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Abstract We first study an SIR system of differential equations with periodic coefficients
describing an epidemic in a seasonal environment. Unlike in a constant environment, the
final epidemic size may not be an increasing function of the basic reproduction number
R0 or of the initial fraction of infected people. Moreover, large epidemics can happen
even if R0 < 1. But like in a constant environment, the final epidemic size tends to 0
when R0 < 1 and the initial fraction of infected people tends to 0. When R0 > 1, the final
epidemic size is bigger than the fraction 1 − 1/R0 of the initially nonimmune population.
In summary, the basic reproduction number R0 keeps its classical threshold property but
many other properties are no longer true in a seasonal environment. These theoretical
results should be kept in mind when analyzing data for emerging vector-borne diseases
(West-Nile, dengue, chikungunya) or air-borne diseases (SARS, pandemic influenza); all
these diseases being influenced by seasonality.
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1. Introduction

Consider the following SIR system describing an epidemic

dS

dt
= −β(t)SI,

dI

dt
= β(t)SI − γ (t)I,

dR

dt
= γ (t)I, (1)

with continuous positive τ -periodic contact rate β(t) and recovery rate γ (t). The function
S(t) is the fraction of the population that is susceptible (i.e., not yet infected), I (t) the
fraction that is infected, R(t) the fraction that has recovered from infection and become
immune, so that S(t) + I (t) + R(t) = 1. Consider the initial condition

S(t0) = 1 − i − r, I (t0) = i, R(t0) = r, (2)
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with i > 0, r ≥ 0, and i + r < 1. Notice that the trivial cases i = 0 and i + r = 1 are
excluded and that the special case r = 0 corresponds to emerging diseases for which the
population has no immunity. Let R∗ be the limit of R(t) as t → +∞. Then R∗ − r is
the final epidemic size. R∗ depends on the functions β(t) and γ (t) and on the parameters
t0, i and r . To emphasize this dependence, we could write R∗ = R∗(β(·), γ (·), t0, i, r).
System (1) with a periodic β(t) and a constant γ can be used for epidemics of viral air-
borne diseases that occur on a fast time scale compared to demographic processes and to
the immune period, such as influenza (flu) and SARS.

When β(t) and γ (t) are both constant, (1) is the “simplified Kermack–McKendrick
system” (Kermack and McKendrick, 1927; Thieme, 2003). In this special case, there is a
closed but implicit formula for R∗:

(1 − R∗) exp

[
R0

R∗ − r

1 − r

]
= 1 − i − r, (3)

where R0 = β/γ is the “basic reproduction number.” It follows that R∗ is an increasing
function of R0, that it is independent of t0, and that it is an increasing function of i. All
these properties are quite intuitive. If R0 < 1, then R∗ → r when i → 0. If R0 > 1, then

R∗ − r ≥ (1 − r)(1 − 1/R0),

as is easily checked by studying the left-hand side of (3) as a function of R∗ (see also
Thieme, 2003 Theorem 18.6). R∗ converges when i → 0 to a positive limit if R0 > 1.
Assuming r = 0 (emerging disease), this limit can be identified with the result of a post-
epidemic seroprevalence survey. Then (3) gives an estimate of R0, which in turn can give
an estimate of the vaccination coverage necessary to prevent an epidemic of the same
disease in other areas with similar characteristics.

The problem of the definition of the basic reproduction number for periodic systems
has been investigated in Bacaër and Guernaoui (2006), Bacaër (2007), Bacaër and Ouifki
(2007), Wang and Zhao (2008), Bacaër (2009). In summary, we have for system (1)

R0 = β̄(1 − r)

γ̄
, β̄ = 1

τ

∫ τ

0
β(t) dt, γ̄ = 1

τ

∫ τ

0
γ (t) dt.

