 1 for all t. �

If the reproduction rate F(t,a) for model (7) is known explicitly as a function of t , then
we can define the reproduction coefficient of the selection system for the time interval
[0, t) as

Kt(a) = exp(Φ(t,a)) where Φ(t,a) =
∫ t

0
F(u,a)du. (8)

It is easy to check that

l(t,a) = l(0,a)Kt (a),

N(t) = N(0)E0
[
Kt

]
, (9)

Pt(a) = P0(a)Kt (a)/E0
[
Kt

]
. (10)

We have shown that in order to solve the replicator equation one can find the solution of
the associated selection system; its current distribution (10) is equal to the desired solution
of the replicator equation due to uniqueness. Conversely, if the solution of the replicator
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equation, the pdf Pt(a), is known, then one can solve the equation dN/dt = NEt [F ]
and then obtain the solution of model (7) by the formula l(t,a) = Pt(a)N(t). Hence,
problems (6) and (7) are equivalent.

Now we can show that the set of all possible solutions of the replicator equations coin-
cides with the set of generalized Boltzmann distributions (4). Let Pt(a) = exp(Φ(t,a))

Z(t)
P0(a);

denote F(t,a) = d
dt

Φ(t,a).

Proposition 2. Any generalized Boltzmann distribution (4) solves the replicator equa-
tion (6). Conversely, if the distribution Pt(a) satisfies the replicator equation, then it is the
generalized Boltzmann distribution.

Proof: Indeed, if Pt(a) is of the form (4), then

d lnPt(a)

dt
= d

dt
(Φ(t,a) − lnZ) = F(t,a) − 1

Z

dZ

dt
,

and

1

Z

dZ

dt
= E0[exp(Φ)F ]

Z(t)
= Et [F ],

so Pt(a) solves Eq. (6).
Conversely, if Pt(a) satisfies Eq. (6), then it is a distribution of associated system (7),

and hence is of the form (10), i.e., Pt(a) is a generalized Boltzmann distribution with the
Boltzmann factor equal to the reproduction coefficient for the interval [0, t) of system (7),
Kt(a) = exp(Φ(t,a)). �

Proposition 2 shows that the generalized Boltzmann distributions and its dynamics are
completely described by the replicator equations. It does not mean, of course, that these
distributions can not solve other equations.

Within the framework of the selection model, the rate of production of information is
described by the following equation.

Proposition 3. The rate of production of information for selection systems (7) satisfies
the equation

dI [Pt : P0]
dt

= Covt [F,Φ]. (11)

Proof: This equation follows, after simple algebra, from equalities (4) and (5) but it is
instructive to derive it from the 2nd, or complete Price equation (Price, 1972; see also Page
and Nowak, 2002):

dEt [z]/dt = Covt [F,z] + Et [dz/dt] (12)

where z(t,a) is an arbitrary trait. The Price equation is valid at very general conditions
(see Rice, 2006, Chap. 6); in our case (12) easily follows from (4). Applying the Price
equation to z = Φ , we get

dEt [Φ]/dt = Covt [F,Φ] + Et [F ]. (13)
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Next,

dI [Pt : P0]
dt

= d

dt

(
Et [Φ] − lnE0[exp(Φ)])

= (
Covt [F,Φ] + Et [F ]) − E0[F exp(Φ)]

E0[exp(Φ)] = Covt [F,Φ]

since

E0[F exp(Φ)]
E0[exp(Φ)] = Et [F ]

due to (4). �

As a corollary, we obtain a conservation law for selection system (7).

Proposition 4. For all t ,

I [Pt : P0] − Et [Φ(t, .] + lnN(t) = const, (14)

and this constant is equal to lnN(0).

