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Abstract Heterogeneity in the number of potentially infectious contacts and connectiv-
ity correlations (“like attaches to like”, i.e., assortatively mixed or “opposites attract”, i.e.,
disassortatively mixed) have important implications for the value of the basic reproduc-
tion ratio R0 and final epidemic size. In this paper, we present a contact-network-based
derivation of a simple differential equation model that accounts for preferential mixing
based on the number of contacts. We show that results based on this model are in good
qualitative agreement with results obtained from preferential mixing models used in the
context of sexually transmitted diseases (STDs). This simple model can accommodate
any mixing pattern ranging from completely disassortative to completely assortative and
allows the derivation of a series of analytical results.

Keywords Preferential mixing · Epidemics · Final epidemic size

1. Introduction

Models of infectious disease transmission often assume homogeneous random mixing.
This implies that all individuals are equally likely to contact each other and, therefore, if
infected, are equally likely to infect susceptible members of the population. The availabil-
ity of more accurate data at the individual level, the collection of which has been partially
driven by the epidemics of HIV/AIDS (Liljeros et al., 2001; Jones and Handcock, 2003;
Catania et al., 1992; Anderson et al., 1990; Gupta et al., 1989), SARS (Lipsitch et al.,
2003; Hufnagel et al., 2004; Meyers et al., 2005), Foot-and-Mouth Disease (FMD; Fergu-
son et al., 2001; Keeling et al., 2001; Kiss et al., 2005, 2006a; Green et al., 2006; Kao et
al., 2006b), and the possibility of a world wide Pandemic Influenza (Eubank et al., 2004;
Ferguson et al., 2005), has highlighted the important role played by contact heterogeneity,
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spatial structure, and connectivity correlations. Differential-equation-based models can be
adapted to capture such properties and are amenable to a variety of powerful analytical
tools (Kiss et al., 2006b). Hethcote and Yorke (1984) proposed a model for the transmis-
sion of gonorrhea that distinguishes between very active and active individuals and de-
fines a mixing matrix that interpolates between the case of proportionate mixing and the
case when mixing or contact exclusively happens within the different groups. However,
their study was not aimed at investigating the implications of different mixing patterns for
epidemic dynamics and most of their results are based on the numerical integration of a
system of eight differential equations.

In the context of modeling sexually transmitted diseases (STDs) (Anderson and Gar-
nett, 2000), individuals and their interactions are often conveniently modeled as a network
where individuals are represented by nodes and potentially infectious contacts by links
between the nodes (Kretzschmar et al., 1996; Ghani et al., 1997). This approach allows
to accommodate contact heterogeneity and connectivity correlations in a straightforward
way. The network of sexual contacts has important implications for the dynamics of the
spread and control of STDs. For example, many control policies for STDs rely on the iden-
tification and control of ‘core groups’ of individuals with a large numbers of interactions
(Hethcote and Yorke, 1984; Kretzschmar et al., 1996). Connectivity correlations within
the contact network are equally important. The assortativeness of mixing (“like attaches to
like”) where individuals with similar activity levels are more likely to be in contact leads
to a faster initial spread and a smaller overall epidemic while disassortatively mixed (“op-
posites attract”) contact networks lead to a slower initial rise in the epidemic, but a much
larger epidemic over a long period of time (Gupta et al., 1989; Anderson et al., 1990;
Ghani et al., 1997).

Empirical evidence such as the correlation properties of the Internet (Pastor-Satorras
et al., 2001) has also led to the recent development of numerous network- and differential-
equation-based models (Boguñá et al., 2003a, 2003b; Newman, 2002, 2003; Moreno et al.,
2003; Barthélemy et al., 2005). Many of these models focus on the effect of connectivity
correlations on the epidemic threshold, initial growth rate, and hierarchical spread. For
example, it has been shown that epidemics on networks characterized by high variance
in node degree grow rapidly, and in the limiting case of infinite variance, the growth is
instantaneous independently of the mixing pattern (Boguñá et al., 2003a). A key ingre-
dient of differential-equation-based models that account for contact between and within
groups of individuals with various levels of activity (i.e., number of contacts) is the mix-
ing matrix. This provides information about the amount of contact within and between
groups. In many studies (Anderson et al., 1990), the mixing matrix, that is subject to
some constraints, is chosen in some convenient way to reflect a desired mixing pattern.
In this paper, starting from a contact network representation of the population, we pro-
pose a compartmental model that accounts for preferential mixing based on the number
of contacts that individuals have. We extend the simple SIR (susceptible, infectious and
recovered) model to the case of two groups with different levels of activity and a mixing
pattern that can be tuned to vary from completely disassortative to completely assortative.
We show that results based on this simple model are in good qualitative agreement with
results obtained from models used in the context of STDs and with other individual-based
simulation models (Kiss et al., 2008). We also derive a series of analytical results that are
difficult to obtain from more detailed compartmental models or complex individual-based
simulations.
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2. Model

