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Abstract Networks have become an indispensable tool in modelling infectious diseases,
with the structure of epidemiologically relevant contacts known to affect both the dynam-
ics of the infection process and the efficacy of intervention strategies. One of the key rea-
sons for this is the presence of clustering in contact networks, which is typically analysed
in terms of prevalence of triangles in the network. We present a more general approach,
based on the prevalence of different four-motifs, in the context of ODE approximations
to network dynamics. This is shown to outperform existing models for a range of small
world networks.

Keywords Infections disease · Modelling · Epidemiology · Pair approximation · Triple
approximation · Networks · Motifs

1. Introduction

Mathematical modelling has become an indispensable tool in modern infectious disease
epidemiology, with even relatively simple models playing an important role in under-
standing and controlling outbreaks (Anderson and May, 1992). Increasing resources for
numerical computation also mean that it is now possible to incorporate large-scale aggre-
gate data into simulations of epidemics in human and animal populations (Ferguson et al.,
2006; Tildesley et al., 2006).

At the same time, and at a lower spatial scale, the structure of contacts between in-
dividuals can have an important effect on disease dynamics (Keeling and Eames, 2005),
with work in this field most advanced in the modelling of sexually transmitted infections
(Eames, 2004; Eames and Keeling, 2002; Service and Blower, 1995). For contacts rele-
vant to the spread of airborne disease, the collection of more comprehensive data is an
ongoing project, particularly motivated by concerns over pandemic influenza (Edmunds
et al., 1997, 2006; Mossong et al., 2008).
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Although the lack of fully comprehensive contact network data remains a prob-
lem, many observed partial contact networks appear to share common statistical fea-
tures. In particular, the combination of high clustering amongst nodes and short aver-
age path length, commonly known as the small world phenomenon (Watts and Strogatz,
1998), has been observed not only in social networks (Wasserman and Faust, 1994), but
also in technological, metabolic and citation networks (Newman, 2003; Strogatz, 2001;
Watts, 2003). The use of simple models of network creation that reproduce these statisti-
cal features permits us to examine their effects in some detail. The effect of unexpectedly
high clustering in networks on disease dynamics has been studied in an ODE-based set-
ting (Keeling, 1999). However, small sub-graphs of higher order, known as motifs have
also been observed to have significantly different prevalences from those expected in a
random case (Milo et al., 2002; Milo, 2004). Until now, the epidemiological effects of
varying prevalences of four-motifs or higher have not been considered.

In this paper, we present an ODE-based method for deriving approximate dynamics
for epidemics on a network, based on closure of network SIS equations at the triple level.
We then consider the application of this approach to a small world network, and compare
with stochastic simulation.

2. Closure methods for network epidemics

We now present a series of sequentially more complex ODE-based approximations to net-
work epidemic dynamics. The level of detail retained in each approximation corresponds
to the sub-network size at which the dynamical equations for the system are closed by
approximating larger sub-networks in terms of smaller ones. The first two orders of this
process are familiar in the literature, however, they are presented here for methodological
and notational clarity.

Although the equations presented here are in terms of SIS dynamics for simplicity,
our approach is straightforwardly extended to SIR or SEIR dynamics. Our epidemiolog-
ical parameters for this system are, throughout, I0 for the initial number of infectious
individuals, τ for the rate at which infection spreads between infectious and susceptible
individuals that are linked on a network, and g for the rate at which infectious individuals
become susceptible again.

2.1. First-order

Suppose we have a network made of nodes numbered i = 1, . . . ,N , with adjacency matrix
G defined by

Gij =
{

1 if i and j are linked,

0 otherwise.
(1)

The mean links per node is n = ∑
i,j Gij /N . We can then write [A] for the number of

network nodes in disease state A and [A–B] for the number of pairs of nodes with disease
states A and B . We then define a notation for the total numbers of nodes and pairs as
below.

