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Abstract Biophysicists use single particle tracking (SPT) methods to probe the dynamic
behavior of individual proteins and lipids in cell membranes. The mean squared displace-
ment (MSD) has proven to be a powerful tool for analyzing the data and drawing con-
clusions about membrane organization, including features like lipid rafts, protein islands,
and confinement zones defined by cytoskeletal barriers. Here, we implement time series
analysis as a new analytic tool to analyze further the motion of membrane proteins. The
experimental data track the motion of 40 nm gold particles bound to Class I major histo-
compatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells.

Our first novel result is that the tracks are significantly autocorrelated. Because of this,
we developed linear autoregressive models to elucidate the autocorrelations. Estimates of
the signal to noise ratio for the models show that the autocorrelated part of the motion
is significant. Next, we fit the probability distributions of jump sizes with four different
models. The first model is a general Weibull distribution that shows that the motion is
characterized by an excess of short jumps as compared to a normal random walk. We also
fit the data with a chi distribution which provides a natural estimate of the dimension d

of the space in which a random walk is occurring. For the biological data, the estimates
satisfy 1 < d < 2, implying that particle motion is not confined to a line, but also does not
occur freely in the plane. The dimension gives a quantitative estimate of the amount of
nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution
and use the generalized extreme value distribution to show that the biological data also
have an excess of long jumps as compared to normal diffusion. These fits provide novel
estimates of the microscopic diffusion constant.

Previous MSD analyses of SPT data have provided evidence for nanometer-scale con-
finement zones that restrict lateral diffusion, supporting the notion that plasma membrane
organization is highly structured. Our demonstration that membrane protein motion is au-
tocorrelated and is characterized by an excess of both short and long jumps reinforces
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the concept that the membrane environment is heterogeneous and dynamic. Autocorrela-
tion analysis and modeling of the jump distributions are powerful new techniques for the
analysis of SPT data and the development of more refined models of membrane organi-
zation.

The time series analysis also provides several methods of estimating the diffusion con-
stant in addition to the constant provided by the mean squared displacement. The mean
squared displacement for most of the biological data shows a power law behavior rather
the linear behavior of Brownian motion. In this case, we introduce the notion of an in-
stantaneous diffusion constant. All of the diffusion constants show a strong consistency
for most of the biological data.

Keywords Time series analysis · Single particle tracking · Cell membrane · Mean
squared displacement

1. Introduction

Single particle tracking methods (SPT) are used by biophysicists to visualize the mo-
tion of macromolecules on the cell membrane (Kusumi et al., 2005b). The observed
motion is erratic and is consequently modeled as a random walk (Nicolau et al., 2007;
Ritchie et al., 2005; Tang and Edidin, 2003; Saxton, 2001; Saxton and Jacobson, 1997;
Berg, 1993). The dynamic data acquired by particle tracking are used to provide insight
into the dynamic organization of the membrane in living cells (Jin and Verkman, 2007;
Kabouridis, 2006; Suzuki et al., 2005; Kusumi et al., 2005a; Murase et al., 2004; Edidin,
2003a; Edidin, 2003b; Fujiwara et al., 2002; Vrljic et al., 2002; Dietrich et al., 2002;
Smith et al., 1999). Understanding signal transduction is a fundamental problem in cell
biology (Wilson et al., 2004; Oliver et al., 2004). Results from SPT are integrated with
other measurements to develop spatiotemporal models of signal transduction. The track-
ing requires the molecule be labeled with a probe. A standard label is a gold nanopar-
ticle 40 nm in diameter. Other labels used are particles of about the same size made
from other materials (e.g., polystyrene) or fluorescent molecules (Giepmans et al., 2006;
Wieser et al., May 2007). Some recent tracking techniques emphasize the use of quantum
dots (Andrews et al., 2008; Lidke et al., 2004; Lidke and Arndt-Jovin, 2004; Echarte et
al., 2007; Lidke et al., 2005; Dahan et al., 2003), which are available in several colors,
allowing several particles to be tracked simultaneously. With gold labels, the centroids of
the particles can be located to within 30 nm (nanometers) (Saxton and Jacobson, 1997;
Ghosh and Webb, 1994). The data are commonly taken at video rate (1/30 second) but
can be taken much faster (Kusumi et al., 2005c). Biophysicists typically analyze SPT
data using the mean squared displacement (MSD), which for random walks generated
by mean-zero, independent, and identically distributed (IID) jumps, is proportional to
time. Usually the estimates of the MSD for biological data are not proportional to time,
and consequently the diffusion is viewed as anomalous (Nicolau et al., 2007). A re-
cent discussion of the difficulties in analyzing SPT data is given in Destainville and
Salome (2006) and in the sequence of papers (Saxton, 2007; Destainville et al., 2008;
Saxton, 2008).

In this paper, we view SPT data as a time series (Shumway and Stoffer, 2006) and then
use time-series analysis to better understand the implications of some experimental data.
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We focus on understanding the motion of particles at the finest nanometer spatial scale
appropriate for the data. Because the mean squared displacement of particle tracks grows
with time, the particle positions are not a stationary process. In this case, the usual strategy
in statistical analysis is to study the time series obtained by differencing the original time
series. which in our context is the time series of jumps generating the random walk. It is
the jumps that we analyze.

The experimental biological data are from the paper Short Class I Major Histocompati-
bility Complex Cytoplasmic Tails Differing in Charge Detect Arbiters of Lateral Diffusion
in the Plasma Membrane by Capps et al. (2004, 1994). This paper studies the directed and
Brownian movement of the wild type and seven mutants of the class I major histocom-
patibility complex (MHCI) molecule on the membranes of mouse hepatoma cells. MHCI
is a transmembrane protein with a single membrane spanning domain and an extracel-
lular accessory subunit, β2-microglobulin. It plays a central role in antigen presentation
for the development of immune responses. In the biology paper, the MHCI molecules are
labeled with 40 nm gold particles. The authors assume the dynamic behavior of the mem-
brane molecule is not seriously affected by the presence of the gold tag. The data consist
of 34 gold particle paths with between 623 and 2,117 points in a path. The coordinates
of the positions are in nanometers and the time step is given by the standard video rate
(1/30 second). Herein, we refer to these data as the biological data. The paths for these
data are displayed in Appendix B. We do not attempt to reanalyze completely the whole
data set; we use a few selected data sets to illustrate the techniques being presented. We
supplemented the data with a 10,000 step random walk whose jumps have mean zero
normally distributed components. The artificial data were used to test our algorithms and
codes.

In this introductory section, we set up the notation for modeling the biological data and
introduce a null hypothesis that the components of the jumps between particle locations
are IID and have a normal distribution. We then give the results of some preliminary
analyses of the biological data. Graphically, the biological data analyzed appear to have
normally distributed components, which is equivalent to the jump sizes having a simple
Weibull distribution (see Cherry et al., 1998, Eq. (1)) while the angles are uniformly
distributed. However, essentially none of the biological data pass rigorous statistical tests
for having these properties, that is, the null hypothesis is rigorously shown to be false.

Section 2 provides a series of statistical tests for the time series of the jumps that help
elucidate the nature of the molecular motion. We then apply these test to the biological
data. First, we show that the jumps are a statistically stationary process so that it is ap-
propriate to apply standard time series analysis. Our first important observation is that
the time series of the jumps is autocorrelated, meaning that some significant part of the
motion is deterministic. This is surprising, given that the time steps in the biological data
are 1/30 of a second. The results imply that the walks are autocorrelated over significant
times and distances. To characterize the autocorrelated part of the motion, we produce lin-
ear vector multistep autoregression models for the biological data. These models isolate
the autocorrelated (deterministic) part of the motion from the random part (white noise)
of the motion. Essentially all of the biological data have a nontrivial deterministic model.
We estimate the importance of the deterministic motion using the signal to noise ratio.
However, the autocorrelations are not so strong that it is possible to predict the motion.
This section ends by showing the null hypothesis is false in a very strong sense. Conse-
quently, analysis of the paths using techniques adapted to autocorrelated data will be more
accurate than those based on the assumption that the steps are independent.
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In Section 3, we propose four models for the marginal probability distribution of the
lengths of the jumps. The first is a generalized Weibull distribution. This analysis implies
that the biological data have excessive short jumps and possibly excessive long jumps as
compared to the normal diffusion where the jumps have a simple Weibull distribution.
The chi distribution also generalizes the simple Weibull distribution to spaces of arbitrary
dimensions. This model implies that the particles are diffusing on a space of dimension d

where 1 < d < 2. This provides an estimate of the amount of fine scale obstructions to the
diffusion that can be interpreted as a fractal dimension (Kenkel and Walker, 1996). The
fractal dimension significantly affects reaction kinetics (Berry, 2002; Saxton, 1994).

Next, we introduce a novel distribution to test simultaneously if there are an excessive
number of both long and short jumps. All of the biological data have excess long jumps
in the sense that the distributions have polynomially decaying tails, not exponentially
decaying tails as in normal diffusion. Finally, we introduce the generalized extreme value
(GEV) distribution studied by two of Ying (2008), Coles (2001) that also shows that there
are excessive long jumps in the biological data. All four of these distributions fit the data
well in the sense that the residual of the least squares fits is small. Additionally, the p

values for the fits indicate that the fits are good for all but two experiments. At the end of
Section 3, we estimate the probability of the zero length jumps and then use maximum
likelihood to estimate the parameter for the GEV distribution. These results also show
there are excessive long jumps.