2.1. Population mixing model

Connectivity correlations are based on the number of contacts that individuals have.
Hence, in the simplest case, the population is divided into poorly and highly connected in-
dividuals. Let NL and NH denote the number of poorly and highly connected individuals
with k and σk connections per individual respectively, and with σ > 1 (Kao, 2006a). The
total population size is denoted by N = NL + NH , and f = NH

N
denotes the proportion of

highly connected individuals out of the total population. Hence, NL

N
= 1 −f . The average

number of connections per individual is given by

〈k〉 = kNL + σkNH

NL + NH

. (1)

If contact would occur at random then the probability of connection between two individ-
uals is proportional to the product of their degree (i.e., proportionate mixing). However,
we wish to model the situation when individuals in one particular group may or may
not preferentially mix with or contact individuals of the same type. To accommodate this
preferential mixing, we assume that a proportion 0 ≤ a ≤ 1 of all contacts within the
population occur between highly connected individuals. Similarly, let 0 ≤ b ≤ 1 represent
the proportion of contacts between individuals that are less well connected. Therefore,
0 ≤ 1−a −b ≤ 1(⇒ a +b ≤ 1) represents the proportion of contacts between poorly and
highly connected individuals. This leads to the following definitions for the connection
correlations within the population:

P (L|L) = b

1 − a
, P (H |L) = 1 − a − b

1 − a
, (2)

and

P (L|H) = 1 − a − b

1 − b
, P (H |H) = a

1 − b
. (3)

The conditional probabilities defined in Eqs. (2) and (3) are bounded below by zero and
from above by one and they satisfy P (L|L)+P (H |L) = 1 and P (L|H)+P (H |H) = 1.
This means that all links starting at a highly connected individual will connect to poorly
connected individuals with probability P (L|H) and to highly connected individuals with
probability P (H |H). Based on the connectivity correlations, we can define a mixing ma-
trix that allows us to measure the level and type of mixing within the population

( L H

L b 1−a−b
2

H 1−a−b
2 a

)
= E. (4)

The entries of the matrix (eij ) represent the proportion of connections/links within and
between the two different subgroups. Let the sum of the rows and columns be denoted by
αi = ∑

j∈{L,H } eij and βj = ∑
i∈{L,H } eij , respectively, and with i, j ∈ {L,H }. To quantify
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Fig. 1 Illustration of M , defined in Eq. (5), as a function of a and b such that a + b ≤ 1.

the level of mixing within the population, consider the assortativity coefficient (Newman,
2002, 2003) defined as

M =
∑

i∈{L,H } eii − ∑
i∈{L,H } αiβi

1 − ∑
i∈{L,H } αiβi

= a + b − ( 1−a+b
2 )2 − ( 1+a−b

2 )2

1 − ( 1−a+b
2 )2 − ( 1+a−b

2 )2

∈ [−1,1]. (5)

The assortativity coefficient expresses the degree to which like connects to like. For ran-
dom or proportionate mixing, this formula gives M = 0, since eij = αiβj . If contacts hap-
pen only between individuals belonging to the same subpopulation (assortatively mixed
population), then

∑
i∈{L,H } eii = 1 and M = 1. If contacts happen only between indi-

viduals that belong to different subpopulations (disassortatively mixed population), then
eii = 0 and M = −∑

i∈{L,H } αiβi/(1 − ∑
i∈{L,H } αiβi), which lies in general in the range

−1 ≤ M < 0. In Fig. 1, M is plotted as a function of a and b restricted to a + b ≤ 1. If
a = b, then M = 4a − 1 and M spans from −1 to 1 along the first diagonal a = b. If
a + b = 1, then M = 1 with complete assortativity and with the population fragmented
into two noninteracting subpopulations. Different combinations of a and b can result in
the same value of M .