:=
∑

A

[A] = N, :=
∑
A,B

[A–B] = nN. (2)
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The dynamics of an SIS-structured disease process on this network will be given by the
following pair of equations, which are exact but unclosed:

d

dt
[S] = −τ [S–I ] + g[I ], d

dt
[I ] = τ [S–I ] − g[I ]. (3)

To close this system at first-order, we ignore the pair-level correlations between nodes in
given disease states and assume that the number of pairs of a certain type is given by the
product of the numbers of nodes of the two types that make it up:

[A–B] ≈ 1
2 [A][B]. (4)

Substituting the approximation (4) into the exact system (3) yields the familiar ‘mean-
field’ SIS equations

d

dt
[S] = − β

N
[S][I ] + g[I ], d

dt
[I ] = β

N
[S][I ] − g[I ], (5)

where β := nτ . At this level, we have discarded all information about the underlying
network apart from the mean number of connections per node and number of nodes, and
have essentially assumed that the population is well mixed.

2.2. Second order

We can make a better approximation to the actual behaviour of an epidemic on a network
by considering the time evolution of pairs. This will require notation for triples, which
can be either closed (triangles) or unclosed (lines). The prevalences of these are written
as below

:=
∑

A,B,C

[A–B–C], :=
∑

A,B,C

[A–B–C] . (6)

An exact set of equations for pairs can then be written down in an analogous way to (3)

d

dt
[S–S] = −2τ [S–S–I ]. . . . +2g[S–I ],

d

dt
[S–I ] = τ

([S–S–I ]. . . . −[I–S–I ]. . . . −[S–I ]) + g
([I–I ] − [S–I ]), (7)

d

dt
[I–I ] = 2τ

([I–S–I ]. . . . +[S–I ]) − 2g[I–I ],

where here and throughout this paper we use dotted lines to imply expansion as below:

[A–B–C]. . . . . = [A–B–C]+ [A–B–C] . (8)

We can then close the system by assuming that triple-level prevalences are given by ap-
propriate functions of pair- and node-level variables. The approximations to be substituted



1696 House et al.

into (8) are, following the argumentation of Keeling (1999),

[A–B–C] ≈ 2

[A–B][B–C]
[B] ,

(9)

[A–B–C] ≈
3

3

[A–B][B–C][C–A]
[A][B][C] .

Our notation is related to the more standard one in which triangle-level clustering is para-
meterised in terms of a clustering coefficient φ by the relations

= (1 − φ)Nn(n − 1), = φNn(n − 1). (10)

2.3. Third order

Time evolution of triples through simple closure approximations has been discussed in,
for example, Bauch (2005), with the conclusion that it can be preferable to develop more
sophisticated pair-level models compared to simple triple-level approaches. Here we con-
sider an approach to triple dynamics that makes use of the full range of possible fourth-
order network structures and so avoids the shortcomings of simpler models.

While there are only two connected graphs of degree three, there are six connected
graphs of degree four, which we write as

:=
∑

A,B,C,D

[A–B–C D],

:=
∑

A,B,C,D

[A–B–C–D],

:=
∑

A,B,C,D

[A–B–C–D],

:=
∑

A,B,C,D

[A–B–C–D],

:=
∑

A,B,C,D

[A–B–C–D],

:=
∑

A,B,C,D

[A–B–C–D] .

(11)

Exact equations for the time evolution of the triple variables can then be written down in
the same way as (3) and (8). We have to consider closed and unclosed triples separately,
due to the different possibilities for surrounding motifs, in addition to the internal dynam-
ics of a closed triple, which allow transmission of infection between any of its component
nodes. The six equations for unclosed triples and four equations for closed triples are
presented below, making use of the notation developed above.
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Unclosed triple equations

d

dt
[S–S–S] = −τ

(
2

. . . .[S–S–S–I ]. . . . . . . +[S–S–S· · · I ]. . . . . . . . .
) + g

(
2 [S–S–I ]+ [S–I–S]),

d

dt
[S–S–I ] = τ

( . . . .[S–S–S–I ]. . . . . . . −
. . . . . .[S–S–I · · · I ]− [S–S–I · · · I ]. . . . . . . . −[S–S–I ])

+ g
([S–I–I ]+ [I–S–I ]− [S–S–I ]),

d

dt
[S–I–S] = +τ

([S–S–S· · · I ]. . . . . . . . . −2
. . . .[S–I–S–I ]. . . . . . . −2 [S–I–S])

+ g
(
2 [S–I–I ]− [S–I–S]),

d

dt
[S–I–I ] = τ

( . . . .[S–I–S–I ]. . . . . . . +[S–S–I · · · I ]. . . . . . . . −
. . . . . .[S–I–I · · · I ]+ [S–I–S] (12)

+ [S–S–I ]− [S–I–I ]) + g
([I–I–I ]−2 [S–I–I ]),

d

dt
[I–S–I ] = τ

(
2

. . . . . .[S–S–I · · · I ]− [I–S–I · · · I ]. . . . . . . . −2 [I–S–I ])
+ g

([I–I–I ]−2 [I–S–I ]),
d

dt
[I–I–I ] = τ

(
2

. . . . . .[S–I–I · · · I ]+ [I–S–I · · · I ]. . . . . . . . +2 [S–I–I ]+2 [I–S–I ])
− 3g [I–I–I ] .