Because the biological data are autocorrelated, using the idea that the mean squared
displacement is proportional to time to estimate the diffusion constant may not be accu-
rate. In Section 4, we introduce seven methods of estimating the diffusion constant. The
most basic method computes the diffusion constant in terms of the second moment of the
jump sizes. This estimates the diffusion constant on the finest possible scale. The diffusion
constant can also be computed from the second moment of models for the jump distrib-
ution for which we report the results for the chi distribution. An important estimate uses
the developed autoregression models to decompose the jumps into a deterministic part
and a white-noise part and then uses the white noise to estimate the diffusion constant.
We introduce four methods of fitting the MSD, two linear models, and two power law
models, each of which gives an estimate of the diffusion constant. These models indicate
that the autocorrelations do modestly affect the estimates. All of these methods produce
modestly different estimates, but overall, the results are consistent. All of the methods
produce accurate results for our artificial data. The MSD remains the tool of choice for
the analyses of larger scale effects such as cytoskeletal obstructions to free diffusion (Jin
and Verkman, 2007), but such analyses should take into account any autocorrelations in
the data.

The last section gives some conclusions and some critical open problems that need to
be solved before these methods can be used for a full analysis of biological data.

1.1. Background

In this paper, we will use the units nanometers (nm = 10−9 m) to measure length and
microseconds (μ = 10−6 s) to measure time. Let

Jn = (�Xn,�Yn), 1 ≤ n ≤ N, (1)
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be vector random variables, that is, let �Xn and �Yn be random real variables. We will
not assume that the Jn are independent or identically distributed (IID). The positions of
particles in the plane will be modeled by a random walk in the plane given by

P0 = (X0, Y0), Pn = (Xn,Yn) = J1 + J2 + · · · + Jn, 1 ≤ N, (2)

where (x0, y0) is a point in the plane. The data to be analyzed gives the positions Pn of
the walkers, so then the jumps are

Jn = Pn − Pn−1 = (�Xn,�Yn), 1 ≤ n ≤ N. (3)

It is convenient to use polar coordinates to represent the jumps. So, the lengths of the
jumps Ln and the angle Θn between the jump vector and the x-axis are

Ln = ‖Jn‖ =
√

�X2
n + �Y 2

n , Θn = arctan(�Xn,�Yn), (4)

where arctan gives a value in [−π,π ] such that if Ln �= 0 then cos(Θn) = �Xn/Ln and
sin(Θn) = �Yn/Ln, and consequently tan(Θn) = �Yn/�Xn if �Xn �= 0. If J = (0,0),

then Θ = 0 (in MatLab).
If the probability distribution function (PDF) of the jump lengths is given by a radial

distribution p(r), then the moments of the distribution are given by

Mi =
∫ ∞

0
rip(r) dr, 0 ≤ i. (5)

For a PDF, M0 = 1. The moments are estimated using

Mi = 1

N

N∑
n=1

Li
n. (6)

An important null hypothesis is that the Cartesian coordinates �X and �Y are inde-
pendent and each is IID with mean zero and standard deviation σ . If we use the fact that
dx dy = r dr dθ for polar coordinates, then the joint probability measure for X and Y is

1

σ
√

2π
e

− x2

2σ2 dx
1

σ
√

2π
e

− y2

2σ2 dy = 1

σ 22π
e

− x2+y2

2σ2 dx dy

= r

σ 2
e

− r2

2σ2 dr
dθ

2π
. (7)

Consequently, L and Θ are independent, Θ is uniformly distributed in [−π,π], and L

has a simple Weibull probability distribution

w(r,σ ) = r

σ 2
e

− r2

2σ2 . (8)

Reversing the argument shows the converse is also true. The three dimensional analog of
this argument produces the Maxwell–Boltzman velocity distribution commonly used in
thermodynamics.
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The mean squared displacement, which is frequently used to analyze random walks, is
the expected value of the square of the lengths of the paths:

MSDn = E
(‖Pn‖2

)
. (9)

In the analysis of a path Pn, the MSD is estimated by

MSDn = 1

N − n

m=N−n∑
m=1

‖Pn+m − Pm‖2, 1 ≤ n ≤ N − 1. (10)

The estimate is only meaningful for values of n � N .
In the null hypothesis, if we do not assume that the components of the jumps are

normally distributed, but only that the first and second moments of the jumps are finite,
then

MSDn = E
(‖Pn‖2

) = E

(∥∥∥∥∥
n∑

k=1

Jk

∥∥∥∥∥
2)

=
n∑

k=1

E
(‖Jk‖2

) =
n∑

k=1

E
(
L2

k

) = M2n, (11)

so the MSD grows linearly with the time step n. If the time step in the walk is �t and
t = n�t , then

MSD(t) = MSDn = M2n = M2

�t
t. (12)

In the case that the components of the jumps are normally distributed with mean zero
and standard deviation σ 2 or equivalently, the length of the jumps have a simple Weibull
distribution with second moment M2 = 2σ 2 then

MSDn = 2σ 2n, MSD(t) = 2σ 2

�t
t. (13)

The analysis of the data is performed either using MatLab programs that we have de-
veloped or utilities in the statistical software R. These are available on the web. One test
we performed on our software was to generate 10,000 jumps with mean zero normally
distributed components and then use these to generate an IID random walk that we ana-
lyzed.

1.2. Preliminary analysis of the biological data

The results of all of our analyses are tabulated in Appendix A. The data are divided into
8 groups that correspond to the experimental conditions given in Capps et al. (2004). The
data in this Appendix are frequently reported with fewer digits than in the paper.

The results of the preliminary analysis of the biological data are given in Table A.1.
The first column in this table labels the data set with a number that corresponds to the
experiment label in Table A.5. The number N of the point in the track is given in column 2.
The first tests that we apply to data are simple sanity checks, the most important of which
is computing the largest jump (see column 3 of Table A.1), and the mean jump size (see
column 4). The error in measuring the position of the particle is less than 30 nm, so
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column 5 gives the % of jumps less that 5 nm, an indication of the number of jumps
so small that they could easily be zero. All of the tracks have a significant number of
small jumps. Any data set with a large percentage of small jumps cannot satisfy the null
hypothesis of having a Weibull distribution of the jump sizes because this distribution is
zero for zero length jumps. Column 6 of Table A.3 gives the percentage of jumps that are
exactly zero as this can cause problems in some of the statistical tests; about half of the
biological tracks had zero jumps.

We plotted the cumulative distribution functions (CDF) of X, Y , L, and Θ (not
shown). For X and Y , the plots look normal, while for L the plots appear similar to the
CDF for the Weibull, and for Θ the plots look linear. However, careful statistical analysis
shows that none of these “null hypotheses” about the distributions of X, Y , L, and Θ are
correct.

2. Time series tests

The application of time series tests (Shumway and Stoffer, 2006) requires the time series
data to be ergodic and stationary. Intuitively, ergodic means that the statistics of many
paths at some fixed time is equivalent to looking at one path for a long time. The lack
of ergodicity in some biological data similar to ours is discussed in Sokolov (2008) and
the references therein. However, we will assume that the data to be analyzed are ergodic,
but we will keep in mind that lack of ergodicity could be affecting our results. Stationary
means that the mean and standard deviation over a large number of series do not depend
on time. The positions Pn in a random walk are not stationary because their standard
deviation, which is proportional to the mean squared displacement, commonly grows with
time. In such a situation, the standard statistical approach is to study the time series of the
differenced data, which for particle tracking data is just the jumps Jn. Note that Pn and Jn

are vector valued where the vectors have a physical meaning of positions in the plane. The
statistical software R has packages for analyzing vector time series, but the underlying
assumption is that these are vectors of data. A common application would be to check if
the columns of data are correlated. For the biological data, this would mean that the x and
y components of the time series are correlated, which turns out to not be very relevant for
the biological data.

The book (Shumway and Stoffer, 2006) is an excellent reference for the statistical
tests that we apply to the biological data. We use the statistical software R to do the
testing. Unfortunately, R does not contain a direct stationarity test for vector time series.
However, the size of the mean of the jumps for each of the experiments is less than 1 nm
(see column 6 of Table A.1), so the data can be modeled as having mean zero. Because
the jumps are modeled as mean zero, the standard deviation of the jumps Jn is the same
as the second moment M2 of the lengths of the jumps L2

n = X2
n + Y 2

n (see columns 7
of Table A.1). As a result, it is reasonable to test the scalar time series Ln. There are
several test available to check if a scalar time series is stationary; we use two tests that
are described below. For the biological data, the scalar time series Ln are stationary so we
can now apply the standard time series analysis.

Surprisingly, the jumps have a significant autocorrelation, so they do not satisfy the
commonly used hypothesis of being independent. The first two autocorrelation coeffi-
cients are displayed in columns 8 and 9 of Table A.1. We confirm this conclusion by
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plotting the autocorrelations coefficients with a 95% confidence interval for being zero.
Next, we determine linear vector autoregression models with lag p (VAR(p) models) for
the data. All of the biological data sets have a nontrivial model.