Indeed, linearizing (1) near the disease-free steady state (S = 1 − r, I = 0,R = r), we
see that dI/dt � β(t)(1 − r)I − γ (t)I . R0 = 1 is obviously a threshold for this simple
linear periodic equation. But one can also show that R0 is the spectral radius of the next-
generation integral operator acting on periodic continuous functions

φ(t) �−→
∫ ∞

0
K(t, x)φ(t − x)dx,

where K(t, x) = β(t)(1 − r) exp(− ∫ t

t−x
γ (s) ds) is the rate of secondary cases produced

at time t by somebody infected at time t − x (Bacaër and Guernaoui, 2006, Section 5).
This approach is close to the “usual” definition of R0 in a constant environment as the
average number of secondary cases produced by an initial case. But seasonality introduces
a level of complexity similar to that in age-structured epidemic models, for which R0 is
again the spectral radius of an integral operator (Diekmann and Heesterbeek, 2000). It is
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also easily shown that R0 is the unique real positive number such that the linear periodic
system dI/dt = β(t)(1 − r)I/R0 − γ (t)I has a dominant Floquet multiplier equal to
1 (see Bacaër, 2007, Sections 3.4 and Wang and Zhao, 2008). R0 appears also in the
analysis of periodic birth and death processes (Bacaër, 2007, Section 5.2). Notice that
we call R0 the basic reproduction number, while some authors would call it the effective
reproduction number and keep R0 for the ratio β̄/γ̄ . In any case, R0 does not depend on
i and t0.

In Section 2, we start investigating which properties of the simplified Kermack–
McKendrick system remain true in the periodic variant (1). It turns out that R∗ may not be
an increasing function of R0, that it is a τ -periodic function of t0, and that it may not be an
increasing function of i. The first and third properties are somewhat counterintuitive. The
first property implies that it may be impossible to estimate R0 from seroprevalence data.
Simulations also show that large epidemics can occur even when R0 < 1. This happens if
the disease is introduced during a favorable period, if the initial fraction of infected people
is not too small, if seasonality is sufficiently marked, and if the average infectious period
1/γ is short compared to the length τ of the season. The 2007 chikungunya epidemic in
Italy may have been one such case (European Centre for Disease Prevention and Control,
2009). One should not conclude that R0 > 1 just because an epidemic peak is observed
and one should be careful at how R0 is defined if seasonality is believed to be important.
Simulations also show that the final epidemic size can be very sensitive to small changes
in R0. This may explain why it is so difficult to predict the future of epidemics influenced
by seasonality, as noticed during the 2005–2006 chikungunya epidemic in Réunion (an
island of the Indian ocean).

In Section 3, we show that as in the simplified Kermack–McKendrick system, R0 = 1
is a threshold for the nonlinear periodic system (1). More precisely, we show that

• If R0 < 1, then R∗ − r → 0 when i → 0.
• If R0 > 1, then R∗ − r ≥ (1 − r)(1 − 1/R0) for all 0 < i < 1 − r .

Notice that for the case R0 > 1, we have 1 − R∗ ≤ (1 − r)/R0. So, the epidemic divides
the initial nonimmune population by a number greater than R0. In some sense, this is like
classical vaccination theory for systems with constant coefficients (Anderson and May,
1991). Similar threshold theorems have been or can be derived for various generaliza-
tions of the simplified Kermack–McKendrick system (Kermack and McKendrick, 1927;
Thieme, 2003; Diekmann and Heesterbeek, 2000; Anderson and May, 1991; Ma and Earn,
2006; Arino et al., 2007). But our method of proof will be different because we could not
find any final-size equation similar to (3) for systems with periodic coefficients. In Sec-
tion 3, we also prove that the threshold theorem remains true for a periodic SEIR system
and for a periodic system describing vector-borne diseases, R0 being most easily defined
and computed as in Bacaër (2007, Section 3.4) (see also Wang and Zhao, 2008).

2. Numerical simulations

To keep things simple and because of the widespread interest in pandemic flu, we will use
the periodic SIR system although the discussion will be extended to a vector-borne disease
(chikungunya). One can check that similar qualitative remarks can be made using the
system of Section 3.3. So, let us consider (1) with, for example, β(t) = β̄(1+ε sin 2πt/τ),
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Fig. 1 The final epidemic size may not increase with the basic reproduction number R0 (a) or with the
initial fraction i of infected people (b).

where τ = 1 year represents seasonality and obviously cannot be changed. In this section,
we shall assume that r = 0 (emerging disease) and will investigate how R∗ depends on
the other parameters: β̄ , ε, γ , t0, and i.