Closed triple equations

d

dt
[S–S–S] = −3τ

. . . .[S–S–S–I ]
. . . . . . . +3g [S–S–I ],

d

dt
[S–S–I ] = τ

( . . . .[S–S–S–I ]
. . . . . . . −2

. . . . . .[S–S–I · · · I ] −2 [S–S–I ])
+ g

(
2 [S–I–I ]− [S–S–I ]),

(13)
d

dt
[S–I–I ] = τ

(
2

. . . . . .[S–S–I · · · I ]−
. . . . . .[S–I–I · · · I ] +2 [S–S–I ] −2 [S–I–I ])

+ g
([I–I–I ]−2 [S–I–I ]),

d

dt
[I–I–I ] = 3τ

( . . . . . .[S–I–I · · · I ] +2 [S–I–I ]) − 3g [I–I–I ] .

Dotted lines are throughout expanded similarly to (8), as a sum over no line and a full
line, so that, for example, the first such term above expands to

. . . .[S–S–S–I ]. . . . . . . = [S–S–S–I ]+ [S–S–S–I ]+ [S–S–S–I ]+ [S–S–S–I ] . (14)

In order to close the system at triple level, we approximate the four-motifs in terms of
triples, pairs and nodes in a way that incorporates as much of the internal structure of
each four-motif as possible. The approximation scheme that we substitute into equations



1698 House et al.

(13) and (14) to provide a closed system of triplewise equations is thus:

[A–B–C D] ≈
3

3

[A–B–C] [A–B–D] [C–B–D][B]
[A–B][B–C][B–D] ,

[A–B–C–D] ≈ 2

[B–C–D] [A–B–C]
[B–C] ,

[A–B–C–D] ≈
3

2

[A–B–C] [B–C–D] [A–C–D][C]
[A–C][B–C][C–D] ,

[A–B–C–D] ≈
4

4

[A–B–C] [B–C–D] [C–D–A] [D–A–B]
[B–C][C–D][D–A][A–B] , (15)

[A–B–C–D] ≈ 2

[B–C–D] [A–B–C]
[B–C] ,

[A–B–C–D] ≈
6

4 4

× [A–B–C] [B–C–D] [C–D–A] [D–A–B][A][B][C][D]
[B–C][C–D][D–A][A–B][A–C][B–D] .

Each of the approximate, closed systems derived in this section can, given appropriate
initial conditions, be numerically integrated using standard techniques for ODEs. We ex-
pect them to provide a sequentially better approximation to the expected dynamics of SIS
epidemics on large contact networks, a hypothesis that can be tested through comparison
with stochastic simulation.

3. Application to small world networks

The major benefit of considering higher-order closure of the type we have derived is a
more sophisticated treatment of clustering. We therefore consider a Watts–Strogatz small
world network (Watts and Strogatz, 1998), which interpolates between a lattice and an
Erdös–Rényi random graph (Erdös and Rényi, 1961). The interpolation parameter p rep-
resents the probability that any given lattice link is broken and replaced with a random
link. Two examples of such networks are shown in Fig. 1. All underlying lattices consid-
ered here are toroidal (meaning boundary conditions are periodic).

3.1. Motif prevalences

In order to provide a set of network parameters to integrate the equation sets (3), (8), (13)
and (14), we need a set of prevalences for motifs at each level required by the relevant
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Fig. 1 Two small world networks. On the left, a network based on a one-dimensional lattice of degree
two, and on the right, a network based on a two-dimensional lattice of degree one. Both networks have
randomisation parameter p = 0.1 and mean links per node n = 4, however, the variation in underlying
lattice structure (reflected in prevalences of higher order motifs) causes these networks to behave very
differently in an epidemiological setting.

equation set. These are required at one level above the dynamical variables, to ensure that
the closure approximations are correctly normalised.