Even though the steps are not independent, the marginal probability distributions �X,
�Y , L, and Θ still make sense. For essentially all of the biological data, �X and �Y are
not normally distributed, L does not have a simple Weibull distribution, and Θ does not
have a uniform distribution. Consequently, the null hypothesis (7) is definitely false.

2.1. Autocorrelations

The assumption that the time series of jumps Jn is stationary implies that the mean and
standard deviation do not depend on the position in the series, so it then makes sense to
define the mean, standard deviation, and autocorrelations of the series by

μ = E(Jn), (14)

σ 2 = E
(‖Jn − μ‖2

)
, (15)

ρp = E

(
(Jn+p − μ) ◦ (Jn − μ)

σ 2

)
, (16)

where E is the expectation operator. Note that μ is a vector while σ is a positive real and
ρp ∈ [−1,1] and ◦ is the scalar product of two vectors. If we assume that the time series
is ergodic then the mean, standard deviation, and autocorrelations can be estimated by

μ = 1

N

N∑
n=1

Jn,

σ 2 = 1

N

N∑
n=1

‖Jn − μ‖2,

ρp = 1

N − m

N−m∑
n=1

(Jn+m − μ) ◦ (Jn − μ)

σ 2
, m < N.

If j (r) is the PDF of the jump sizes, the moments of the jump sizes are defined by

Mk =
∫ ∞

0
rkj (r) dr, k ≥ 0. (17)

The moments are estimated by

Mk = 1

N

N∑
n=0

Lk
n. (18)

If we assume the jumps are mean zero, then the standard deviation of the jumps Jn is the
second moment of the jump lengths Ln:

σ 2 = M2. (19)
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Fig. 1 The autocorrelation function of the jumps for experiment 12.

These are given in column 7 of Table A.1.
The autocorrelation coefficients ρ1 and ρ2 are given in columns 8 and 9 in Table A.1.

Importantly, all of the data are significantly autocorrelated. Another way to see the au-
tocorrelations in the data is to use R to plot the autocorrelation function (ACF) ρp as
a function of the lag p along with two dashed horizontal lines that give the 95% confi-
dence interval for the ACF values being zero. As an example, we show a plot of the ACF
for the data from experiment 12 in Fig. 1. Eight of the positive spikes fall outside the
confidence interval, while there are only a few small negative spikes, indicating that the
data have significant positive autocorrelation. All of the biological data show significant
autocorrelation using this test (not shown).

2.2. Testing the stationarity of time series

To correctly apply the standard statistical tools to the jumps we need to test if the lengths
of the jumps are stationary. The augmented Dickey–Fuller (ADF) test assumes that the
data Ln can be modeled as an auto regressive process of order p, that is, as an AR(p)
model. First, let

�Ln = Ln − Ln−1, (20)
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and then estimate the autoregression

�Ln = μ + βLn−1 −
p∑

i=1

αi�Ln−i + εn, (21)

where p ≥ 0, μ, β, and the αi are real constants, and εn are scalar white noise random
variables. If the coefficient β is not zero, then the regression does not have a unit root, and
the series is stationary.

Applying the ADF test in R to the biological data with the null hypothesis in which
the data are not stationary (or β = 0) gives p-values that are all less than 0.01, imply-
ing that the null hypothesis is false, that is, implying that the Ln series do not have
unit roots. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, which tests the null
hypothesis that Ln is trend stationary gives results consistent with the results of the ADF
test.

2.3. Linear autocorrelation models

To better understand the structure of the autocorrelations, we use R to construct the linear
vector autoregression VAR(p) models, using the ordinary least squares method, of the
time series of jumps:

Jn = μ +
i=p∑
i=1

AiJn−i + εn, (22)

where p is the number of lags, μ is a vector and Ai are 2 × 2 matrices. The εn terms are
white noise random variables. The model (22) without the white noise term is called the
deterministic model. The model (22) can be computed in the statistics software R, using
the ar command.

For the biological data, we constructed VAR(p) models for the jumps for all of the
PTs. The lag p (not p-values) for the model are listed in column 10 of Table A.1. We
find that 1 ≤ p ≤ 33 with most values of p < 10. In R, we can also compute the signal
to noise ratio for scalar models of the x-component and the y-component of the model
and report the norm of this vector in column 11 of Table A.1. These are between 2%
and 53% and have a mean of 16%. Experiments with a small ratio also have a small first
autocorrelation coefficient ρ1. The correspondence for large ratios is not as good as for
small. High percentages are an indication of strong nonrandom motion. We also analyzed
the eigenvector and eigenvalues of the coefficient matrices Ai , but did not find anything
useful.

Here are some examples for the p = 2 model (see Eq. (22)). For experiment 8, the
VAR(2) model is

[
�Xn

�Yn

]
=

[−0.01
0.01

]
+

[
0.37 0.18
0.02 0.05

][
�Xn−1

�Yn−1

]
+

[−0.10 0.01
−0.00 −0.11

][
�Xn−2

�Yn−2

]
.

(23)
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For experiment 17, the VAR(2) model is

[
�Xn

�Yn

]
=

[−0.09
0.13

]
+

[−0.05 −0.04
−0.09 −0.12

][
�Xn−1

�Yn−1

]

+
[

0.11 −0.02
−0.02 −0.01

][
�Xn−2

�Yn−2

]
. (24)

For experiment 28, the VAR(2) model is

[
�Xn

�Yn

]
=

[−0.00
−0.01

]
+

[−0.14 0.04
0.16 −0.12

][
�Xn−1

�Yn−1

]

+
[−0.08 0.00

0.03 −0.08

][
�Xn−2

�Yn−2

]
. (25)

The expected value for the jumps size ranges between 12 and 76 and the coefficients in the
linear models (see (23), (24), and (25)) are significantly smaller than the expected value
of the jumps, so the linear model can only account for a modest part of the motion.

2.4. Marginal probability distributions

As noted in the introduction, from plots of the cumulative distribution functions of �Xn,
�Yn, Ln, and Θn it appears that the jumps �Xn and �Yn are normally distributed. Fur-
thermore, the Ln appear to have a simple Weibull distribution and the Θn appear uni-
formly distributed. Thus, these marginal distributions appear to satisfy the null hypothesis
described in Sect. 1.1, Eq. (7). Note that because the Jn are not independent, the equiv-
alence given in Eq. (7) does not apply, so we took these distributions as hypotheses to
test.

To check normality, we use two tests: the Shapiro–Wilk (SW) (Shapiro and Wilk,
1965) test and Anderson–Darling (AD) (Anderson and Darling, 1952) test. When we use
the SW test in the statistical software R, we need p < 0.05 to reject the null hypothesis that
�Xn and �Yn are normally distributed. For the biological data, the values of p > 0.05 for
�X (in descending size) are 0.7, 0.3, 0.2 for experiments 9, 33, 21. Otherwise, p < 0.05
with most p values being near zero. For �Y , the p > 0.05 are 0.4, 0.3, 0.2, 0.2, 0.1 for
experiments 17, 33, 12, 23, 30. So, only experiment 33 has both �X and �Y normally
distributed. The data for experiment 3 appear unusual in several other tests. The AD test
gives results consistent with SW test. The AD test is nice as it can be used to see if a
sample of data comes from several specific distributions: normal, lognormal, Weibull,
and extreme value type I. (We will use this later.) Both the AD and SW tests are powerful,
so we have confidence that the components of the jumps are not normally distributed.

We used the normal Q–Q (Q stands for quantile) plot as a graphical tool for diagnosing
differences between the biological distributions and the normal distribution to confirm that
�X and �Y are not normal. For a sample from a normal distribution, the Q–Q plot should
approximate a straight line, especially near the center (0.0). In Fig. 2, we give a sample
Q–Q plot for �x for experiment 12 which clearly deviates from the normal distribution.
The plots (not presented) for �X and �Y for the remaining experiments support that
these variables are not normally distributed.
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Fig. 2 The Q–Q plot for �X from experiment 12.

We use the Kolmogorov–Smirnov (KS) goodness-of-fit test to test whether the an-
gles Θn are uniformly distributed. This test is an alternative to the AD test, but the KS test
is nonparametric and distribution free in the sense that the critical values do not depend
on the specific distribution being tested. If the assumption about the distribution can be
validated, then the AD test is more powerful and preferred, but the null hypothesis will be
seen not to be valid, so we use the KS test instead. If p < 0.05, then the null hypothesis is
rejected, the angles are not uniformly distributed. The large p-values for the KS test of the
biological data are 0.95, 0.88, 0.82, 0.64, 0.46, 0.44, 0.38, 0.21, 0.12, 0.05 for experiments
29, 12, 3, 14, 33, 4, 21, 27, 5, 19. This matches our impression from the cumulative distri-
bution plots (CDF) plots that the angles are close to uniformly distributed—as this is true
for 10 out of 33 data sets. Note that the angles for experiment 33 are uniformly distrib-
uted, as suggested by formula (7) and the fact that �X and �Y are normally distributed
for this experiment.