Figure 1a shows that the final epidemic size R∗ may not increase with the basic repro-
duction number R0 = β̄/γ . The parameter values are ε = 0.5, 1/γ = 1 week = 1/52 year,
t0/τ = 0.5, i = 10−3, and we took two values for β̄ corresponding to R0 = 2 and
R0 = 2.5. With the higher value of R0, the epidemic occurs during the unfavorable sea-
son 0.5 < t/τ < 1, when β(t) is below its average. When the favorable season arrives
(1 < t/τ < 1.5), the stock of susceptibles has already been largely depleted so no new
epidemic peak occurs. For the smaller value of R0, the stock of susceptibles has not been
depleted enough, a second epidemic wave occurs, and the final epidemic size is larger. The
latter situation is precisely what happened in 2005–2006 in Réunion, a small island of the
Indian ocean and a French overseas territory. A first small peak occurred in May 2005,
just before the beginning of “winter” in the southern hemisphere. The epidemic crossed
the winter at a low level. A second big epidemic peak occurred at the beginning of the next
“summer” in January 2006 and infected about 250,000 people, one-third of the island’s
population. Notice finally that if the final epidemic size R∗ is not a monotone increasing
function of R0, then it is impossible to estimate R0 from R∗ and in particular from sero-
prevalence data. However, we will show in Section 3 that R∗ − r ≥ (1 − r)(1 − 1/R0).
So, we know at least that R0 ≤ (1 − r)/(1 − R∗), which gives an upper bound for R0.

Similarly, Fig. 1b shows that the final epidemic size R∗ may not increase with the
initial fraction i of infected people. The parameter values are ε = 0.5, 1/γ = 1/52 year,
t0/τ = 0.5, R0 = 2.5 (which fixes β̄), and we took either i = 10−6 or i = 10−3. Again,
i = 10−6 depletes the number of susceptibles more slowly during the unfavorable season.

Figure 2a shows that large epidemics are possible even if R0 < 1. The parameter
values are R0 = 0.9, ε = 0.5, 1/γ = 1/52 year, t0/τ = 0, and i = 10−3. The fact that
R0(1 + ε) > 1 but R0(1 − ε) < 1 gives an indication of what is happening [more gen-
erally, (1) shows that dI/dt < 0 when β(t)/γ (t) < 1]. The epidemic occurs during the
favorable season and simply stops when the unfavorable period arrives. The fact that the
initial fraction of infected people is not too small (i = 10−3) also plays a role. Indeed, the
threshold theorem with r = 0 shows that R∗ → 0 when i → 0 and R0 < 1. From these
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Fig. 2 (a) Large epidemics can happen even if R0 < 1. (b) R∗ can be very sensitive to small changes
in R0.

remarks, one concludes that one should be careful before saying that R0 > 1 whenever
an epidemic peak is observed. In the summer of 2007, a small chikungunya epidemic oc-
curred near Ravenna in Italy. Summer is the best season for mosquitoes in that area and
the epidemic could probably never have crossed the winter. In our opinion, the estimates
of R0 presented during the chikungunya modeling meeting at the European Centre for
Disease Control and Prevention, which were all well above 1, should be considered with
caution (European Centre for Disease Prevention and Control, 2009). The problem lies
essentially in the definition of R0 and in the assumptions of the model. A model with a
constant environment similar to the summer conditions cannot explain why the epidemic
does not continue during falls, and is clearly inappropriate if the epidemic lasts 2 years as
in Réunion.