2.2. Disease transmission model

Individuals from the population are divided into compartments according to one of three
states of disease progression: susceptible (S(→ SL,SH )); infected and infectious (I (→
IL, IH )); and, finally, removed nodes (R(→ RL,RH )), which are no longer infectious or
they are immune. Within this mixing model, any individual can infect any other individual
provided that the mixing model allows for contact. For example, for any choice of a and b,

such that a + b = 1, it follows that M = 1, and in this case the population consists of two
noninteracting subpopulations. Therefore, transmission is not possible between poorly
and highly connected individuals. Based on these assumptions, we have the following
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system of differential equations:

dSL

dt
= −τkSL

(
P (L|L)

IL

NL

+ P (H |L)
IH

NH

)
, (6)

dSH

dt
= −τσkSH

(
P (L|H)

IL

NL

+ P (H |H)
IH

NH

)
, (7)

dIL

dt
= τkSL

(
P (L|L)

IL

NL

+ P (H |L)
IH

NH

)
− γ IL, (8)

dIH

dt
= τσkSH

(
P (L|H)

IL

NL

+ P (H |H)
IH

NH

)
− γ IH , (9)

dRL

dt
= γ IL, (10)

dRH

dt
= γ IH , (11)

where τ is the per contact rate of transmission and γ is the recovery rate. The right-
hand side in Eq. (8) describes the creation of new infections and is proportional to the
transmission rate τ , the number of contacts k of poorly connected susceptible individuals,
the number of susceptible individuals with k connections, and the probability that any
given neighbor of a susceptible individual with k connections is infected. The formulation
for such type of heterogeneous contact follows from that of Anderson and May (1991)
for sexually transmitted diseases. A similar approach is used when modeling correlated
complex networks (Boguñá et al., 2003a, 2003b; Barthélemy et al., 2005). In this present
model, following May and Lloyd (2001), it is assumed that contacts switch at a rate that
is much faster than the rate at which disease spreads, and thus infection does not result
in the loss of one susceptible neighbor upon becoming infectious. Therefore, in this case,
the network is dynamic and infection over the network does not result in the loss of a
susceptible partner. Equations (6) to (11) are nondimensionalized using N to scale all
variables and 1/γ to scale time. We note that it is sufficient to consider the first four
equations since the values of RL and RH are determined by the values of the other four
variables. Hence, the reduced system is given by

dsL

dt
= −τsL(aLLiL + aHLiH ), (12)

dsH

dt
= −τsH (aLH il + aHH iH ), (13)

diL

dt
= τsL(aLLiL + aHLiH ) − iL, (14)

diH

dt
= τsH (aLH il + aHH iH ) − iH , (15)
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where

aLL = kP (L|L)

γ (1 − f )
, aHL = kP (H |L)

γf
,

aLH = kσP (L|H)

γ (1 − f )
, aHH = kσP (H |H)

γf
.

(16)

3. Results

3.1. The basic reproduction number R0

Following van den Driessche and Watmough (2002), we note that only compart-
ments iL and iH are involved in the calculation of R0. At the disease-free equilibrium
(sL, sH , iL, iH ) = (1 − f,f,0,0) the rate of appearance of new infections F and the rate
of transfer of individuals out of the two compartments V are given by

F =
( iL iH

iL τkP (L|L)
τkP (H |L)(1−f )

f

iH
τσkP (L|H)f

1−f
τσkP (H |H)

)
, V =

( iL iH

iL γ 0
iH 0 γ

)
. (17)

The basic reproduction number R0 is defined as the leading eigenvalue of the next gener-
ation matrix FV −1. Solving the resulting quadratic equation the leading eigenvalue, and
hence R0 is given by

R0 = τk

2γ

(
P (L|L) + σP (H |H)

+
√(

P (L|L) − σP (H |H)
)2 + 4σP (L|H)P (H |L)

)
. (18)