Finally, we test if the jump lengths have a (simple) Weibull distribution (8), that is,
w(r/s)/s where

w(r) = re− r2
2 , (26)
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as conjectured in Eq. (7). For the biological data, the p-values are 0.25, 0.198, 0.103,
0.076, 0.065, for experiments 8, 21, 17, 6, 33. So, most of the jump size data does not
have a simple Weibull distribution.

We see that only experiment 33 passes all four tests for being a normal distribution;
experiment 21 passes three tests. However, experiment 33 has a nontrivial autoregressive
model with 14 lags and a signal to noise ratio of 52%. All but one of the data sets deviate
significantly from a IID random walk where the components of the jumps come from a
normal distribution.

3. Modeling the distribution of the jumps

A standard approach for understanding a data set is to find a probability distribution for
the data. In this section, we study four models for the probability distribution function
p = p(r) of the jump sizes: the general Weibull (GW), the chi, the long-short (LS), and
the generalized extreme value (GEV) distributions. To help keep our results organized,
the PDFs and CDFs of the distributions are labeled as follows: the GW uses w and W ; the
chi uses c and C; the LS uses p and P ; and the GEV uses h and H . Plots of the PDFs for
these models are shown in Fig. 3 for biologically relevant values of their parameters. The
plotted PDFs are normalized so that their first moment is one and the simple Weibull PDF
(SW) is given to assist in comparing the distributions. We know that the simple Weibull
PDF (26) does not represent the biological data accurately, but the general Weibull (GW)
PDF fits the data well. The GEV PDF (Coles, 2001) is good for detecting long jumps.
Both the general Weibull and chi distribution contain the simple Weibull as a special case
and thus can easily detect normal diffusion.

The main concern is to understand if there are more or fewer long or short jumps in
a PDF p than would be predicted by the simple Weibull PDF. Note that for a uniform
distribution particles in a finite region in d dimensional region containing the origin and
for a sufficiently small R, the probability that the particle distance r from the origin is less
than R is proportional to the volume of the sphere of radius R:

Prob(r < R) = P (r) ∝ ΩdR
d, (27)

where Ωd is the volume of the d-dimensional unit sphere. Consequently, the probability
distribution p(r) must satisfy

p(r) ∝ rd−1, (28)

for r small. For two-dimensional space, this is exactly what the simple Weibull distrib-
ution gives, that is, d = 2. So, in two-dimensional space, if a probability distribution p

satisfies

p(r) ∝ rd−1 for r → 0, d > 0, (29)

then p has excessive short jumps if 0 < d < 2 and a paucity of short jumps if d > 2. If the
1 < d < 2, then d has a natural interpretation as a fractal dimension (Kenkel and Walker,
1996). From Fig. 3, we see that the general Weibull, chi, and long-short distributions have
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Fig. 3 PDFs for modeling the jump size distribution.

excessive short jumps. The GEV distribution is unusual, so it will be discussed later. For
the biological data, 1 < d < 2.

If the PDF decays exponentially for r → ∞, then there are no excessive long jumps,
which is the case for GW and chi distributions. If

p(r) ∝ 1

rk+1
for r → ∞, k > 0, (30)

then there are excessive long jumps and the number increases as k decreases. Note that
only the first k moments of p(r) are finite. If k ≤ 2, then the second moment of p(r) is
infinite as is the diffusion constant for the related random walk. Such diffusion are known
as anomalous in the mathematical literature (Gorenflo and Mainardi, 2003; Metzler and
Klafter, 2000). The long-short and GEV distributions have excessive long jumps (fat tails).

To simplify our notation, we give PDFs and CDFs for the distribution of jump sizes
with scale parameter equal to one. If p(r) and P (r) are a PDF and a CDF, then the scale
parameter s can be introduced using p(r, s) = p(r/s)/s and P (r, s) = P (r/s).

There are several methods of estimating the parameter of a PDF so that it fits the
biological data. A commonly used method is maximum likelihood. However, this method
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Table 1 The Maximum Residuals and p-Values for the Weibull, Chi, Long-Short, and GEV Distributions

Residual p-value

Weibull 0.16 × 10−3 0.11 < p < 0.93
Chi 0.23 × 10−3 0.06 < p < 0.82
L-S 0.07 × 10−3 0.28 < p < 0.94
GEV 0.09 × 10−3 0.27 < p < 0.96

is designed for distributions that are nowhere zero. All distributions have a zero value, so
this is not a good choice. Other possibilities are to make a least squares (LS) fit to either
the PDF or CDF. We use the PDF with 5 nm bins. The bin size was determined by using
several values and then choosing a value that provided the best fit. Note that the position
data Pn has measurement errors on the order of 30 nm, and the bin size is significantly
smaller than this. The maximum residual for fitting the four PDFs to the data are given
in Table 1. They are small indicating good fit. The p values for the fits were estimated
using a two sample Kolmogorov–Smirnov (K-S) test. The null hypothesis is that the data
are distributed according to the proposed distribution. The K-S test compares the jump
length data to simulated data from the proposed distribution with estimated parameters.
A p-value with p > 0.05 means we accept the null hypothesis that the data come from the
proposed distribution. For the Weibull and Chi distributions, the p values for experiments
2 and 19 are essentially zero, indicating poor fits. However, plots of the data for these
experiments are given in Fig. 4 and they look good so the test is measuring a subtle
difference not detected by the residuals. In all other cases, the p > 0.05, so the fits are
statistically significant.

At the end of this section, we separately analyze the zero and nonzero jumps. Then we
can apply the maximum likelihood (ML) method to estimate the parameter in the GEV
distribution for the nonzero jumps. We have also used the method of moments (MOM) to
check some of our estimates (not presented).

3.1. The general Weibull distribution

The general Weibull PDF and CDF are w(r,λ, k) = w(r/λ, k) and W(r,λ, k) =
W(r/λ, k) where

w(r, k) = krk−1e−rk

, W(r, k) = 1 − e−rk

, (31)

and k > 0, λ > 0 and r > 0. We will estimate λ and k for fitting the biological data. The
moments of w(r,λ, k) are

M1 = λ

(
1 + 1

k

)
, M2 = λ2

(
1 + 2

k

)
. (32)

For the plots in Fig. 3, the value of λ is computed by choosing M1 = 1. When k = 2, the
general Weibull distribution is just the simple Weibull distribution, while, for k = 1, it is
the simple exponential distribution. For the biological data, we use this distribution for 1 ≤
k ≤ 2, and plots for this range of values are given in Fig. 3. Also, in this range of values,
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Fig. 4 PDF fits for the experiments extreme values of k and d . Experiments 19 (k = 1.4, d = 1.2) and
2 (k = 1.5, d = 1.3) had the smallest values, while 25 (k = 2.0, d = 2.0) and 9 (k = 2.0, d = 2.0) had the
largest values.

w(r,λ, k) ∝ rk−1, and thus has an excessive number of small jumps. The distribution
decays exponentially at infinity and so gives no indication of excessive long jumps.

For the biological data, the values of λ and k are given in columns 2 and 3 of Ta-
ble A.2. The two smallest values of k are 1.3829 and 1.4752, while the two largest values
are 1.9781, 2.0145 for experiments 19, 2, 9, and 25. We see that 1 < k < 2 for all but
experiment 25, so essentially all of the data has excess small jumps.

3.2. The Chi distribution

The chi PDF and CDF are c(r, σ, d) = c(r/σ, d)/σ and C(r,σ, d) = C(r/σ, d)/σ where

c(r, d) = 2

2d/2(d/2)
rd−1e− r2

2 , C(r, d) = 1 − (d
2 , r2

2 )

( d
2 )

, (33)

d ≥ 1, σ > 0 and the  of two arguments is the incomplete gamma function. We will
estimate σ and d for the fitting biological data. The chi distribution is a special case of the
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Nakagami distribution and can be transformed to either the chi-square distribution or the
gamma distribution. The moments of c(r, σ, d) are

M1 = σ

√
2(d+1

2 )

( d
2 )

, M2 = σ 2d. (34)

Plots of c(r, σ, d) with σ chosen so that M1 = 1 are given in Fig. 3 for the biologically
relevant cases of 1 ≤ d ≤ 2. For d < 2, the distributions have both excessive short jumps
and exponentially decaying long jumps.

Extending the reasoning used to derive Eq. (8) for the distribution of the jump length of
a normal IID random walk in two dimensions to a space of d dimensions implies that the
jump sizes should be distributed according to c(r, σ, d) where d is and integer. However,
this distribution makes sense for all positive real d . Consequently, when analyzing the
distribution of jumps by fitting them with c(r, σ, d) we can interpret d as the dimension
of the space in which the diffusion is occurring. For the biological data, the dimension
satisfies 1 < d < 2. If d = 2, then the diffusion is in the plane while if d = 1, the motion
is confined to a curve. For 1 < d < 2, a plausible interpretation is that the diffusion is
restricted to a nanometer scale fractional part of the membrane.

For the biological data, the values of λ and d are given in columns 4 and 5 of Table A.2.
The two smallest values of k are 1.2 and 1.3, while the two largest values are 1.97 and 2.02
for experiments 19, 2, 25, and 9. These are the same experiments as for the general Weibull
distribution. In Fig. 5, we show the paths for these data, while in Fig. 4 we show the fits
to the PDFs. For essentially all of experiments, the values for d imply there is significant
obstruction to the diffusion. The consistency of the results for the general Weibull and chi
distributions supports this conclusion.