Proof: Indeed, subtracting (13) from Eqs. (11), (13) and utilizing that dN/dt = NEt [F ],
we obtain

d

dt

(
I [Pt : P0] − Et [Φ] + lnN

) = 0,

hence I [Pt : P0] − Et [Φ(t, .] + lnN(t) = lnN(0), because I [P0 : P0] = 0 and
Φ(0,a) = 0. �

4. MinxEnt and the solutions of replicator equations

In what follows, we will suppose that the reproduction rate per individual, i.e., the indi-
vidual fitness, can be represented as a finite sum of the form

F(t,a) =
n∑

i=1

gi(t)ϕi(a). (15)

Rationalization of this supposition is twofold. Mathematically, let us recall that a function
of two variables, f (x, y), can be well approximated with finite sums

∑
i gi(x)ϕi(y) under

some natural conditions (such as uniform continuity in a finite area). In biological appli-
cations, we can consider the individual fitness that depends on a given finite set of traits
labeled i = 1, . . . , n. The function ϕi(a) describes quantitative contribution of a particular
ith trait to the total fitness, depending on the individual value of the vector-parameter a.
For example, a may be an individual genotype and then {ϕi(a)} is the set of phenotypical
traits of interest. The function fi(t) describes relative importance of the trait contribution
depending on the environment, population size, etc.
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The reproduction coefficient (8) for the time interval [0, t) under condition (15) is
given by

Kt(a) = exp

(
n∑

i=1

qi(t)ϕi(a)

)

where qi(t) =
∫ t

0
gi(u)du.

It follows from Proposition 1 that the current distribution of the selection system

dl(t,a)/dt = l(t,a)F (t,a) with F(t,a) =
n∑

i=1

gi(t)ϕi(a) (16)

is the generalized Boltzmann distribution

Pt(a) = 1

E0[Kt ]K
t(a)P0(a)

= 1

E0[exp(
∑n

i=1 qi(t)ϕi)] exp

(
n∑

i=1

qi(t)ϕi(a)

)

P0(a). (17)

Condition (15) allows us to define for the associated selection system (7) the Boltzmann
factor exp(Φ) with Φ(q,a) = ∑n

i=1 qiϕi(a) and the partition function

Z(q) = E0

[

exp

(
n∑

i=1

qiϕi

)]

(18)

where q(t) = (q1(t), . . . , qn(t)).
Remark that the partition function (18) has a clear biological sense within the frame-

works of selection system (7), (15): Z(q) = E0[Kt ] is equal to the ratio of the current and
initial population sizes due to formula (9).

Let us explore the properties of the solution (17) of replicator equation (6), (15) and
associated selection system (16). Denoting ϑ = (ϕ1, . . . , ϕn) let pt(ϑ) be the pdf of the
random vector ϑ at t moment. Let λ = (λ1, . . . , λn); denote

M(λ) =
∫

A

exp

(
n∑

i=1

λiϕi(a)

)

P0(a)da

=
∫

R

exp

(
n∑

i=1

λixi

)

p0(x1, . . . , xn)dx1, . . . , dxn

the moment generation function (mgf) of the initial distribution. It is well known that mgf
uniquely determines the distribution. The mgf-s of all widely used distributions (such as
normal, exponential, Gamma-distribution, etc.) are known in the analytical form. In gen-
eral, one can consider the mgf of any given initial pdf as a known or at least as easily
computable function. What is important is that the partition function (18) for the associ-
ated selection system is readily computed if the mgf of the initial system distribution is
given: Z(q) = M(q).

Now we are able to formulate the main results.
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Theorem 1.

(1) Let Pt be the solution (17) of replicator equation (6), (15). Then at every moment t

the distribution Pt provides minimum of I [Pt : P0] over all probability distributions
compatible with the constraints Ai(t) = Et [ϕi], i = 1, . . . , n;

(2) The values of constraints evolve due to the associated selection system and at each
time moment are equal to

Ai(t) = E0
[
ϕiK

t
]
/E0

[
Kt

] = ∂i ln(M(q(t))); (19)

(3) Dynamics of the constraints are determined by the covariance equation

dAi(t)/dt = Covt [F,ϕi]; (20)

the current covariance Covt [ϕi, ϕk] of the traits ϕi, ϕk can be computed by the for-
mula

Covt [ϕi, ϕk] = [
∂2

ikM(q(t)) − ∂iM(q(t))∂kM(q(t))
]
/M(q(t)).