High values of σ denote high levels of heterogeneity with a considerable difference be-
tween the number of connections of individuals in the two subpopulations. Higher number
of connections lead to a higher number of individuals being infected by an index case and,
therefore, to a higher value of R0. This is illustrated in Fig. 2 where contour plots of R0

are given for increasing values of σ while keeping all disease spread and disease progres-
sion related parameters constant. We note that varying the proportion of contacts linking
highly connected individuals, a, has a higher impact on R0 compared to varying b. Fig-
ure 2 also illustrates how higher levels of assortativity (i.e., in Fig. 2 the region close
to a + b = 1) lead to higher values of R0. Therefore, for the same disease, an outbreak
is more likely to happen if the population is assortatively mixed. At the individual level
highly connected individuals preferentially connect to other highly connected individu-
als and this leads to a high number of secondary infections generated by an initial index
case. The type of the index case (i.e., poorly or highly connected) becomes important in
a stochastic formulation where the initial phase in the spread of the disease is crucial.
For example, stochastic extinction is more likely to happen if the seeding occurs solely in
the poorly connected group. However, in the deterministic continuous formulation, even
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Fig. 2 Based on Eq. (18), R0 plotted as a function of a and b for σ = 5,9, and 11, and f = 0.25,0.125,
and 0.1 in (a), (b), and (c), respectively. For all plots, τk/2γ = 0.15. Dotted lines from left to right show
the various levels of mixing M = −0.7, −0.3, 0, 0.3, 0.7.

weak coupling between the two groups means that an epidemic will be sustained provided
R0 > 1.

The transmission potentials within the individual subpopulations can be defined as
ρL = τk

γ
and ρH = τσk

γ
. These represent the number of secondary infections produced
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by a single infectious individual during its infectious period when introduced into a fully
susceptible subpopulation. The basic reproduction number R0 has a similar definition but
the index case is weighted according to the probability of it itself becoming infected. In
the case of noninteracting subpopulations the transmission potentials are equivalent to R0

within the subpopulation. Then R0 can be written in terms of the transmission potentials
to give

R0 = 1

2

(
ρLP (L|L) + ρHP (H |H)

+
√(

ρLP (L|L) − ρH P (H |H)
)2 + 4ρLρH P (L|H)P (H |L)

)
. (19)

The limit of M = −1 represents a disassortatively mixed population meaning that
there are no within subpopulation connections. Therefore, (P (L|L) = P (H |H) = 0,

P (L|H) = P (H |L) = 1) and R0 in this case is given by

R0 = √
ρLρH . (20)

This represents the geometric mean of the individual basic reproduction numbers corre-
sponding to individual subpopulations. Hence, a complete cycle of infection from poorly
to highly connected individuals and then back again, results in ρLρH new infections
(Diekmann and Heesterbeek, 2000). If M = 1, the population is divided into two distinct
and noninteracting subpopulations (P (L|H) = P (H |L) = 0,P (L|L) = P (H |H) = 1)

and the basic reproduction number is given by

R0 = 1

2
max

(
ρL + ρH ± (ρL − ρH )

)
. (21)

In the current setting, since σ > 1, the basic reproduction number R0 = ρH since ρH ≥ ρL.

3.2. Epidemic dynamics

In the case of R0 > 1, the dynamics of the outbreak is illustrated in Fig. 3 by plotting the
proportion of infected (and infectious) individuals (iL and iH ) as a function of time. These
plots are based on numerical solutions of the system of differential Eqs. (12) to (15) using
the fourth-order Runge–Kutta method. The relation between R0 and M (see Fig. 2) allows
to choose a and b so that either R0 or M can be kept constant when comparing different
scenarios. The top panel corresponds to the case when R0 is constant independently of
the mixing pattern M = ±0.5. The lower panel corresponds to the situation where R0

is not controlled for, but is rather the result of the interaction between disease charac-
teristics and population contact structure. This in effect corresponds to the same disease
spreading on populations with different mixing patterns. When the population is assor-
tatively mixed, highly connected individuals become infected at a faster rate than poorly
connected individuals. This is also true for the case considered in Fig. 3a even though
this case corresponds to a situation where the mixing pattern is adjusted to keep R0 the
same. There is also a significant difference between how quickly an epidemic spreads and
how long it lasts for (Fig. 3b). Epidemics on assortatively mixed populations have a fast
turnover when compared to the disassortatively mixed case. Epidemics on disassortatively
mixed populations are slow to take off and their turnover time is also longer.
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Fig. 3 Proportion of the population infected as a function of time for disassortatively (solid lines)
and assortatively (dashed lines) mixed populations. Cumulative proportion (thick lines, iL + iH ) and
proportion of poorly (thin black lines, iL) and highly connected (thin grey lines, iH ) individuals
that are infected are all illustrated. For both (a) and (b), k = 3, σ = 5, f = 0.25, γ � 0.286,