Figure 2b shows that the final epidemic size R∗ can be very sensitive to small changes
in R0. The parameters values are ε = 0.5, 1/γ = 1/52 year, t0/τ = 0.5, i = 10−6, while
R0 can take one of the three values 1.15 (plain line), 1.2 (dashed line), and 1.25 (dotted
line). We obtained R∗ � 54% when R0 = 1.15, R∗ � 23% when R0 = 1.2, and R∗ � 50%
when R0 = 1.25. In practice, one may never be able to distinguish values of R0, which are
so close. But the corresponding final epidemic size varies by a factor 2. In systems with
periodic coefficients such as (1), forecasting the final epidemic size seems very difficult.
This can answer in some way the critics directed against the epidemiologists, who fol-
lowed the chikungunya epidemic in Réunion. Although the epidemic had been carefully
monitored by a surveillance network since its beginning in April 2005, epidemiologists
were not able to foresee the huge peak that occurred in January and February 2006. This
led to much pressure set by the general public and politicians on the “Institut de Veille
Sanitaire,” which is in charge of disease surveillance in France and its overseas territo-
ries. Our simulations suggest that this pressure may have been unjustified. In some way,
epidemic forecasting beyond a few weeks in a seasonal environment may be almost as
difficult as weather forecasting beyond a few days. Recall that the difficulty of analyzing
endemic (not emerging) diseases in a seasonal environment, chaos often being suspected,
is a somewhat different question as the one studied here.

For Fig. 2b, we chose i = 10−6. In practice, it is difficult to estimate the initial fraction
i of infected people. The problem is that the SIR system assumes some kind of homo-
geneous mixing. If an epidemic starts in a city from just one initial case, one may think
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that i is simply one over the population of the city. But if the city is large, homogeneous
mixing may not be reasonable and we may have to use the population of the quarter of
the city where the initial case was introduced. The problem is the same for epidemics in a
small island like Réunion, but with a population of 800,000, which is concentrated along
the coast.

Figure 3a investigates the dependence of the final epidemic size R∗ on the time t0 at
which the epidemic starts. Obviously, R∗ is always a τ -periodic function of t0, system
(1) being invariant by a shift of τ in time. The parameter values in Fig. 3a are R0 = 1
or R0 = 1.5, ε = 0.5, 1/γ = 1 week or 3 weeks, and i = 10−3. The dependence on t0
is strong if R0 is close to 1 and if the infectious period 1/γ is short compared to the
seasonal period τ . In such a case, the epidemic cannot develop during the unfavorable
season. Figure 3b shows for R0 = 1 the “reproductive value” V (t0) (“infectious value”
might be a more appropriate expression) of an initial case introduced at time t0, computed
from the linearized equation near the disease-free state:

dI

dt
= β(t)(1 − r)I (t) − γ (t)I (t). (4)

We consider here the general case, not just the special case with r = 0 and a constant
γ (t). Recall that the asymptotic growth rate of (4) is ρ = β̄(1 − r) − γ̄ and is the unique
real number such that the equation

dJ

dt
+ ρJ (t) = β(t)(1 − r)J (t) − γ (t)J (t)

has a nonzero periodic solution J (t), as can be seen by setting I (t) = J (t) exp(ρt) in (4).
Bacaër and Abdurahman (2008, Section 2) showed that the reproductive value in time-
periodic linear population models such as (4) does not depend on “age” (here, infection
age) and is given by any nonzero solution of the adjoint equation

−dV

dt0
+ ρV (t0) = β(t0)(1 − r)V (t0) − γ (t0)V (t0).

Fig. 3 (a) When R0 is close to 1, the final epidemic size R∗ depends strongly on t0 if the infectious
period 1/γ is short compared to the seasonal period τ . (b) The normalized “reproductive value” V (t0)

gives a crude idea of the dependence of the final epidemic size on t0 (here, R0 = 1).
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This yields

V (t0) = exp

[∫ t0

0

(
γ (t) − γ̄

)
dt − (1 − r)

∫ t0

0

(
β(t) − β̄

)
dt

]

up to a multiplicative constant. Figure 3b compared to Fig. 3a with R0 = 1 shows that the
reproductive value gives only a crude idea of the dependence of the final epidemic size
R∗ on t0: we can just expect that the maximum of R∗ is reached close to t0 = 0 and the
minimum close to t0 = 0.5. With R0 = 1.5, the shape of V (t0) is similar with a maximum
at t0 = 0 and a minimum at t0 = 0.5 (not shown), but Fig. 3a shows that this is misleading:
the nonlinear effects become important. With a longer infectious period (1/γ = 3 weeks),
the difference between starting the epidemic at an unfavorable and at a favorable season
is less pronounced than with a shorter infectious period (1/γ = 1 week).