Assertion (1) can be proven directly by solving the corresponding variation problem
but one can use known results; see Section 2. Let us compare the MaxEnt distribution p∗
and the solution of the replicator equation at moment t :

p∗(a) = 1

B
exp

(

−
n∑

i=1

λiϕi(a)

)

m(a), B(λ) = Em

[

exp

(

−
n∑

i=1

λiϕi

)]

where λ = {λi} is the solution of the system −∂i lnB = Ai , and

Pt(a) = 1

E0[Kt ] exp

(
n∑

i=1

qi(t)ϕi(a)

)

P0(a),

E0
[
Kt

] = E0

[

exp

(
n∑

i=1

qi(t)ϕi

)]

where qi(t) = ∫ t

0 gi(r)dr . Identifying the pdfs P0 and m, we see that then B(λ) = M(−λ),
and the pdf Pt at given instant t coincides with p∗ if λi = −qi(t). We have already proven
that if the constraints are defined as Ai(t) = E0[ϕiK

t ]/E0[Kt ] then Ai(t) = Et [ϕi] and
{qi(t)} solve the system ∂i ln(M(q(t)) = Ai(t). This system is identical to that which de-
fines the Lagrange multipliers, −∂i lnZ(λ) = Ai . Hence, the last system has the solution
λi = −qi(t), and the MaxEnt distribution p∗ under constraints Ai(t) exists and coincides
with the solution Pt of the replicator equation.

Next, the first equality in (19) directly follows from (17) and the second one follows
from the definition of mgf M(t). The equality (20) follows from the Price equation (12)
as dϕi/dt = 0.

Now let us collect together some useful formulas, which follow from Eqs. (5), (8), (9),
and (17).
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Proposition 5. The production of information I [Pt : P0] can be computed with the help
of the following formulas:

I [Pt : P0] = Et [Φ(t, .)] − ln
(
N(t)/N(0)

);
I [Pt : P0] = E0

[
ΦeΦ

]
/E0

[
eΦ

] − lnE0
[
eΦ

];

I [Pt : P0] =
n∑

i=1

qi(t)∂i ln
(
M

(
q(t)

) − ln
(
M

(
q(t)

))
.

The theory developed above for selection systems with the fitness of the form (15)
can be applied immediately only if the time-dependent components gi(t) are known ex-
plicitly. As a rule, it is not the case for most interesting and realistic models where the
time-dependent components should be computed depending on the current population
characteristics. For example, a well-known logistic model corresponds to the function
g(t) = 1 − N(t)/B where B = const is the upper boundary of the population size; Allee-
type models, which also take into account the lower boundary b of the population density,
use the function g(t) = (1 − N(t)/B)(N(t)/b − 1).

Suppose that the individual reproduction rate can depend on some integral charac-
teristics of the system, which we call “regulators,” having the form H(t) = Et [h] or
S(t) = N(t)Et [s] where h, s are given functions. The total system size N(t) is also a
regulator of a special importance. Suppose also that the fitness of every individual is de-
termined by a given set of traits and may depend on the total population only through the
regulators. In such a model with self-regulated fitness, the regulators and hence the repro-
duction rate are not given as explicit functions of time but should be computed together
with the current pdf P (t,a) at each time moment.

It was proved in Karev (2009) that a self-regulated selection system can be reduced to
an equivalent system of ordinary differential equations (ODEs). These results allow us to
define and compute the total population size, the current distribution of the system and
the values of all regulators at any time moment. Eventually, all results of this section can
be applied to self-regulated selection systems.

5. Applications and examples

Dynamics of any inhomogeneous biological system that is not in equilibrium is accom-
panied by the change of distributions of some or all of its characteristics, and hence by
the production of information. Let us trace this process in some examples of dynamical
models of biological populations.