3.3. The long-short distribution

To better understand the nature of both the long and short jumps, we introduce the PDF
p(r, s,α,β) = p(r/s,α,β)/s, which has the CDF P (r, s,α,β) = P (r/s,α,β)/σ where

p(r,α,β) = α(β − 1)rα−1

(1 + rα)β
, P (r,α,β) = 1 − (

rα + 1
)1−β

, (35)

and r ≥ 0, s > 0, α > 0 and β > 1. We will estimated s, α, and β for the biological data.
The first two moments of this distribution are

M1 = s(β − 1)( 1
α
)(β − 1

α
− 1)

α(β)
, α(β − 1) > 1,

M2 = s2(β − 1)( α+2
α

)(β − 2
α

− 1)

(β)
, α(β − 1) > 1.

Because this distribution looks like rα−1 near r = 0, the discussion on the general
Weibull distribution indicates that we are interested in 1 < α < 2. When r is large, the
distribution has polynomial decaying tail: p(r) ∝ 1/r1+α(β−1). The values of s, α, β and
k = 1+α(β −1) are given in columns 6, 7, 8, and 9 of Table A.2. The two smallest values
of α are 1.66 and 1.81, while the two largest values are 2.18 and 2.19 for experiments 23,
20, 16, and 13. The mean of the values of α is 1.98, so this distribution is indicating
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Fig. 5 Paths for the experiments with the smallest k and d . Experiments 19 (k = 1.4, d = 1.2) and
2 (k = 1.5, d = 1.3) had the smallest values, while 25 (k = 2.0, d = 2.0) and 9 (k = 2.0, d = 2.0) had
the largest values.

that there are only a modest number of experiments with excesses short jumps. The two
smallest values of k are 6.50 and 6.57, while the two largest values are 35.67 and 37.37
for experiments 1, 22, 9, and 12. These experiments do not correspond to those for the
general Weibull or the chi PDFs that had some special property. The data sets do have fat
tails, but k � 2, so none of the experiments show mathematically anomalous diffusion.

3.4. Generalized extreme value distribution

It is important to confirm the conclusion that the jumps have fat tails. Two of the au-
thors (Ying, 2008) have used the generalized extreme value (GEV) distribution to study
such problems, so we also do that here. The GEV PDF and CDF (Coles, 2001) are
h(x,μ,σ, ξ) = h((x − μ)/σ, ξ)/σ and H(x,μσ, ξ) = H((x − μ)/σ, ξ) where

h(z, ξ) = [1 + ξz]−1/ξ−1
+ e−[1+ξz]−1/ξ

+ , H(z, ξ) = e−[1+ξz]−1/ξ
+ . (36)

The parameter spaces are −∞ < x,μ, ξ < ∞ and σ > 0. We estimate the parameters μ,
σ, and ξ for fitting the biological data. and the + sign in the model denotes the positive
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part. The first two moments of h(x,μ,σ, ξ) are

M1 = μ + σ

ξ

(
(1 − ξ) − 1

)
,

(37)

M2 =
(

μ − σ

ξ

)2

+ 2σ

ξ

(
μ − σ

ξ

)
(1 − ξ) + σ 2

ξ 2
(1 − 2ξ).

This distribution contains 3 subfamilies as special cases:

name support
ξ < 0 Weibull x < μ − σ/ξ

ξ = 0 Gumbel −∞ < μ < ∞
ξ > 0 Fréchet x > μ − σ/ξ

Note that the Weibull case is not the same as what we have studied before. More precisely,
when ξ < 0, h is a translation of the previous general Weibull distribution. Because the
biological data have support for x > 0, we had hoped that our fits would have values of
ξ > 0 so that our model would have support for x > x0 with x0 = μ − σ/ξ . Typically,
x0 < 0, which we interpret as meaning there are excess short jumps. When ξ > 0, the
distribution decays at infinity like 1/xk with k = 1/ξ . The values of σ , μ, ξ, and k = 1/ξ

in columns 2, 3, 4, and 5 of Table A.2. Unfortunately, experiments 3, 9, 21, 25, 27, 30,
and 33 have negative ξ and so cannot be analyzed with this method. For the remaining
experiments, the two smallest values of k are 1.9663 and 2.7941, while the two largest
values are 69.6 and 120.5 for experiments 19, 2, 12, and 5. These result do not agree with
those for the long-short distribution.

To improve these results, we first analyze the zero jumps and then remove them and
then fit the remaining nonzero jumps using the GEV distribution. In Table A.3, we give
the percentage of zero jumps, which if we interpret as a probability q , then our full model
will have the form

qδ0(x) + (1 − q)h(x,μ,σ, ξ). (38)

Now, we use ML to estimate the parameters σ , μ and ξ , which are listed in columns 10,
11, 12, and 13 of Table A.3. Now, all of the data sets have ξ > 0 except for experi-
ments 9 and 33. For all of the experiments for which both methods produced ξ > 0,
0.9 < ξ(LS)/ξ(ML) < 3.2; so, the two methods of estimating ξ (or k) are close. For
the data sets for which ξ > 0, 1.9 < k < 37. However, for all but experiment 19,
k < 2, so only this data set can possibly have slightly mathematically anomalous dif-
fusion.

We also used maximum likelihood to estimate the parameters and p-values for the
general Weibull and chi fits. The estimated values are close to those for the least
squares method, and except for one experiment, the p values indicate that the fits are
good.

Sometimes conclusions can be sensitive to the fitted model. To check that the model
fits data well, we applied two test to all of the GEV ML fits. In Fig. 6, we present the
diagnostic plots for assessing the accuracy of the GEV model for experiment 6. The plots
in the first row of Fig. 6 are a probability plot and a quantile plot. Both of these plots
provide techniques for assessing whether or not a data set follows a given distribution. The



1986 Ying et al.

Fig. 6 Diagnostic plots for GEV fit to the jump data for experiment 6.

data are plotted against a theoretical distribution in such a way that the points should form
a straight line. Departures from this straight line indicate departures from the specified
distribution. We can see each set of plotted points is near-linear, so neither plot gives
cause to doubt the validity of the fitted model.

The lower two plots are return level plots and density estimate plots. The return level
plot shows the return period against the return level, and shows an estimated 95% con-
fidence interval. The return level is the level (in this case for jumps) that is expected to
be exceeded, on average, once every m time points (in this case steps). The return period
is the amount of time expected to wait to exceed a particular return level. For example,
the biological data show that one would expect the maximum jumps to exceed 150 nm
on average every 200 steps. The density plot shows that the density estimate is consistent
with the histogram of the data. Thus, all these diagnostic plots lend support to the fitted
model.
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4. Diffusion constants

In applications to cell biology, it is important to be able to estimate the diffusion constant
for molecules in the cell membrane. Time series analysis and modeling the probabil-
ity distribution of the jump sizes offer several different ways of estimating the diffusion
constant. In this paper, we focus on finest time and spatial scales supported by the data.
Consequently, our fundamental diffusion constant D is computed directly from the jump
sizes. The models for the jump size distributions provide alternate estimates. Additionally,
the white noise in the VAR(p) (22) models can be used to estimate the diffusion constant
for only the random part of the motion.

Visual inspection of the plots of the MSD for the biological data indicates that the MSD
is often given by a power law, at least for few time steps. Sample plots are given in Fig. 7,
which also contains plots of the data fitting results obtained below. For our 33 data sets, 19
appear concave down, 9 appear linear, 3 appear concave up, and 2 are not easy to classify.
Consequently, we fit the MSD with both linear and power-law functions for 10 time steps.
Small changes in the number of steps do not affect our results significantly. Also, we
fit the data in a way that should provide estimates of the measurement error, which is

Fig. 7 MSD fits for the experiments with the smallest k and d .
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Table 2 The ratios of the alternate diffusion constants to the fine scale diffusion constant D (42)

Ratio Min Mean Max

Dχ/D 0.36 0.52 0.80
DW /D 0.73 0.91 0.98
D1/D 0.07 0.68 1.29 B �= 0
D2/D 0.27 0.77 1.28 B = 0
D3/D 0.31 0.91 1.99 B �= 0
D4/D 0.24 0.83 1.35 B = 0

on the order of 30 nm. Fitting with linear functions is a standard way of estimating the
diffusion constant (Saxton and Jacobson, 1997). It is also common to fit the MSD with
a power law (Saxton, 1996, 2001), but to our knowledge, in this context, no one has
introduced a diffusion constant that is truly constant. Instead, the diffusion constant varies
with time. To facilitate comparing the power law fits to our other results, we introduce
an “instantaneous” diffusion constant for such power-law fits. Because we only look at
diffusion for short times, we do not estimate the cross-over time to normal diffusion as was
done in Saxton (1996). However, the instantaneous diffusion constant that we introduce
is equal to D∗(C) discussed in this paper.

All of our estimates of the diffusion constants are given in Table A.4. They are reported
in units of

10−2 nm2/μs = 10−2 μm2/s = 10−10 cm2/s, (39)

(see Fig. 2 of Capps et al., 2004). These results are reasonably consistent, but vary enough
to make the analysis of biological data more difficult, but more accurate. With the excep-
tion of a few experiments, the fact that the ratios used to derive Table 2 vary between
1/4 and 5/4 quantifies the essential consistency of the estimates. Importantly, the diffu-
sion constant computed directly from the jump sizes and those computed from fitting the
jump size distribution are independent of the order of the jumps, and thus are not strongly
affected by the autocorrelations.