Finally, some remarks are necessary concerning a possible method estimation of R0

from data that does not use the final epidemic size. At the very beginning of an epidemic,
t � t0, S � 1, I � 0 and R � 0. So, dI/dt � (β(t0) − γ )I and I (t) tends to grow expo-
nentially at a rate β(t0)−γ . This rate can be estimated from the beginning of the epidemic
curve. Knowing the infectious period 1/γ , one can deduce β(t0) and, therefore, the ratio
β(t0)/γ . But our analysis shows that unlike R0 = β̄/γ , the ratio β(t0)/γ is not related
to threshold properties of the system so it does not seem to be a good candidate for be-
ing called “basic reproduction number.” If, however, β(t) = β̄f (t), where f (t) is known
and periodic with a mean equal to 1, then R0 = (β(t0)/γ )/f (t0) can be computed. No-
tice that β(t0)/γ overestimates (resp. underestimates) R0 if f (t0) > 1 (resp. f (t0) < 1),
i.e., if the epidemic starts during a favorable (resp. unfavorable) period where β(t) is
above (resp. below) its average β̄ . For air-borne diseases, it is difficult to know the shape
of f (t) = β(t)/β̄ because the influence of temperature and humidity on transmissibility
is not easy to estimate quantitatively. For vector-borne diseases, the seasonal variations
of the vector population can be measured so estimates of R0 can be obtained (see, e.g.,
Bacaër and Guernaoui, 2006).

3. Threshold theorems

3.1. Periodic SIR system

3.1.1. Preliminary remarks
It follows from Thieme (2003, Section A.1) that (1)–(2) has a unique solution defined
for all t ≥ t0 and that S(t) > 0 and I (t) > 0 for all t ≥ t0. Besides, S(t) is decreasing,
R(t) is increasing and S + I + R = 1. So S(t) → S∗ and R(t) → R∗ as t → +∞. Since
I = 1 − S − R, it follows that I (t) → I ∗. But R(t) − r = ∫ t

t0
γ (u)I (u)du. So, the latter

integral converges as t → +∞ and γ̄ > 0 implies that I ∗ = 0.

3.1.2. Below the threshold
Assume that R0 < 1. Since S(t) = 1 − I (t) − R(t), I (t) ≥ 0 and R(t) ≥ r for all t ≥ t0,
we have

dI

dt
= β(t)(1 − I − R)I − γ (t)I ≤ [

β(t)(1 − r) − γ (t)
]
I (t).
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Since I (t0) = i, we get

I (t) ≤ i exp

(∫ t

t0

[
β(u)(1 − r) − γ (u)

]
du

)
.

But dR/dt = γ (t)I and R(t0) = r . So,

r ≤ R(t) ≤ r + i

∫ t

t0

γ (u) exp

(∫ u

t0

[
β(v)(1 − r) − γ (v)

]
dv

)
du. (5)

When u → +∞, we have
∫ u

t0
[β(v)(1 − r) − γ (v)]dv ∼ [β̄(1 − r) − γ̄ ]u. But β̄(1 − r) −

γ̄ < 0 since R0 < 1. So, the integral on the right-hand side of (5) converges as t → +∞
and

r ≤ R∗ ≤ r + i

∫ ∞

t0

γ (u) exp

(∫ u

t0

[
β(v)(1 − r) − γ (v)

]
dv

)
du.

So, R∗(t0, i, r) → r when i → 0.

3.1.3. Above the threshold
Assume that R0 > 1. The proof goes on by contradiction. Suppose that R∗ − r <

(1− r)(1−1/R0). Then 1−R∗ > (1− r)/R0 = γ̄ /β̄ . Since R(t) is increasing, it follows
that R(t) ≤ R∗ for all t ≥ t0. Then

dI

dt
= β(t)(1 − I − R)I − γ (t)I ≥ α(t)I − β(t)I 2, (6)

where α(t) = β(t)(1 − R∗) − γ (t). Moreover,

ᾱ = 1

τ

∫ τ

0
α(t) dt = β̄(1 − R∗) − γ̄ > 0.