and τ = 0.085. The level of mixing for disassortatively and assortatively mixed populations is
M = −0.5 (a = 0.31, b = 0.01) and M = 0.5 (a = 0.21, b = 0.57) (a), and M = −0.8 (a = b = 0.05)

and M = 0.8 (a = b = 0.45) (b). The basic reproduction number is R0 = Rdisass
0 = Rass

0 = 2.5 with

rdisass(∞) � 0.43 + 0.24 = 0.67, rass(∞) � 0.29 + 0.24 = 0.53 (a), and Rdisass
0 = 2.0 and Rass

0 = 3.7
with rdisass(∞) � 0.42 + 0.23 = 0.65, rass(∞) � 0.25 + 0.24 = 0.49 (b).

3.3. Final epidemic size

The severity of an epidemic outbreak is well characterized by the final epidemic size
r(∞) = r∞ = rL(∞)+ rH (∞) = r∞

L + r∞
H and we derive analytical results in the form of

a family of parametric equations that link the final epidemic size and the two transmission
potentials. For ease of notation, Eqs. (12)–(15) are rewritten to give

ṡm = −τsm

∑
n∈{L,H }

anmin, (22)

i̇m = τsm

∑
n∈{L,H }

anmin − in, (23)



Preferential Mixing Model 897

with m ∈ {L,H }. By using the following notation,

λm = τ
∑

n∈{L,H }
anmin, m ∈ {L,H } (24)

and by integrating Eq. (22) with initial conditions sL(0) = NL/N and sH (0) = NH /N,

we obtain

sm(t) = Nm

N
exp

(−Φm(t)
)
, m ∈ {L,H }, (25)

where

Φm(t) =
∫ t

0
λm(s) ds, m ∈ {L,H }. (26)

Here, for consistency of notation, NL/N and NH /N are used instead of (1 − f ) and f .
By adding Eqs. (22) and (23) and integrating from 0 to ∞, it follows that

r∞
m =

∫ ∞

0
im(s) ds, m ∈ {L,H }. (27)

This is obtained upon using im(∞) = i∞
m = 0 and that sm(∞) = s∞

m = Nm

N
− r∞

m for m ∈
{L,H }. Considering the limit of t → ∞ in Eq. (26), it follows that

Φm(∞) = Φ∞
m = τ

∫ ∞

0

∑
n∈{L,H }

anmin(s) ds

= τ
∑

n∈{L,H }
anm

∫ ∞

0
in(s) ds = τ

∑
n∈{L,H }

anmr∞
n . (28)

Taking into account again that s∞
m = Nm

N
− r∞

m for m ∈ {L,H } and using Eq. (25) in the
limit of t → ∞, we obtain

r∞
m = Nm

N

(
1 − exp

(−Φ∞
m

))
, m ∈ {L,H }, (29)

and

r∞ = r∞
L + r∞

H =
∑

m∈{L,H }

Nm

N

(
1 − exp

(−Φ∞
m

))
. (30)

Combining Eqs. (28) and (29), we obtain an implicit formula for Φ∞
m (m ∈ {L,H })

Φ∞
m = τ

∑
n∈{L,H }

anm

Nn

N

(
1 − exp

(−Φ∞
n

))
, m ∈ {L,H }. (31)
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Fig. 4 Final epidemic size as a function of the transmission potentials for (a) disassortatively-mixed
(a = b = 0.05 → M = −0.8) and (b) assortatively-mixed (a = b = 0.45 → M = 0.8) populations. The
case of f = 0.25 is considered here.