Our fine scale diffusion constant D is computed from the second moment M2 (6) of
the jump sizes. From (12),

MSDn = M2n or MSD(t) = M2

�t
t, (40)

where M2 is the second moment of the jump sizes. The standard definition (Saxton and
Jacobson, 1997) of the diffusion constant is given via

MSD(t) = 4Dt. (41)

Consequently,

D = MSD(t)

4t
= M2

4�t
, (42)

For the biological data, the diffusion constants computed using this formula are given in
column 2 of Table A.4. We use this diffusion constant as a basis for comparing definitions
of the diffusion constant.
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The chi, Weibull, and GEV models for the probability can also be used to compute the
diffusion constant. Because the chi distribution can be used to estimate the dimension of
the space in which the diffusion is occurring, it is the most interesting. In this case,

Dχ = M
χ

2

4�t
, (43)

where M
χ

2 is the second moment (34) of c(r, σ, d) computed using (5). For the biological
data, the values of Dχ are given in column 3 of Table A.4. Comparisons to other diffusion
constants is given in Table 2. The chi distribution produces diffusion constants Dχ that are
about one-half of the diffusion constant D obtained from the second moment of the jump
size data. We do not report diffusion constants using the Weibull and GEV distributions,
but the results are similar.

Given that the linear models given in Section 2.3 decompose the jumps into a deter-
ministic part and a white noise εn random part (22), it makes good sense to estimate the
diffusion constant using the white noise:

DW = E(ε2
n)

4�t
. (44)

This definition has the advantage that it directly eliminates the effects of the autocorrela-
tions. For the biological data, the values of DW are given in column 4 of Table A.4 and
comparisons with the other diffusion constants are given in Table 2. The diffusion con-
stant DW is about 10% lower than D, which is in reasonable agreement with our signal to
noise ratio estimates given in column 10 of Table A.1 that have a mean of 16%.

To motivate the form of the fits, we use Martin et al. (2002), Dietrich et al. (2002)
we return to the null hypothesis that the jumps Ji are mean zero IID and jump lengths
have a PDF that has a finite second moment M2. Also, assume that there is an error in the
measurements of the positions that can be modeled by mean-zero IID random variables
En with a finite second moment μ. In addition, if the errors and jumps are independent,
then Eq. (9) becomes

MSDn = E
(‖Pn + En‖2

) = E
(‖Pn‖2

) + E
(‖En‖2

)
. (45)

Then, as in (11),

MSDn = M2n + μ. (46)

Consequently, for linear fits, we use the form

MSDn = An + B, 1 ≤ n ≤ N. (47)

After some experimentation, we chose N = 10 so we are looking at a scale an order
of magnitude greater than the finest scale. We also fit the data assuming that B = 0.
Samples of these fits are shown in Fig. 7. For the biological data, the fits with B �= 0 are
significantly different from those with B = 0 and those with B �= 0 are visually better and
have smaller residuals than fits that assume B = 0. In both cases, the diffusion constant is
defined by

Dlinear = A

4�t
. (48)
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For the biological data, comparisons of these diffusion constants to D are given in Table 2
where D1 = Dlinear with B �= 0 and D2 = Dlinear with B = 0. The values of these diffusion
constants are given in columns 5 and 6 of Table A.4. So, on average, D1 and D2 are about
two-thirds of D. Assuming B = 0 on average increases the diffusion constant. This can
easily be seen in the plots of the MSD.

On the other hand, the values of B are not close to 302nm2, and in fact many are
negative. Perhaps the fact that the biological data are autocorrelated is a source of this
discrepancy. The parameter r = |B|/(A�t) is dimensionless and, for the biological data,
satisfies 0.005 < r < 15.436 with the mean of r being 1.9055. So, B is always significant.
Using exactly 10 steps is not important in these estimates.

The discussion so far suggests the use of a power law of the form

MSDn = Anα + B, (49)

to model the MSD. First, write (49) in the form

MSD(t) = A

(
t

�t

)α

+ B (50)

and then set

D(t) = 1

4

d

dt
MSD(t) = αA

4�t

(
t

�t

)α−1

= αA

4�t
nα−1. (51)

Consequently, we define the instantaneous diffusion constant as

D′ = αA

4�t
. (52)

In the case that α = 1, this is consistent with the definitions using linear fits. When we
assume B �= 0, then D3 = D′, while if B = 0, we set D4 = D′. For the biological data, if
we set α3 = α when B �= 0 and α4 = α when B = 0, then

−0.9801 ≤ α3 − 1 ≤ 0.2409, −0.7769 ≤ α4 − 1 ≤ 0.1369 (53)

In both cases, five of the α − 1 are positive, indicating that the power-law fits are concave
up and the track displays at least some super diffusion. The remaining 28 tracks are con-
cave down. For 6 of the MSD plots, both α satisfy |α − 1| < 0.01 indicating that these
MSDs are nearly linear. This is close to what we guessed by looking at the plots of the
MSD.

For most of the biological data, the plots of the two fits are very close. Comparisons
of these diffusion constants to D are given in Table 2 and the values of these diffusion
constants are given in columns 7 and 8 of Table A.4. So, on average, D3 is 91% of D and
D2 is about 83% of D.

There are several advantages to instantaneous diffusion constant. First, it separates the
diffusion “constant” D(t) into two parts, a true constant D′ = D(�t) that has the correct
units for a diffusion constant and a dimensionless power law determined by α. If in (47),



Time Series Analysis of Particle Tracking Data for Molecular Motion 1991

we choose N = 3 and use (49) to interpolate the data (not just fit the data), then (40) and
the difference approximation of the derivative in (51) gives

D′ = D(�t) ≈ 1

4

MSD(2�t) − MSD(�t)

�t
= MSD2 − MSD1

4�t
= M2

4�t
= D. (54)

So time-dependent definition is compatible with our basic definition.
As mentioned in the Introduction, to check our algorithms, we supplemented our data

with an artificial data set generated using a random walk of 10,000 steps whose jumps
have components that are normally distributed with mean zero and standard deviation
of 10 nm. For such a walk, the diffusion coefficient is 0.0015 nm2/μs. This would be
reported as 0.15 in Table A.4. For this artificial data, the diffusion constant computed by
our methods are

D = 0.1522,

Dχ = 0.1569,

DW = 0.1522,

D1 = 0.1584,

D2 = 0.1563,

D3 = 0.1498,

D4 = 0.1535.

This is very strong support for the correctness of our algorithms and codes.

5. Conclusions and future work

We have introduced some time series analysis methods, confirmed that they are appropri-
ate for analyzing jump data, and have used these methods to analyze some high quality
data that track the movement of individual molecules in cell membranes. The tracked
molecules are MHCI expressed on rat hepatoma cells. The analysis has led to two impor-
tant results. First, the jump data have significant autocorrelations. To describe the corre-
lations, we provide linear autoregressive models for the data and based on these models,
use the signal to noise ratio to quantify the importance of the correlations. Second, for
the size of jumps data, we give four statistical models that fit the data well. These models
suggest that the there are excessive short and long jumps compared to normal diffusion.
The fit with the chi distribution provides an estimate of the fine-scale obstructions in the
membrane. Based on these results, we introduced four alternate methods for estimating
diffusion constants and applied these to the biological data. The diffusion constants are
different, but these differences are consistent for the biological data set.

To facilitate the use of our results, we provide MatLab and R code on our web page.
In the future, we will start our analysis of SPT data with time series analysis and use
this to characterize the properties of the membrane at the finest time and spatial scales
reasonable for the data. We will then follow this with MSD analysis to quantify larger
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scale structures. If others can replicate our results for other types of data, then time-series
analysis should be incorporated into the next generation of analysis tools for the analysis
of SPT data.

There is still significant work to be done to fine tune the techniques presented.

• A critical need is to combine this work with an algorithm to decompose the paths
into pieces that display the same type of motion. In Capps et al. (2004), this is done
by assigning the motion to be confined if the MSD for a segment of the path grows
below linear, and to directed if the MSD grows faster than linear along with visual
examination. An alternate method is described in Gutenkunsta et al. (2006). Once the
decomposition is accomplished, the estimates of the diffusion constant given here can
be combined with the information from the MSD to investigate larger scale structures
in the membrane (Meilhac et al., 2006; Jin and Verkman, 2007; Jin et al., 2007; Bickel,
2007; Ritchie et al., 2005; Daumas et al., 2003).

• We are in the process of extending this analysis to particle tracking data from exper-
iments in which the labeling is done using one or more sizes of quantum dots (Lidke
et al., 2005; Andrews et al., 2008). An important problem is that the quantum dots blink
and the length of the time that a dot can be off can be quite large. This makes the analy-
sis more complicated. For the quantum dot analysis, we are comparing the dynamic
behavior of membrane molecules from experimental situations in which the labeling
is assumed not to alter the dynamic behavior of the tagged molecule (as in the present
paper) and also where the labeling is known to alter receptor dynamics (as in Lidke
et al., 2005).