5.1. Inhomogeneous Malthusian model

Let F = ϕ(a); we can consider the value ϕ(a) = a as the distributed parameter and study
the simplest replicator equation dPt (a)/dt = Pt(a)(a − Et [a]). The corresponding inho-
mogeneous Malthusian model is

dl(t, a)/dt = al(t, a). (21)
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Let M(λ) = ∫
A

exp(λa)P0(a)da be the mgf of the initial distribution. Then the solution
of (21) is given by l(t, a) = exp(at)l(0, a),N(t) = N0M(t), and the solution of the repli-
cator equation

Pt(a) = P0(a) exp(at)/M(t). (22)

We can see that even the simplest replicator equation possesses a variety of solutions
depending on the initial distribution. Recall that according to the theorem of Bernstein
(see, e.g., Feller, 1966, Chap. 13.4), a function M(λ)is the mgf for some pdf if and
only if it is absolutely monotone and M(0) = 1. So, the total size of inhomogeneous
Malthusian population can change as arbitrary absolutely monotone function M(t) at
corresponding initial distribution. According to Proposition 2, dN/dt = NEt [a] and
dEt [a]/dt = Vart [a] > 0 (it is the simplest version of the Fisher fundamental theorem
of selection Fisher, 1999, see also Frank, 1997); hence, any inhomogeneous Malthusian
population increases hyperexponentially.

Next, for these models F = a,Φ = at , and according to Proposition 3

dI [Pt : P0]
dt

= Covt [Φ,F ] = tVart [a] (23)

so that the production of information increase monotonically.
The following formula, which connects the relative entropy with the current total size

and the mean reproduction rate (see (14)) is also of interest:

I [Pt : P0] = tEt [a] − ln(N(t)/N(0)). (24)

For practical computations of I [Pt : P0] at different initial distributions, it is convenient
to rewrite this formula as

I [Pt : P0] = td(lnM(t))/dt − lnM(t). (25)

The current distribution of the inhomogeneous Malthusian model provides the min-
imal production of information at a single constraint, Et [a] = A(t); this constraint
varies with the time due to the model dynamics and can be computed by the for-
mula

Et [a] = d lnM(t)

dt
.

Let, for example, parameter a be normally distributed at the initial instant, so that
M(λ) = exp(λ2σ 2/2 + λm) where m is the mean and σ 2 is the variance. It is easy to
show (Karev, 2005a, 2005b) that the parameter distribution at any t is also normal with
the mean Et [a] = m+ tσ 2 and with the same variance σ 2. The production of information
is equal to I [Pt : P0] = t2σ 2/2, and I [Pt : P0] → ∞ at t → ∞.

Let parameter a be gamma-distributed with coefficients s, k, b at the initial instant, so
that M(λ) = exp(λb)(1−λ/s)−k for λ < s. Then the parameter is also Gamma-distributed
with coefficients s − t, k, b at the moment t < s (Karev, 2005a). The production of infor-
mation is I [Pt : P0] = k ln(1 − t/s) + kt/(s − t), and I [Pt : P0] → ∞ at t → s < ∞. In
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particular, if k = 1, b = 0, i.e., the initial distribution is exponential with the mean s, then
M(λ) = (1 − λ/s), N(t) = N(0)(1 − t/s) and I [Pt : P0] = ln(1 − t/s) + t/(s − t).

The latter example is applicable to problems of global demography and early biological
evolution; see Sections 5.2 and 5.3 below.

5.2. Global demography

The growth of the world population up to ∼1990 was described with high accuracy by the
hyperbolic law N(t) = C/(T − t) with C ≈ 2 ·1011 that predicts a demographic explosion
at the time T ≈ 2025 (von Forster et al., 1960). This formula solves the quadratic growth
model dN/dt = N2/C, in which the individual reproduction rate is proportional to the
total human population. Apparently, this relationship makes no “biological” sense and
cannot be the basis of any realistic theory.