Combining Eq. (30) and the rearranged version of Eq. (31) and upon using the notations
given in Eq. (16), the following parametric equations are obtained:

r∞(
Φ∞

L ,Φ∞
H

) = NL

N

(
1 − exp

(−Φ∞
L

)) + NH

N

(
1 − exp

(−Φ∞
H

))
, (32)

ρL

(
Φ∞

L ,Φ∞
H

) = Φ∞
L

P (L|L)(1 − exp(−Φ∞
L )) + P (H |L)(1 − exp(−Φ∞

H ))
, (33)

ρH

(
Φ∞

L ,Φ∞
H

) = Φ∞
H

P (L|H)(1 − exp(−Φ∞
L )) + P (H |H)(1 − exp(−Φ∞

H ))
. (34)

In Fig. 4, based on Eqs. (32) to (34), plots of the final epidemic size (r∞) are given for
a range of transmission potentials for disassortatively- and assortatively-mixed popula-
tions. We separately consider the case of small and large final epidemic size and discuss
the dependence of r∞ on the values of the transmission potentials. For assortatively-mixed
populations (Fig. 4b), an initial perturbation results in small final epidemic sizes for trans-
mission potentials that are smaller than those required to generate the same final epidemic
size on disassortatively-mixed populations (Fig. 4a). However, for large final epidemic
sizes, the opposite is true. In this case, for disassortatively-mixed populations (Fig. 4a),
large final epidemic sizes are obtained upon using transmission potentials that are smaller
than those required to obtain the same final epidemic size on assortatively-mixed popula-
tions (Fig. 4b).

The final epidemic size is now considered based on numerical solutions of the differ-
ential equations given by Eqs. (12)–(15). In Fig. 5a, the final epidemic size is plotted as
a function of the per contact transmission rate τ for a range of different levels of mixing.
We note that initially the disease is seeded in both poorly and highly connected groups
(iL and iH ). This is especially important when the system consists of two noninteracting
subpopulations (M = 1). This situation is captured by the step-like final epidemic size
curve. For small values of τ , this curve exclusively represents the highly connected sub-
population where RH

0 = ρH > 1 while RL
0 = ρL < 1. The value of τ for which ρL = 1

corresponds to the step-like transition. When τ is large enough, ρL becomes greater than
one and the disease can spread in both subpopulations. The mixing pattern of the popula-
tion has considerable effect on whether an epidemic outbreak will happen. Assortatively
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Fig. 5 Final epidemic size as a function of the per contact transmission rate τ (a) and basic reproduction
number R0 (b) for M = −1.0,−0.8, . . . ,1.0 from right to left (a) and left to right (b). The case of a = b

is considered here with k = 3, σ = 5, f = 0.25 and a value of γ � 0.286. (c) Final epidemic size based
on individual network simulation for disassortatively mixed (dashed line, M ≈ −0.2,−0.10,−0.05), ran-
dom (solid line, M ≈ 0) and assortatively mixed (dot-dashed line, M ≈ 0.05,0.10,0.20) networks versus
probability of transmission (Tp = τ/(τ + γ )). Simulation based on networks with N = 10000 nodes and
degree distribution p(l) ∼ l−αe−l/L with L = 100 and α = 2.5.
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mixed populations are more prone to epidemic outbreaks and disease spread requires a
lower infectious rate than on disassortatively mixed populations. The final epidemic size
as a function of the basic reproduction number (Fig. 5b) for different levels of mixing
illustrates that values of R0 > 1 result in larger epidemics on disassortatively mixed pop-
ulations. Hence, assortatively mixed populations are more prone to epidemics, but expe-
rience smaller epidemics than disassortatively mixed populations. In Fig. 5c, we show
plots of the final epidemic size based on the simulation of an SIR model on networks
with N = 10000 nodes and with different levels of mixing (see Kiss et al., 2008). Net-
works are generated based on a link rewiring algorithm (Newman, 2003) that conserves
the degree distribution, but allows to tune the level of mixing within the network. At least
qualitatively, there is good agreement between the results based on the simple model and
simulation results. Results from both models show a faster initial spread if mixing is as-
sortative, and for high enough transmission rates, a higher final epidemic size if mixing is
disassortative.