• There has been some work done in understanding how correlations in the successive
jump angles affect the MSD (Wu et al., 2006; McCulloch and Cain, 1989). These mod-
els should be studied using time series analysis.

• Models of the deviation of the jump angles from uniform should provide additional
insight into the fine scale structure of the membrane (Tojo and Argyrakis, 1996).

• Correlated random walks have been used to study the movement of several types of
animals (Jonsen et al., 2003; Luttich et al., 2000; Sibert et al., 2003). These studies have
included the use of state-space models and Kalman filters. The correlations studied are
significantly simpler than the ones found in our data, but the methods should be able to
be extended to membrane data.

• It should be possible to refine the modeling of jump distributions using higher moments
of the jump sizes (Coscoy et al., 2007).

• To better understand the membrane organization, it is important to build models that
help explain the biological data. Models of membrane motion that include diffusion,
transport, and attractive harmonic forces have been studied in Coscoy et al. (2007).
We also have been studying similar models, but in our models the jump lengths have
a Weibull distribution rather than the normal distribution used in Coscoy et al. (2007).
We also use a force generated by a Lennard–Jones potential rather then a harmonic
potential so that there are no long range forces between molecules.

• Autocorrelations (two-time correlations) of a particle confined to a box in the plane
were studied in Destainville and Salome (2006) and then used this to estimate the size of
the confining box and then the results were used to estimate confinement zones in SPT
data. In Kalay et al. (2008), Kenkre et al. (2008), models containing two confinement
zones have been used that capture some of the effects of cytoskeletal fence confinement
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zones (see also Saxton, 1994). The papers (Reynolds, 2005; Khan et al., 2005) use
fractional partial differential equations to analyze some SPT data and show that the PDF
of the x-component of the jumps are not normally distributed. Their results indicate
that there are an excessive number of short jumps as compared to normally distributed
x-components.
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Appendix A: Results of the analysis of the biological data

Table A.1 Results of the statistical analysis of the biological data

1 2 3 4 5 6 7 8 9 10 11
# N max L Mean L % small L ‖μ‖ M2 ρ1 ρ2 p % S/N

1 1007 56 13 14.5 1.915 226.7 −0.19 −0.03 9 11.4
2 2113 316 17 17.5 0.413 640.2 −0.23 −0.05 31 22.8
3 1300 142 31 2.5 0.889 1326.1 0.07 −0.02 4 5.7
4 1447 197 33 3.3 1.360 1687.0 0.16 −0.02 2 5.7

5 1229 170 47 1.0 0.264 2990.3 0.21 −0.07 5 12.8
6 893 189 43 1.0 1.648 2461.3 0.12 −0.00 9 10.0
7 2018 241 41 1.0 2.038 2374.5 0.08 0.02 8 8.1
8 1269 217 34 2.1 0.107 1777.1 0.25 −0.01 2 15.0

9 932 257 76 0.3 3.182 7530.1 0.03 0.01 4 5.4
10 1126 123 29 3.1 0.511 1143.0 −0.18 −0.07 6 16.5
11 1171 315 62 0.8 1.792 5368.8 0.04 0.04 3 5.8
12 1004 263 76 0.5 1.350 7865.4 −0.22 0.02 1 9.8

13 1013 215 41 1.3 0.118 2333.1 −0.19 −0.02 9 19.9
14 789 245 45 1.5 0.217 3023.6 0.10 0.01 1 6.0
15 832 296 70 1.0 1.239 6855.3 −0.05 −0.02 1 3.6
16 1012 215 41 1.3 0.100 2334.7 −0.19 −0.02 9 19.9

17 912 204 55 0.3 3.990 3936.0 −0.08 0.06 2 2.8
18 1059 312 65 0.3 0.635 5903.6 0.07 0.05 16 12.5
19 1039 231 31 7.7 0.322 2101.2 −0.18 −0.11 16 42.4
20 977 122 23 5.6 0.293 799.7 −0.13 0.00 1 4.5

21 916 116 17 7.6 0.419 374.4 −0.22 −0.12 19 32.6
22 1569 118 14 10.0 0.155 277.3 −0.18 −0.09 28 26.6
23 623 128 34 2.2 1.307 1623.2 −0.32 0.06 17 37.6
24 1196 242 44 1.2 0.701 2946.2 −0.19 −0.01 10 18.0
25 1206 217 22 3.6 0.205 689.2 −0.21 −0.05 18 19.7

26 660 306 66 0.1 0.470 6027.2 −0.14 0.02 4 14.0
27 791 409 46 1.5 0.939 3104.7 −0.06 −0.05 3 5.0
28 1673 131 30 2.6 0.295 1230.4 −0.16 −0.05 2 5.8
29 1379 282 49 1.2 0.995 3507.2 0.10 −0.13 3 5.0
30 1381 204 53 0.7 0.200 3793.0 −0.32 −0.01 5 29.7

31 2117 170 37 2.5 0.116 1908.2 −0.20 −0.10 9 15.3
32 1044 262 20 5.8 0.224 603.4 −0.28 −0.03 8 25.8
33 1311 163 43 1.1 0.348 2416.2 −0.37 −0.08 14 52.3
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Table A.2 The mean square fit parameters

Weibull Chi Long-Short
1 2 3 4 5 6 7 8 9
# λ k σ d s α β k

1 14 1.7 11 1.6 25 1.9 4.3 7.3
2 15 1.5 13 1.3 12 2.0 2.0 2.9
3 34 1.9 25 1.9 105 2.0 10.3 19.4
4 34 1.7 28 1.6 43 2.0 3.0 4.8

5 51 1.8 39 1.7 137 1.9 7.8 13.8
6 46 1.9 34 1.8 92 2.0 5.5 10.0
7 43 1.8 32 1.8 70 2.0 4.1 7.3
8 35 1.8 27 1.7 48 2.0 3.2 5.6

9 84 2.0 60 2.0 276 2.0 12.9 25.2
10 31 1.8 24 1.7 46 2.0 3.6 6.2
11 66 1.8 52 1.7 145 1.9 5.8 10.1
12 83 1.8 65 1.7 222 1.9 7.6 13.3

13 43 1.8 32 1.8 51 2.2 2.9 5.1
14 47 1.8 36 1.7 63 2.1 3.2 5.6
15 74 1.8 56 1.8 93 2.1 3.0 5.3
16 43 1.8 32 1.8 51 2.2 2.9 5.1

17 60 1.8 45 1.8 114 2.0 5.0 9.0
18 69 1.8 53 1.7 144 1.9 5.5 9.5
19 26 1.4 24 1.2 18 1.8 1.9 2.6
20 25 1.6 21 1.5 38 1.8 3.6 5.7

21 18 1.9 14 1.8 149 1.9 54.6 103.0
22 15 1.9 11 1.9 20 2.2 3.2 5.7
23 38 1.6 33 1.5 135 1.7 9.5 15.0
24 46 1.7 37 1.6 71 1.9 3.7 6.0
25 24 2.0 17 2.0 229 2.0 93.6 188.1

26 68 1.8 51 1.8 94 2.1 3.4 6.0
27 49 1.8 37 1.8 141 1.9 8.9 16.1
28 32 1.8 25 1.7 54 2.0 4.1 7.1
29 51 1.7 41 1.6 71 1.9 3.3 5.4
30 58 1.9 44 1.8 172 1.9 9.5 17.6

31 40 1.7 31 1.6 86 1.9 5.6 9.6
32 21 1.8 16 1.7 25 2.1 2.8 4.8
33 48 1.9 35 1.9 135 2.0 9.5 18.2
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Table A.3 The GEV parameters by least squares and maximum likelihood

GEV (LS) Zeros GEV (ML)
1 2 3 4 5 6 7 8 9 10 11
# σ μ ξ k % σ μ ξ k p

1 6.5 8.9 0.05 19.9 0.20 9.1 5.8 0.07 13.9 0.7
2 7.1 8.6 0.36 2.8 0.47 8.4 6.8 0.42 2.4 0.8
3 14.9 22.6 −0.02 −59.2 0.00 22.9 13.8 0.04 25.6 0.4
4 15.7 21.7 0.18 5.6 0.14 21.8 14.9 0.17 5.7 0.6

5 23.0 32.9 0.01 120.5 0.00 33.7 21.3 0.04 23.8 0.9
6 20.0 30.2 0.04 27.5 0.00 30.6 18.6 0.06 16.4 0.5
7 18.8 28.5 0.08 12.2 0.00 28.6 17.8 0.11 9.3 0.7
8 15.7 22.9 0.14 7.3 0.00 22.8 15.0 0.16 6.1 1.0

9 35.7 55.8 −0.07 −13.4 0.21 56.9 33.2 −0.00 −333.3 0.8
10 13.7 20.2 0.11 8.9 0.18 20.4 12.8 0.08 13.0 0.9
11 29.7 42.5 0.05 18.8 0.00 43.2 27.6 0.09 11.5 0.9
12 37.4 52.5 0.02 59.5 0.40 54.2 34.1 0.06 16.9 0.9