Choose η such that 0 < η < ᾱ/β̄ . Since I (t) → 0 as t → +∞, one can find t1 > t0 such
that 0 ≤ I (t) ≤ η for all t ≥ t1. Now (6) implies that

dI

dt
≥ (

α(t) − β(t)η
)
I

for all t ≥ t1. So I (t) ≥ I (t1) exp(
∫ t

t1
(α(u) − β(u)η)du) for all t ≥ t1. Because of the

choice of η, we obtain that I (t) → +∞ as t → +∞, which contradicts I (t) ≤ 1. There-
fore, R∗ − r ≥ (1 − r)(1 − 1/R0).

3.2. Periodic SEIR system

3.2.1. Model and definition of R0

Consider the system

dS

dt
= −β(t)SI,

dE

dt
= β(t)SI − δ(t)E,
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dI

dt
= δ(t)E − γ (t)I,

dR

dt
= γ (t)I,

with S + E + I + R = 1 and where the rate δ(t) of moving from the latent compartment
E to the infectious compartment I may also be τ -periodic with δ̄ > 0. Consider the initial
condition

S(t0) = 1 − e − i − r, E(t0) = e, I (t0) = i, R(t0) = r,

with e ≥ 0, i ≥ 0, r ≥ 0, e + i > 0, and e + i + r < 1. For any λ > 0, let Φ(t, t0;λ) be the
evolution operator associated with the τ -periodic linear system

d

dt

(
Ẽ

Ĩ

)
=

(−δ(t)
β(t)(1−r)

λ

δ(t) −γ (t)

)(
Ẽ

Ĩ

)
. (7)

The spectral radius σ(λ) of Φ(t0 + τ, t0;λ) is called the dominant Floquet multiplier of
(7) and does not depend on t0. The off-diagonal rates of (7) being positive, Aronsson and
Kellogg (1978, Lemma 2) implies that Φ(t, t0;λ) is a positive matrix for t > t0. Moreover,
σ(λ) is a decreasing function of λ (Wang and Zhao, 2008). In Bacaër (2007, Section 3.4)
(see also Wang and Zhao, 2008), the basic reproduction number R0 was defined as the
unique λ > 0 such that σ(λ) = 1.

3.2.2. Some remarks
It follows from Thieme (2003, Section A.1) that the periodic SEIR system has a unique
solution defined for all t ≥ t0 and that S(t) > 0, E(t) > 0 and I (t) > 0 for all t > t0. S(t)

decreases and converges to S∗. R(t) increases and converges to R∗. Since d
dt

(I + R) =
δ(t)E, the function I + R increases and converges. So, I (t) → I ∗. Moreover, R(t) − r =∫ t

t0
γ (u)I (u)du converges as t → +∞. So, γ̄ > 0 implies that I ∗ = 0. But E = 1 − S −

I − R shows that E(t) → E∗. Since d
dt

(S + E) = −δ(t)E, the integral
∫ ∞

t0
δ(u)E(u)du

converges. So, δ̄ > 0 implies that E∗ = 0. Let us show that S∗ > 0. Imagine that S∗ = 0.
Then

logS(t) − logS(t0) = −
∫ t

t0

β(u)I (u)du

shows that
∫ ∞

t0
β(u)I (u)du = +∞. But the inequalities

∫ t

t0

β(u)I (u)du ≤
[

max
0≤u≤τ

β(u)

γ (u)

]∫ t

t0

γ (u)I (u)du,

∫ t

t0

γ (u)I (u)du = R(t) − r ≤ 1 − r

show that
∫ ∞

t0
β(u)I (u)du < +∞. Hence, S∗ > 0 and R∗ = 1 − S∗ < 1.