For the lattices forming the base of the small world networks that we are considering,
these prevalences can be calculated using combinatorial arguments. For example, in a
2-d lattice, each node can be associated with eight squares through counting four initial
directions clockwise and anticlockwise. Using this and similar arguments, we derived the
results below for a 1-d lattice with k-nearest neighbour links (which we call degree k) and
for a 2-d square lattice with nearest-neighbour links (degree 1).

Motif 1-d lattice 2-d lattice

N N

2kN 4N

k(k + 1)N 12N

3k(k − 1)N 0

0 24N

1
3 k(k + 1)(2k + 1)N 28N

2
3 k(k + 1)(k − 1)N 0

0 8N

2
3 k(k + 1)(k − 1)N 0

4k(k − 1)(k − 2)N 0
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As we introduce a probability p of breaking lattice links and making random ones to
generate a small world network, we modify the motif prevalences above. In general, the
number of new triangles formed through such a process is proportional to 1/N and so in
the infinite population size limit (which is implicit in ODE approaches) triangles are only
destroyed by randomisation. The same will be true for all other small closed loops, and
together with identities relating different motifs, this makes calculation of the effects of
randomisation possible.

The arguments above lead to the general set of relations below for a set of motif preva-
lences following randomisation (subscript p) based on unrandomised prevalences (sub-
script 0).

p
=

0
,

p
=

0
,

p
=

0
+ (

1 − (1 − p)3
)

0
,

p
= (1 − p)3

0
,

p
= (1 − p)6

0
,

p
= (1 − p)5

0
+ p(1 − p)5

0
, (16)

p
= (1 − p)4

0
+ p(1 − p)4

0
+ p2(1 − p)4

0
,

p
= (1 − p)3

0
+ 2

(
2p(1 − p)4 + p2(1 − p)3

)
0

+ (
p(1 − p)5 + 3p2(1 − p)4 + p3(1 − p)3

)
0
,

p
= (n − 1)

p
−

p
−

p
−

p
,

p
= Nn(n − 1)(n − 2) − 3

p
− 3

p
−

p
.

3.2. Comparison with simulation

3.2.1. Simulation details
The series of sequentially improved ODE models as described above are designed to pro-
vide an approximation to a Markovian process of infection and recovery on a network as
defined in Appendix A.1.. The numerical integration of such a process involves 2N − 1
independent dynamical variables for SIS dynamics on a network of size N , in contrast
to the ODE approaches outlined which simply incorporate N as a parameter. Since the
integration of the full Markov process as N becomes sufficiently large for ODE-based
approaches to be appropriate is impossible, we compare our results with stochastic reali-
sations of an appropriate discrete-time Markov chain as defined in Appendix A.2..

For each parameter set, we generated a network through random rewiring (Watts and
Strogatz, 1998) and ran 104 epidemics, ignoring realisations that ended with no infectious
individuals. We used the full simulated data to plot both the mean number of infectious
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individuals and the 95% confidence interval around this mean, and then compared these
to our ODE models.

3.2.2. Accuracy of ODE approaches
The comparison between the three levels of ODE approaches above and stochastic sim-
ulations are shown in Figs. 2 and 3. In each figure, the number of infected individuals is
shown over time for our three ODE approaches and also for stochastic simulations, with
the full set of parameters involved indicated in the figure captions.

Figure 2 demonstrates the improvements in capturing the average behaviour of a sto-
chastic system that come from the triplewise approach as compared to both pairwise and
mean-field approaches on a one-dimensional small-world network of degree 2. We find
that for faster epidemics, this improvement is most marked when considering the early
growth and transient behaviour of the system, while for slower epidemics the improve-
ment is greatest when considering the endemic state. This is because during early growth
of quickly spreading infection in a clustered system, ‘bottlenecking’ significantly reduces
the incidence rate of infection compared to the mean-field R0, whereas for slower epi-
demics it is long-term behaviour that is more strongly influenced by clustering, and these
facts are captured at increasing levels of detail by both pair- and triple-based approaches.

The implications in different regions of network parameter space are shown in Fig. 3.
The plot for a one-dimensional lattice (p = 0) shows, as we would expect, that for this
system the ODE-based approaches are not appropriate since the growth in infection is
initially linear (although it should be noted that they give good approximations to the
endemic state). For the p = 1 random graph, both the triplewise and pairwise approach
give a good approximation to the system with little to choose between them; in this case
both still significantly outperform the mean-field model.