If the mean reproduction rate is the only quantity, we can estimate from historical
demographic data, then the most likely (the maximum entropy) distribution of the re-
production rate is the exponential one with the estimated mean (see, e.g., Kapur, 1989,
Section 3.2.1). The above results show (see Karev, 2005a for details) that the hyperbola
N(t) = C/(T − t) is implied not only by the quadratic growth model but also by the more
plausible Malthusian inhomogeneous model with an exponentially distributed reproduc-
tion rate such that s = T and the mean E0[a] = 1/T .

Given that any real population is inhomogeneous, the simplest inhomogeneous
Malthusian model is more acceptable as a starting point for global demography mod-
eling then the quadratic growth model. The population increases in such a way that the
distribution of the reproduction rate is exponential at every instant t < T with the mean
Et [a] = 1/(T − t), providing minimum of the production of information I [Pt : P0] under
the constraint At = 1/(T − t).

The “demographic explosion” occurs at the moment t = T when not only N(t) = ∞,
but also Et [a] = ∞, Vart [a] = ∞ and I [Pt : P0] = ∞. It is a corollary of the obviously
unrealistic assumption (incorporated implicitly into quadratic growth model) that the in-
dividual reproduction rate may take unlimitedly large values with nonzero probabilities.

When the reproduction rate in the model is bounded, a ∈ (0, c) and the mean value of
the reproduction rate is again prescribed, then according to the MaxEnt principle the ini-
tial distribution is the truncated exponential in that interval (Kapur, 1989, Section 3.3.1);
specifically for real demography data, c ≈ 0.114 (Karev, 2005a). The result is that N(t)

is finite, even though indefinitely increasing, for all t , and is very close to the hyperbola
for a long time (up to 1990 at corresponding values of coefficients).

As shown previously in Karev (2005a), the subsequent transition from the Malthu-
sian model to the inhomogeneous logistic model shows a transition from prolonged hy-
perbolical growth (the phase of “hyperexponential” development) to the brief transitional
phase of “almost exponential” growth accomplished by a sharp increase of the variance of
the reproduction rate and, subsequently, to stabilization. We conclude that the hyperbolic
growth of the humankind was not an exclusive phenomenon but obeyed the same laws as
any heterogeneous biological population. In particular, the minimum of the production of
information, i.e., the minimum of the KL-distance between the initial and current distri-
butions of the reproduction rate is achieved at every time moment under the given mean
rate at this moment.
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5.3. The model of early biological evolution

Nonhomogeneous Malthusian dynamics together with the principle of limiting factors
were used in a model of early biological evolution (Zeldovich et al., 2007). Each organism
was characterized by the vector a where the component ai is the thermodynamic proba-
bility that protein i is in its native conformation. The authors suppose that the organism
death rate d depends on the stability of its proteins as d = d0(1 − minai), d0 = const.
Neglecting possible mutations, the model can be formalized as the selection system
dl(t,a)/dt = l(t,a)B(m(a) − a0). Here, m(a) = min[a1, . . . , an],B = b/(1 − a0), b is
the birth rate, a0 is the native state probability of a protein; we let B = 1. Following
(Zeldovich et al., 2007), we can consider ai as independent random variables with com-
mon pdf f (a). Then the model can be reduced (see Karev, 2009) to the inhomogeneous
Malthusian equation dl(t,m)/dt = l(t,m)(m − a0) with the initial pdf of m equal to
g(m) = n(1 − G(m))n−1f (m) where G(m) = ∫ m

0 f (a)da.
This equation can be solved explicitly for given f (a) as it was described in Section 5.1.

Let P (t,m) be the pdf of m at t moment. Let f (a) = exp(−a/T )/T ,0 < a < ∞ be the
Boltzmann distribution with the mean T . Then (see Karev, 2009) P (0,m) ≡ g(m) =
n/T exp(−mn/T ) and P (t,m) = (n/T − t) exp(−m(n/T − t)) are also the Boltzmann
distributions. The total population size N(t) = N(0) exp(−a0t)

1
1−tT /n

, the mean value

Et [m] = 1
1−tT /n

.
The production of information in this model

I [Pt : P0] = ln(1 − tT /n) + tT /n

1 − tT /n
.