3.2.3. Below the threshold
Since S = 1 − E − I − R, we have

d

dt

(
E

I

)
≤

(−δ(t) β(t)(1 − r)

δ(t) −γ (t)

)(
E

I

)
,
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where the inequality between vectors means inequality for each component. So,
(E(t), I (t))′ ≤ Φ(t, t0;1)(e, i)′, where the prime ′ stands for transposition. Assume that
R0 < 1. Then σ(1) < 1 and the matrix Φ(t, t0;1) is bounded in norm by K exp(−ξ(t −
t0)) with K > 0 and ξ > 0 Hale (1980, Theorem 7.2). So, R∗ − r = ∫ ∞

0 γ (t)I (t) dt will
tend to 0 if e and i tend to 0.

3.2.4. Above the threshold
Assume R0 > 1. Imagine that the inequality R∗ − r ≥ (1 − r)(1 − 1/R0) is wrong. Then
1−R∗ > (1− r)/R0 and σ((1− r)/(1−R∗)) > σ(R0) = 1. By continuity of the spectral
radius and because R∗ < 1, one can find η > 0 such that η < 1 − R∗ and σ(λ) > 1, where
λ = (1 − r)/(1 −R∗ −η). We have S(t) → 1 −R∗ as t → +∞. So, there is a t1 > t0 such
that S(t) ≥ 1 − R∗ − η for all t ≥ t1. It follows that

d

dt

(
E

I

)
≥

(−δ(t) β(t)(1 − R∗ − η)

δ(t) −γ (t)

)(
E

I

)
(8)

and (E(t), I (t))′ ≥ Φ(t, t1;λ)(E(t1), I (t1))
′ for all t ≥ t1. In particular,

(
E(t1 + nτ)

I (t1 + nτ)

)
≥ Φ(t1 + nτ, t1;λ)

(
E(t1)

I (t1)

)
= Φ(t1 + τ, t1;λ)n

(
E(t1)

I (t1)

)

for all integer n ≥ 1. Let μ1 and μ2 be the eigenvalues of the positive matrix Φ(t1 +
τ, t1;λ), where μ1 = σ(λ) is the dominant eigenvalue of Perron–Frobenius theory
(Berman and Plemmons, 1979). Using Liouville’s formula, we know that

det
[
Φ(t1 + τ, t1;λ)

] = μ1μ2 = exp

(
−

∫ τ

0

[
δ(t) + γ (t)

]
dt

)

= exp
(−(δ̄ + γ̄ )τ

)
< 1.

Since μ1 = σ(λ) > 1, it follows that μ2 is real and 0 < μ2 < 1. Let (p1,1,p2,1)
′ be a

positive eigenvector of the positive matrix Φ(t1 + τ, t1;λ) associated with the eigenvalue
μ1, as given by Perron–Frobenius theory. Let (p1,2,p2,2)

′ be a (real) eigenvector associ-
ated with μ2. As nonnegative eigenvectors can only be associated with μ1 (Berman and
Plemmons, 1979, Theorem 2.1.4), it follows that p1,2p2,2 < 0. So, one can assume that
p2,2 > 0 and p1,2 < 0. Set

P =
(

p1,1 p1,2

p2,1 p2,2

)
.

Then Φ(t1 + τ, t1;λ)n = P diag(μn
1,μ

n
2)P

−1 for all integer n ≥ 1. Let Δ = p1,1p2,2 −
p1,2p2,1 > 0 be the determinant of P . Then

(
E(t1 + nτ)

I (t1 + nτ)

)

≥ 1

Δ

(
p1,1 p1,2

p2,1 p2,2

)(
μn

1 0
0 μn

2

)(
p2,2 −p1,2

−p2,1 p1,1

)(
E(t1)

I (t1)

)
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= 1

Δ

(
μn

1p1,1[p2,2E(t1) − p1,2I (t1)] + μn
2p1,2[−p2,1E(t1) + p1,1I (t1)]

μn
1p2,1[p2,2E(t1) − p1,2I (t1)] + μn

2p2,2[−p2,1E(t1) + p1,1I (t1)]
)

.