Fig. 2 An SIS epidemic with varying transmissibility on a small world network. The total number of nodes
is N = 1000 and the initial number of infectious individuals is 1. The base network is a one-dimensional
lattice of degree 2, with randomisation parameter p = 0.1. The disease parameters are τ = 0.05, g = 0.05
for the ‘Fast epidemic’ and τ = 0.03, g = 0.05 for the ‘Slow epidemic’. For the simulations, we show mean
and 95% confidence intervals (defined as the range of numbers infected within which 95% of simulations
sit at a given time) for 104 runs.
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Fig. 3 An SIS epidemic on networks with extreme values of the randomisation parameter. The total num-
ber of nodes is N = 1000 and the initial number of infectious individuals is 1. The base networks are either
a one-dimensional lattice of degree 2, (corresponding to randomisation parameter p = 0) or else a random
graph (corresponding to randomisation parameter p = 1). The disease parameters are τ = 0.05, g = 0.05.
For the simulations, we show mean and 95% confidence intervals (defined as the range of numbers infected
within which 95% of simulations sit at a given time) for 104 runs.

3.2.3. The two-dimensional lattice
Finally, we investigate a small world network based on a two-dimensional lattice, as
shown in Fig. 4. As can be seen in the left-hand plot, in this case the triplewise model
provides a significantly improved transient behaviour when compared to the pairwise,
spending longer carrying out the non-exponential growth in the numbers infectious seen
on the lattice before a period of exponential growth. This is to be expected, since a two-
dimensional lattice is clustered at the level of squares but not triangles, a feature incorpo-
rated into the triplewise model but not the pairwise.

Once a small world network is created by randomisation, as in the right-hand plot
of Fig. 4, the results are not significantly different from the networks based on a one-
dimensional lattice. Indeed, in the limit p → 1 we recover the random graph of Fig. 3,
with behaviour at intermediate values of p smoothly interpolating between the two-
dimensional lattice and random graph. It is worth, at this stage, making some more general
points about comparison of stochastic and deterministic models.

For SIS dynamics, there are two fixed points of the system: disease-free and endemic.
In a deterministic model, the disease-free state is unstable while the disease-free state
is stable, when considering small perturbations. For a stochastic model, however, there
is always the possibility of stochastic effects leading to the extinction of infection. This
creates a dilemma for comparisons between deterministic and stochastic models; if we
average over realisations that include stochastic extinction, then we will not obtain a good
measure of the quasi-stationary endemic state; but if we ignore such realisations, then our
measure of early behaviour will not be correctly averaged.

We therefore consider ODE approximations that lie within the 95% confidence in-
tervals of the stochastic model to be a good fit, and do not attempt to distinguish be-
tween them. As an example of why such distinction would be problematic, for the two-
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Fig. 4 An SIS epidemic on networks based on two-dimensional lattices. The total number of nodes
is N = 900 and the initial number of infectious individuals is 1. The base networks are either a
two-dimensional lattice of degree 1, (corresponding to randomisation parameter p = 0) or else a small
world network based on a two-dimensional lattice of degree 1, with randomisation parameter p = 0.1.
The disease parameters are τ = 0.05, g = 0.05. For the simulations, we show mean and 95% confidence
intervals (defined as the range of numbers infected within which 95% of simulations sit at a given time)
for 104 runs.

dimensional small world of Fig. 4, while the pairwise prediction is often ‘closer’ to the
simulation mean, the triplewise curve would have better overlap if it were left-shifted,
and for the technical reasons noted above it is not clear which of these is ‘better’. The
mean-field prediction for this plot is clearly significantly different from the overwhelming
majority of stochastic realisations, and so both other ODE methods can be meaningfully
considered more accurate.

This lack of significant difference leads to an important point about the appropriate
way to consider higher order clustering in epidemic models, namely that we need to con-
sider both the full set of four-motif weights, and the extent to which these differ from
the weights predicted by models incorporating only lower levels of local structure. So
while a 2-d small world network has square-level local structure, this is not manifested in
sufficiently distinctive four-motif weights to register a strong epidemiological signature.