We can see now the similar phenomenon as in the previews example: the population
“blows up” at the moment tmax = n/T , i.e., N(t) and Et [m] tend to infinity at t → tmax.
The production of information increases monotonically and sharply tends to infinity at
t → tmax. So, the classical Boltzmann distribution, which allows arbitrary large values of
the parameter awith nonzero probability, has no biological sense within the framework
of the Malthusian inhomogeneous model. This problem can be eliminated by taking the
“truncated” Boltzmann distribution, which allows only bounded values of the parame-
ter a; see Karev (2009) for detail.

5.4. Models of tree stand self-thinning

Recently Dewar and Porte (2008) showed that the principle of maximal relative entropy
can be used to explain and predict species abundance patterns in ecological communities
in terms of the most probable behavior under given environmental constraints. Here, we
consider a particular ecological problem of dynamics of tree number in a forest, which
is one of the oldest and most important problems in forest ecology. A number of tree
interactions, variations in genetic structure, and various environment conditions affect the
growth and death of trees in complex ways. It seems to be impossible to take into account
all impacts on the death rate of trees in explicit form within the frameworks of a unique
model.

A promising way to overcome these difficulties is constructing tree population models
with distributed values of the mortality rate a. It was shown in Karev (2003) that different
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formulas of forest stand self-thinning can be considered as solutions of inhomogeneous
Malthus extinction model

dl(t, a)/dt = −acl(t, a),N(t) =
∫

A

l(t, a)da (26)

with corresponding initial distribution of the mortality rate a. Here, c = const is a time-
scaling parameter.

Let us consider, for example, a known formula suggested by Hilmi (see Karev, 2003
for references) for tree number N(t) dependently on the age t of tree stand,

N(t) = N(0) exp
(
a0

(
e−ct − 1

))
. (27)

One can notice that this formula practically coincides with a well-known Hompertz func-
tion. In what follows, we let c = 1 for simplicity. It was shown in Karev (2003) that (27)
is an exact solution of (26) if the mortality rate a has the Poisson distribution with av-
erage a0 in an initial instant. Then the distribution of a at any moment of time is also
Poisson with the mean Et [a] = a0 exp(−t). Indeed, the mgf of the Poisson distribution
M(λ) = exp(a0(e−t − 1)), and all assertions follow from formulas of Section 5.1.

The production of information in this model can be computed according to the for-
mula (24), I [Pt : P0] = −tEt [a] − ln(N(t)/N(0)) = a0(1 − e−t (t + 1)). Hence, the pro-
duction of information increases with time and tends to a limit value a0 when the number
of trees tends to its limit value N∞ = N(0) exp(a0).

5.5. Quasispecies equation and linear systems

Quasispecies theory, as it was formulated by Eigen and coauthors (Eigen, 1971; Eigen and
Winkler, 1974) is based on the concept of information theory and studies the equation,
which can be written in the form

dx(t, i)/dt =
∑

k

wikx(t, k) − w(t)x(t, i). (28)

Here i is a running index attributed to all distinguishable self-reproductive molecular units
(sequences) and x(t, i) is the respective concentration. The coefficients wij = AjQij for
i 	= j are the so-called mutation values and wii = AiQii − Di are the selective values, Aj

is the replication rate of sequence j and Qij is the mutation probability from sequence
j to i; w(t) = ∑

i

∑
j wij xj (t) is the mean productivity of the sequences population at t

moment.
Let us consider the associated inhomogeneous population model

dl(t, i)/dt =
∑

k

wikl(t, k). (29)

According to Proposition 1(i), in order to solve quasispecies equation (28) we can solve
(a simpler) associated system (29) and then find the concentrations x(t, i) by formulas
x(t, i) = l(t, i)/N(t) where N(t) = ∑

i l(t, i).
Note that, although quasispecies equation (28) is nonlinear, the associated system (29)

is a general linear system with constant coefficients for which the solution and the as-
ymptotic behavior are well known. The solution of the quasispecies equation was given in
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Thompson and McBride (1974) under the following condition: the matrix W = {wik} is
diagonalizable, i.e., there exists matrix V such that V −1WV = D where D is a diagonal
matrix.