In the limit of τ → ∞, it is possible to derive analytical results for the final epidemic
size. This analysis is motivated by the tendency of faster convergence of the final epidemic
size to full population size for increasing values of M (Figs. 4 and 5). Based on Eqs. (28)
and (29), the final epidemic size r(∞) = rL(∞) + rH (∞) is determined by the original
ODE system through

rL(∞) = (1 − f )
[
1 − exp

(−τ
(
aLLrL(∞) + aHLrH (∞)

))]
, (35)

rH (∞) = f
[
1 − exp

(−τ
(
aLH rL(∞) + aHH rH (∞)

))]
. (36)

These implicit equations determine the value of rL(∞) and rH (∞). The nonlinear system
given by Eqs. (35) and (36) can be solved numerically by using Newton iteration. There-
fore, the final epidemic size can be computed without solving the differential equations.
However, the nonlinear system cannot be solved explicitly, thus the qualitative properties
of the final epidemic size curves in Fig. 5 are difficult to explain by using Eqs. (35) and
(36). In the limit of large τ, however, it is possible to derive explicit approximating for-
mulas for rL(∞) and rH (∞). Let us introduce two new variables X,Y instead of rL(∞)

and rH (∞) such that

rL(∞) = (1 − f )
[
1 − X exp(−ρL)

]
, rH (∞) = f

[
1 − Y exp(−ρH )

]
. (37)

Substituting these expressions into Eqs. (35) and (36) and upon using Eq. (16) and recall-
ing that ρL = τk

γ
and ρH = τσk

γ
, the following equations are obtained

X = cL exp

(
ρL

b

1 − a
exp(−ρL)X + ρL

1 − a − b

1 − a
exp(−ρH )Y

)
, (38)

Y = cH exp

(
ρH

1 − a − b

1 − b
exp(−ρL)X + ρH

a

1 − b
exp(−ρH )Y

)
, (39)

where cL = exp(ρL(1−P(L|L)−P(H |L))) and cH = exp(ρH (1−P(L|H)−P(H |H))).
From Eqs. (2) and (3) follows that 1−P (L|L)−P (H |L) = 1−P (L|H)−P (H |H) = 0,

and hence cL = cH = 1. Using this in Eqs. (38) and (39), the following nonlinear system
for X and Y is obtained

X = exp(b11X + b12Y ), Y = exp(b21X + b22Y ), (40)
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where

b11 = ρL

b

1 − a
exp(−ρL), b12 = ρL

1 − a − b

1 − a
exp(−ρH ), (41)

b21 = ρH

1 − a − b

1 − b
exp(−ρL), b22 = ρH

a

1 − b
exp(−ρH ). (42)

When τ → ∞, the transmission potentials ρL and ρH tend to infinity. These new vari-
ables, however, allow to relocate this singularity to bij → 0 as τ → ∞. Hence, we look
for the solution (X,Y ) of system (40) in the form of a power series around zero. Thus, let
us substitute the following expansions:

X = 1 + c11b11 + c12b12 + c21b21 + c22b22 + h.o.t.,

Y = 1 + d11b11 + d12b12 + d21b21 + d22b22 + h.o.t.

into equations given by (40). Using the expansion of the exponential function and equating
the coefficients of bij , we obtain

c11 = 1, c12 = 1, c21 = 0, c22 = 0,

d11 = 0, d12 = 0, d21 = 1, d22 = 1.

Hence, the first order approximation of the solutions of system (40) is

X = 1 + b11 + b12, Y = 1 + b21 + b22.

Substituting these expansions into Eq. (37) and using Eqs. (41) and (42), the following
approximating formulas are obtained:

rL(∞) = (1 − f )

[
1 − exp(−ρL) − ρL

b

1 − a
exp(−2ρL)

− ρL

1 − a − b

1 − a
exp(−ρL − ρH )

]
,

rH (∞) = f

[
1 − exp(−ρH ) − ρH

a

1 − b
exp(−2ρH )

− ρH

1 − a − b

1 − b
exp(−ρL − ρH )

]
.

Adding these two equations and using ρH = σρL, we note that for large τ and σ ≥ 3 the
term exp(−ρH ) is negligible with respect to exp(−ρL). Therefore, we obtain

r(∞) = 1 − (1 − f ) exp(−ρL) − (1 − f )ρL

b

1 − a
exp(−2ρL) + h.o.t. (43)

where h.o.t. stands for terms smaller than exp(−2ρL).
The approximation given in Eq. (43) is in good agreement with the exact solution of the

final epidemic size obtained using Newton’s method (Fig. 6a). When a = b (as in Fig. 5)
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Fig. 6 (a) Illustration of the approximating formula given by Eq. (43) (dashed lines) versus numerical
solution (continuous lines) for M = −0.8 (black lines) and M = 0.8 (grey lines) (b) Illustration of the
approximating formula given by Eq. (44) (dashed lines) with increasing number of terms versus numerical
solution (continuous line) for M = 1.0. For both (a) and (b), k = 3, σ = 5, f = 0.25, and γ � 0.286.