4. Discussion

ODE models based on closure of network structure at different orders are a useful tool in
understanding the effects of contact networks on disease transmission. We have presented
here a triple-level model that incorporates more detailed information about local network
structure to improve the agreement between ODE approaches and the output from Monte
Carlo realisations of network SIS epidemics.

It should be noted that in comparing ODE models and simulation above, we have made
no attempt to fit any parameters, but have put in the same values for τ, g, I0,N,n,p and
motif prevalences to each model. This makes the close fit of the triplewise approach in
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the appropriate region of parameter space even more remarkable. Indeed, for some of
the scenarios considered, the stochastic nature of the comparison simulations is the main
limiting factor in determining the accuracy of the ODE models, suggesting that more
sophisticated methods for such comparison should be developed.

One particular application for this approach would be to consider realistic networks,
where it is likely that triangle-level clustering will be a poor way of characterising the
local patterns present in the network; in contrast, the six four-motifs should provide sig-
nificant extra information about local network properties. This could be particularly im-
portant when modelling sexually transmitted infections, where clustering has been shown
to impact significantly on the efficacy of contact tracing (Eames and Keeling, 2003), and
yet triangles will not be highly prevalent in populations with a dominant heterosexual
component.

For this to be successful, it will also be necessary to incorporate heterogeneities in the
number of contacts at each node. Similarly, it would be useful to be able to perform the
analysis above for an increased number of disease compartments to consider the interac-
tion of generalised notions of clustering with, for example, long-lasting immunity, latent
periods, traced and quarantined individuals. While the procedure for deriving such mod-
els is a simple generalisation of our method, extra model compartments would render any
calculation extremely tedious, suggesting that a priority for future research is to automate
the generation of ODEs approximating network epidemics.
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Appendix A: Description of network SIS as a Markov process

A.1. Exact formulation

We provide here a full description of SIS dynamics on a network of size N as a Markov
process in which each possible state of the system can be represented as a member of

χ = {
x ∈ [0,1]2N ∣∣ ‖x‖ = 1

}
. (A.1)

The system is described at any one time by an element p ∈ χ , which evolves over time
according to the master (also called Kolmogorov) equation

dp

dt
= Qp. (A.2)

We define the operator Q in the representation of the system where p is a rank-N tensor,
i.e. pA1...AN

= Pr(node 1 is in state A1, . . . , and node N is in state AN ). The full system is
described in this representation by the following equations
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d

dt
pA1...AN

=
∑
{B}

QA1...AN

B1...BN pB1...BN
,

(A.3)

QA1...AN

B1...BN :=
∑

i

[
τδ

Bi

S

∑
k

(
Gkiδ

Bk

I

)(
δI
Ai

− δS
Ai

) + gδ
Bi

I

(
δS
Ai

− δI
Ai

)]∏
j �=i

δ
Bj

Aj
.

The quantities associated with these equations are defined as follows: δB
A takes the value 1

when A = B and the value 0 otherwise. Gij is the network matrix. τ is the rate of infection
across a network link, and g is the recovery rate of the disease.

A.2. Discrete time simulation

Given an appropriately small timestep, δt , we can simulate the behaviour of the system
of Section A.1. through choosing a random number ri uniformly distributed over the in-
terval [0,1] for each node i. The infectious state of each node is then modified under the
following conditions:

Ii(t) → Si(t + δt) if ri > 1 − gδt,
(A.4)

Si(t) → Ii(t + δt) if ri > (1 − τδt)
∑

j δAj (t),I Gji ,

where we use the notation Ai(t) ∈ {S, I } to represent the state of node i at time t , and the
Kronecker delta to translate this into a value of either 1 or 0. In our simulations, we set
δt = 1 and keep the values of τ, g small.

Appendix B: Useful identities

For SIS dynamics, the unclosed triples are related to each other through

= [S–S–S] +2 [S–S–I ]+ [S–I–S] +2 [S–I–I ]+ [I–S–I ]+ [I–I–I ] . (B.1)

The equivalent equation for closed triples is

= [S–S–S] +3 [S–S–I ] +3 [S–I–I ]+ [I–I–I ] . (B.2)

The following identities should hold on any network composed of a ‘giant node’ (i.e. with
a path through the network linking any two of its nodes).

+ = Nn(n − 1),

+ 2 + = (n − 2) ,
(B.3)+ 2 + = (n − 2) ,

+ + + = (n − 1) .
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