This condition implies that the matrix W has n linearly independent (right) eigen-
vectors v(j), j = 1, . . . , n and the columns of the matrix V are these n eigenvectors; the
corresponding eigenvalues δi are the elements of the main diagonal of the matrix D (these
assertions come from textbooks; see, e.g., Horn and Johnson, 1986, Chap. 1). Under the
same condition, let us change the variables

z(t, i) =
∑

j

hi
j l(t, j) (30)

where hi
j are the elements of the matrix H = V −1; remind that the rows of matrix H are

proportional to the left eigenvectors h(i), i = 1, . . . , n of the matrix W . Then

dz(t, i)/dt =
∑

j,k

hi
jwjkl(t, k) = δiz(t, i). (31)

The variables z(t, i) are “quasispecies,” a certain mixture of the initial species l(t, j). The
probabilities Pt(i) = z(t, i)/

∑
k z(t, k) solve the simple replicator equation (see Eigen

and Winkler, 1974)

dPt (i)/dt = Pt(i)

(

δi −
∑

k

δkPt (k)

)

. (32)

The associated linear model (29) is reduced to the Malthusian inhomogeneous model (31)
with the Malthusian parameter taking only a finite number of values.

Equation (32) can be easily solved directly; coming back to the initial variables, we
can get the solutions of Eqs. (29) and (28) as described previously in Thompson and
McBride (1974), but we rather interested in the dynamics of quasispecies distribution and
corresponding production of information. Let M(λ) = ∑

i exp(λδi)P0(i) be the mgf of
the initial distribution. Then according to formula (22),

Pt(i) = P0(i) exp(δi t)

M(t)
. (33)

The production of information is equal to

I [Pt : P0] = tEt [δ] − lnM(t) = td(lnM(t))/dt − lnM(t).

For example, if the initial distribution of quasispecies is uniform, Pi(0) = 1/N , then

I [Pt : P0] = lnN − ln
∑

i

exp(tδi) + t

∑
i δi exp(tδi)

∑
i exp(tδi)

.

A more realistic supposition is that the distribution of the initial species, p(j) =
l(0, j)/N(0) was uniform at the initial time moment. Then we can compute the initial
distribution of quasispecies using the formula z(0, i) = ∑

j hi
j l(0, j); see (30). Hence,
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if the initial distribution of species is uniform, then z(0, i) is proportional to the sum of
components of ith left eigenvector h(i). In a general case, if p(j) is the initial frequency
of j th species, then the initial frequency of ith quasispecies is proportional to Ep[h(i)].

For any initial distribution of species and corresponding distribution P0 of quasi-
species, the current distribution of quasispecies has the form of generalized Boltzmann
distribution (33). It minimizes the KL-divergence between the current and initial distri-
butions, i.e., the production of information among all distributions compatible with the
constraint

∑

i

δiPt (i) = A(t). (34)

The constraint (34) prescribes a mean productivity of quasispecies. It is known and can be
easily shown that the mean productivity is invariant under the orthogonal transformation,
so that the mean productivity of the initial population, w(t), is equal to A(t).

The constraint value at each time moment can be easily computed if the mgf of the
initial distribution of quasispecies is known: A(t) = d ln(M(t))/dt .

Let us emphasize that the constrained value is not a constant but evolves according to
the covariance equation (20), dA(t)/dt = Vart [δ] = ∑

i (A(t) − δi)
2Pt(i).

The mean productivity of the quasispecies (or sequence) population at t moment is the
unique fundamental constraint, which completely defines the distribution of quasispecies
due to the MinxEnt principle.