from Eq. (43), we observe that r(∞) depends monotonically on M . This is justified by
noting that in this case

− b

1 − a
= M + 1

M − 3
= 1 + 4

M − 3

and this is a decreasing function of M ∈ [−1,1]. Hence, the approximation is in good
agreement with the numerical results presented in Fig. 5 and shows that the final epidemic
size approaches one more rapidly when the population is disassortatively mixed.

In a similar way, higher order approximations can be derived for r(∞). As an ex-
ample, we show a fourth order one in the case of a + b = 1 (this is the case when the
approximations take relatively simple forms). For σ ≥ 5, the approximation is

r(∞) = 1 − cD − cD2 − 3

2
cD3 − 8

3
cD4 + h.o.t. (44)
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where c = (1 − f )/ρL, D = ρL exp(−ρL) and h.o.t. stands for terms smaller than
exp(−4ρL). The higher order formula give better approximations of r(∞) for smaller
values of τ and this is illustrated in Fig. 6b where the approximation is plotted by increas-
ing the number of terms in the approximation from one to four.

4. Discussion

Starting from a network representation of the contact pattern within a population, we have
derived and analyzed a compartmental model that can capture preferential mixing. Such
simple models provide a convenient and analytically tractable way to capture properties
of the contact network that can have significant implications for disease transmission and
control. We considered the simplest division of the population into poorly and highly
connected individuals. However, our model can be easily extended to account for a more
heterogeneous population provided that the connectivity correlations are also extended is
some convenient way. The present model is flexible in that if connectivity correlations can
be measured or estimated, then the model can be formulated in terms of real data and can
be used to guide analyses concerning the potential for an epidemic outbreak.

The result derived from this simple model are in good qualitative agreement with re-
sults obtained from models used in the context of STDs (Gupta et al., 1989; Anderson
et al., 1990; Kretzschmar et al., 1996; Ghani et al., 1997). The model results accurately
show that assortatively mixed populations are more prone to epidemic outbreaks when
compared to disassortatively mixed populations and that the value of R0 is considerably
higher when mixing within the population is assortative. However, the final epidemic size
is smaller in assortatively mixed populations than in disassortatively mixed ones. This
shows that depending on the mixing within the population, high values of R0 can lead to
epidemics that spread quickly but with final epidemic sizes that are small (i.e., assorta-
tively mixed) and small values of R0 can result in epidemics with a slow timescale, but
infecting a considerable proportion of the population (i.e., disassortatively mixed). Hence,
during an epidemic, an estimate of R0 with no further information about the population
contact structure cannot provide an accurate prediction about the outcome of an epidemic.
For example, consider the case of assortative mixing when the proportion of highly con-
nected individuals (f ) varies. In Fig. 7, based on numerically solving Eqs. (35) and (36)
by using Newton iteration, the final epidemic size is given as a function of R0 for differ-
ent values of f . From Fig. 7 follows that the presence of a highly connected core group,
even if very small, leads to large values of R0 that can only generate smaller and smaller
final epidemic sizes as f decreases (Diekmann and Heesterbeek, 2000). For high levels
of assortative mixing when the noninteracting subpopulation regime is approached and
for f close to one, the final epidemic size approaches the result that is obtained from the
standard SIR model.

By using individual-based stochastic network simulations and purely based on numer-
ical results, Kiss et al. (2008) has obtained results that are qualitatively equivalent (Fig. 5).
However, here analytical results allow us to identify a more precise relation between the
mixing pattern and epidemic characteristics. Our results show that population contact
structure and disease dynamics can interact in nontrivial ways and must be considered
concurrently. The present model could also provide a basis for incorporating epidemic
control measures (e.g., vaccination) with the aim of investigating the implications of the
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Fig. 7 Final epidemic size as a function of R0 for different values of f . Open circles (◦) denote the
final epidemic size corresponding to the standard SIR model. In this case, M = 0.8, k = 3, σ = 5, and
γ � 0.286.

population contact structure properties for the effectiveness of various epidemic control
measures.
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