It follows from μ1 > 1, 0 < μ2 < 1, Δ > 0, p1,1 > 0, p2,1 > 0 and p2,2E(t1)−p1,2I (t1) >

0 that both E(t1 + nτ) and I (t1 + nτ) tend to +∞ as n → +∞. But this contradicts
(E(t), I (t)) → (0,0) as t → +∞. So R∗ − r ≥ (1 − r)(1 − 1/R0).

3.3. A periodic system describing vector-borne diseases

Consider the system describing a vector-borne disease

dS

dt
= −βSJ

H
,

dI

dt
= βSJ

H
− γ I,

dR

dt
= γ I,

dJ

dt
= β ′(V (t) − J )I − δJ,

with a periodic vector population V (t), and where H is the total human population,
S + I + R = 1, J is the number (not the fraction) of infected vectors, δ is the vector
mortality, and β (resp. β ′) is the vector biting rate multiplied by the transmission proba-
bility from vector to human (resp. from human to vector). This is reasonable model for
arbovirus epidemics: dengue fever, West Nile fever, yellow fever, chikungunya, etc. The
initial condition is S(t0) = 1 − i − r , I (t0) = i, R(t0) = r , J (t0) = j , with i > 0, r ≥ 0,
i + r < 1, and 0 ≤ j ≤ V (t0). The basic reproduction number R0 is such that system

d

dt

(
Ĩ

J̃

)
=

( −γ
β(1−r)

R0H

β ′V (t) −δ

)(
Ĩ

J̃

)

has a dominant Floquet multiplier equal to 1 (Bacaër, 2007) (some authors prefer to use
R′

0 = √
R0). One can show as in Section 3.2 that the final size R∗ − r of the epidemic in

humans tends to 0 when R0 < 1 and both i and j tend to 0, and that R∗ − r ≥ (1 − r)(1 −
1/R0) if R0 > 1. We briefly sketch the proof. When R0 < 1, the result follows from the
fact that

d

dt

(
I

J

)
≤

( −γ
β(1−r)

H

β ′V (t) −δ

)(
I

J

)
.

When R0 > 1, we have R(t) → R∗, S(t) → 1−R∗, I (t) → 0, and J (t) → 0 as t → +∞.
Assume that 1 − R∗ > (1 − r)/R0. Then one can find η > 0 and t1 > t0 such that

d

dt

(
I

J

)
≥

( −γ
β(1−R∗−η)

H

β ′(V (t) − η) −δ

)(
I

J

)

for all t ≥ t1, the dominant Floquet multiplier of the right-hand side being strictly big-
ger than 1. This leads as in Section 3.2 to a contradiction with I (t) ≤ 1. So, 1 − R∗ ≤
(1 − r)/R0.
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4. Conclusion

Our analysis shows that the threshold theorem for systems with constant coefficients
(with the two classical cases, R0 < 1 and R0 > 1) can be generalized to systems with
periodic coefficients representing seasonality, provided the basic reproduction number
R0 is defined as in our earlier studies (Bacaër and Guernaoui, 2006; Bacaër, 2007;
Bacaër and Ouifki, 2007). However, somewhat unexpectedly, periodic systems may have
relatively large epidemics even when R0 < 1 and the final epidemic size may not increase
with R0 or the initial fraction i of infected people.

These observations based on simple systems should serve as a warning for the in-
terpretation of epidemics influenced by seasonality. Epidemics of emerging vector-borne
diseases, which receive a renewed attention because of climate change theory should be
analyzed with caution as we have shown with the case of chikungunya in Réunion and
Italy. Another case of interest nowadays is that of pandemic flu in humans following bird
flu. The pandemic of 1918–1919 occurred in several waves influenced by seasonality.
Attempts to estimate the basic reproduction number for this pandemic have assumed con-
stant coefficients and have used the beginning of the epidemic curve or the final size of
single-wave epidemics (see, e.g., Vynnycky et al., 2007). Our work suggests that these
analyses may have to be revised since the relationship between R0 and the behavior of
epidemics influenced by seasonality is not a straightforward generalization of what is
known for the case of a constant environment.
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