6. Discussion and conclusion

The principal of maximum relative entropy as a method for inference of unknown distrib-
ution was successfully applied for the last decades to the analysis of different physical and
statistical problems (see, e.g., Proceedings of 1-27 International Workshops on Bayesian
Inference and Maximum Entropy Methods in Science and Engineering). Applications of
the notion of relative entropy or information entropy and the MaxEnt principle to vari-
ous problems of mathematical biology, in particular to genetic models of natural selection
(Ginzburg, 1977), ecological models (Alexeyev and Levich, 1997; Dewar and Porte, 2008;
MacArthur, 1960; Pueyo et al., 2007), genomics (Lezon et al., 2006) and to replicator dy-
namics (Bomze, 1991) also have a long history. In this paper, we show that for a wide
class of biological models, selection systems, the dynamical version of MaxEnt principle
(in the form of minimal information production) can be derived from the system dynamics
instead of being postulated.

The selection system describes a closed population of individuals each of which is
characterized by a set of qualitative traits; the values of these traits determine the repro-
duction rate of the individual. It is supposed that the mean values of the traits are the only
information that is known from measurements. The dynamics of the joint distribution of
these traits depending on the initial distribution and on correlations between the traits is
the main problem of interest, which can be solved effectively. The evolution of distribu-
tions of selection systems is governed by a certain class of replicator equations; similar
equations appear in different scientific areas. We show that the solution of any replica-
tor equation from this class is a generalized Boltzmann distribution. Having the solution
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of the replicator equation, we can compute the current mean values of the traits at any
instant. Then considering these mean values as constraints, we show that the “MaxEnt
distribution,” which provides the minimum of the KL-divergence between the initial and
current distributions coincides with the solution of the replicator equation. This solution
was obtained independently of the MaxEnt algorithm. Hence, the principle of minimum
of the production of information, equivalently, the MaxEnt principle, can be considered
as the variational principle which governs the selection system dynamics.

There exists an “observer-dependent” view of the entropy and cross-entropy concepts
(defended by Jaynes (1957, 2003) and, subsequently, by many other authors). Briefly,
the authors claimed that entropy is a property of our description of a system rather than
a property of a system. We show that, at least within the framework of selection sys-
tems, we cannot choose whether or not to prescribe the property of minimization of the
KL-divergence to the selection systems whose distribution is governed by the replicator
equations. It is an intrinsic property of any solution of the replicator equations that is
fulfilled due to the system dynamics at any instant of its evolution. We are therefore com-
pelled to adopt the “objective” view of the relative entropy concept and its maximization,
at least when the replicator equation is taken as the “basic law.” “Subjective-dependent”
is only the choice of traits that characterize the system, whose joined distribution is of our
interest under condition that we have “testable information” about the traits.

Our approach is illustrated for the Malthusian-like selection systems. As a result of
the selection process, the production of information in such systems increase with time
being minimal at each time moment over all distributions of the Malthusian parameter
compatible with the current values of constrains. We explore some particular Malthusian
selection systems which are of considerable intrinsic interest, namely, the model of global
demography, the model of early biological evolution, the ecological model of forest self-
thinning, and the quasispecies equation. In all cases, the mean value of the reproduction
rate is considered as the only testable information about the systems.

We show that the standard exponential (Boltzmann) distribution cannot be taken as the
initial distribution of the reproduction rate for the Malthusian selection system, because
the system “blows up” at certain time instant. The demography model shows the hyper-
bolic growth discovered by Forster and coworkers. Similar problem appears in the model
of early biological evolution. The problem can be eliminated if the initial distribution is
truncated exponential, which allows only bounded values of the Malthusian parameter.
Considering the quasispecies equation we concentrated on the problem of dynamics of
the distribution of a quasispecies system and corresponding production of information.
The principal new finding is that the current distribution of quasispecies minimizes the
production of information at any initial distribution in any instant. The obtained results
can be extended to models of biological populations and communities whose growth is
governed by self-regulation processes.
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