13 18.5 28.2 0.13 7.8 0.00 28.4 17.7 0.11 9.1 0.5
14 20.6 30.5 0.12 8.6 0.13 30.7 19.6 0.15 6.7 0.8
15 32.3 48.9 0.13 7.8 0.00 49.4 31.0 0.09 11.2 0.6
16 18.5 28.2 0.12 8.1 0.00 28.4 17.7 0.11 9.1 0.9

17 25.9 39.1 0.09 11.6 0.00 39.9 24.1 0.03 37.0 0.8
18 30.9 44.3 0.06 17.9 0.09 45.2 28.9 0.10 10.2 0.9
19 13.2 14.6 0.51 2.0 0.10 14.6 12.3 0.51 1.9 0.6
20 11.6 15.2 0.21 4.7 0.10 15.3 10.6 0.16 6.3 0.9

21 8.2 11.9 −0.09 −11.7 0.00 12.0 7.3 0.04 25.6 0.8
22 6.6 10.1 0.07 14.5 0.32 9.9 6.2 0.09 11.1 0.5
23 18.0 23.0 0.17 5.9 0.00 24.0 16.2 0.05 18.9 0.7
24 21.0 28.6 0.17 6.0 0.00 28.8 19.6 0.18 5.5 0.9
25 10.1 16.4 −0.09 −11.4 0.08 16.2 9.4 0.06 18.2 0.8

26 29.7 45.2 0.08 12.3 0.00 45.8 28.4 0.11 9.0 0.5
27 21.9 31.9 −0.01 −76.3 0.25 32.3 20.3 0.10 10.3 0.9
28 14.3 20.7 0.10 9.7 0.12 21.0 13.3 0.08 12.3 0.9
29 23.3 32.5 0.17 5.8 0.00 33.0 21.9 0.14 7.0 0.8
30 25.5 38.2 −0.00 −208.3 0.14 39.0 23.6 0.03 34.5 0.4

31 18.0 24.9 0.06 16.3 0.00 25.5 16.8 0.09 11.5 0.7
32 9.2 13.6 0.16 6.2 0.29 13.7 8.6 0.13 7.8 0.4
33 20.5 31.6 −0.05 −21.5 0.08 32.2 19.2 −0.02 −62.5 0.9
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Table A.4 The diffusion constants and the exponents α in the power-law fits

PDF White Linear Power
1 2 3 4 5 6 7 8 9 10

B �= 0 B = 0 B �= 0 B = 0 B �= 0 B = 0
# D Dχ DW D1 D2 D3 D4 α3 α4

1 0.17 0.16 0.16 0.12 0.12 0.13 0.13 0.92 0.92
2 0.48 0.17 0.41 0.26 0.30 0.26 0.33 1.00 0.85
3 0.99 0.90 0.96 0.92 0.99 1.37 1.09 0.74 0.88
4 1.27 0.92 1.22 1.51 1.51 1.54 1.54 0.98 0.98

5 2.24 2.01 2.06 1.81 2.22 4.46 2.65 0.41 0.74
6 1.85 1.60 1.72 2.34 2.23 2.10 2.10 1.07 1.07
7 1.78 1.42 1.68 2.14 2.07 2.05 1.99 1.03 1.05
8 1.33 0.95 1.20 1.67 1.71 2.38 1.79 0.77 0.94

9 5.65 5.24 5.47 4.54 5.14 7.27 5.82 0.70 0.84
10 0.86 0.74 0.79 0.45 0.54 0.51 0.62 0.92 0.81
11 4.03 3.40 3.86 4.12 4.22 5.08 4.40 0.87 0.95
12 5.90 5.25 5.57 2.60 3.40 3.97 4.09 0.73 0.71

13 1.75 1.38 1.61 0.74 1.01 1.23 1.23 0.67 0.67
14 2.27 1.67 2.20 2.73 2.64 2.62 2.54 1.03 1.04
15 5.14 4.18 5.00 3.49 4.10 5.94 4.75 0.66 0.80
16 1.75 1.38 1.61 0.74 1.01 1.34 1.23 0.62 0.67

17 2.95 2.72 2.89 3.29 3.04 2.22 2.67 1.24 1.14
18 4.43 3.64 4.09 5.71 5.37 5.37 5.01 1.04 1.08
19 1.58 0.54 1.26 0.35 0.71 0.84 0.84 0.43 0.43
20 0.60 0.49 0.58 0.49 0.49 0.49 0.49 1.00 1.00

21 0.28 0.26 0.21 0.07 0.12 0.15 0.15 0.50 0.50
22 0.21 0.18 0.17 0.08 0.12 0.14 0.14 0.64 0.64
23 1.22 1.17 0.94 0.51 0.63 0.74 0.74 0.77 0.77
24 2.21 1.62 2.01 1.20 1.43 1.50 1.64 0.86 0.80
25 0.52 0.45 0.42 0.19 0.27 0.33 0.33 0.65 0.65

26 4.52 3.52 4.20 2.88 3.30 3.72 3.72 0.84 0.84
27 2.33 1.86 2.26 1.37 1.71 2.58 2.04 0.59 0.74
28 0.92 0.79 0.89 0.51 0.60 0.68 0.68 0.82 0.82
29 2.63 2.04 2.52 1.94 2.29 3.35 2.65 0.65 0.80
30 2.84 2.60 2.35 0.73 1.19 1.24 1.47 0.66 0.55

31 1.43 1.21 1.29 0.44 0.71 1.09 0.87 0.41 0.56
32 0.45 0.33 0.39 0.07 0.16 0.18 0.18 0.38 0.38
33 1.81 1.72 1.33 0.13 0.50 0.57 0.43 0.02 0.22
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Table A.5 Experiment number and name

# Name

1 221_00000000XptlX1_xy
2 221_00000000XptlX3_xy
3 221_000092806XptlX1a_xy
4 221_00061418XptlX2_xy

5 911_001255104XptlX4_xy
6 911_00542314rtXptlX6_xy
7 911_01183800_pt4_xy
8 911_01353510ptlX4_xy

9 C48_012940_pt1b_xy
10 C48_013812_pt3_xy
11 C48_014210_pt1_xy
12 C48_015022_pt2a_xy

13 wildtypeLd_00435612XptlX1_xy
14 wtLd_00212.50_xy
15 wtLd_003650.10_xy
16 wtLd_00435612Xptl1_xy

17 Z1_003224_pt1_xy
18 Z1_003224_pt2_xy
19 Z1_00.42.33_pt1_xy
20 Z1_00.46.00_Pt1_xy

21 Z2_00.09.20_Pt1_xy
22 Z2_00.10.11_Pt1_xy
23 Z2_00.13.23_Pt2_xy
24 Z2_00.14.45_pt2_xy
25 Z2_00.18.58_Pt1_xy

26 Z3_004731_pt1b_xy
27 Z3_004950_pt1_xy
28 Z3_005430_pt2_xy
29 Z3_010100_pt1_xy
30 Z3_010444_pt1_xy

31 Z4_0001_pt1_xy
32 Z4_0003_pt1_xy
33 Z4_001600_pt1_xy
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Appendix B: The particle paths

The figure of the particle paths are grouped according to the experimental conditions
under which the paths were observed. There are from 3 to 5 figures per group.

Fig. B.1 Paths for Experiments: 1, 2, 3, 4.
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Fig. B.2 Paths for Experiments: 5, 6, 7, 8.
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Fig. B.3 Paths for Experiments: 9, 10, 11, 12.
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Fig. B.4 Paths for Experiments: 13, 14, 15, 16.
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Fig. B.5 Paths for Experiments: 17, 18, 19, 20.
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Fig. B.6 Paths for Experiments: 21, 22, 23, 24, 25.
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Fig. B.7 Paths for Experiments: 26, 27, 28, 29, 30.
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Fig. B.8 Paths for Experiments: 31, 32, 33.
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Appendix C: The PDF fits

Fig. C.1 PDF Fits for Experiments: 1, 2, 3, 4.
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Fig. C.2 PDF Fits for Experiments: 5, 6, 7, 8.
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Fig. C.3 PDF Fits for Experiments: 9, 10, 11, 12.
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Fig. C.4 PDF Fits for Experiments: 13, 14, 15, 16.
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Fig. C.5 PDF Fits for Experiments: 17, 18, 19, 20.
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Fig. C.6 PDF Fits for Experiments: 21, 22, 23, 24, 25.
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Fig. C.7 PDF Fits for Experiments: 26, 27, 28, 29, 30.
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Fig. C.8 PDF Fits for Experiments: 31, 32, 33.
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Appendix D: The MSD fits

Fig. D.1 MSD Fits for Experiments: 1, 2, 3, 4.
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Fig. D.2 MSD Fits for Experiments: 5, 6, 7, 8.
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Fig. D.3 MSD Fits for Experiments: 9, 10, 11, 12.
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Fig. D.4 MSD Fits for Experiments: 13, 14, 15, 16.
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Fig. D.5 MSD Fits for Experiments: 17, 18, 19, 20.



Time Series Analysis of Particle Tracking Data for Molecular Motion 2019

Fig. D.6 MSD Fits for Experiments: 21, 22, 23, 24, 25.
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Fig. D.7 MSD Fits for Experiments: 26, 27, 28, 29, 30.
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Fig. D.8 MSD Fits for Experiments: 31, 32, 33.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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