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Abstract In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe
a spatio-temporal model for insect behavior. This model includes chemical informa-
tion for finding resources and conspecifics. As a model species, we used Drosophila
melanogaster, because its behavior is documented comparatively well.

We divide a population of Drosophila into three states: moving, searching, and settled.
Our model describes the number of flies in each state, together with the concentrations of
food odor and aggregation pheromone, in time and in two spatial dimensions. Thus, the
model consists of 5 spatio-temporal dependent variables, together with their constituting
relations. Although we tried to use the simplest submodels for the separate variables, the
parameterization of the spatial model turned out to be quite difficult, even for this well-
studied species.

In the first part of this paper, we discuss the relevant results from the literature, and
their possible implications for the parameterization of our model. Here, we focus on three
essential aspects of modeling insect behavior. First, there is the fundamental discrepancy
between the (lumped) measured behavioral properties (i.e., fruit fly displacements) and
the (detailed) properties of the underlying mechanisms (i.e., dispersivity, sensory percep-
tion, and state transition) that are adopted as explanation. Detailed quantitative studies
on insect behavior when reacting to infochemicals are scarce. Some information on dis-
persal can be used, but quantitative data on the transition between the three states could
not be found. Second, a dose-response relation as used in human perception research is
not available for the response of the insects to infochemicals; the behavioral response re-
lations are known mostly in a qualitative manner, and the quantitative information that
is available does not depend on infochemical concentration. We show how a commonly
used Michaelis–Menten type dose-response relation (incorporating a saturation effect) can
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be adapted to the use of two different but interrelated stimuli (food odors and aggrega-
tion pheromone). Although we use all available information for its parameterization, this
model is still overparameterized. Third, the spatio-temporal dispersion of infochemicals
is hard to model: Modeling turbulent dispersal on a length scale of 10 m is notoriously
difficult. Moreover, we have to reduce this inherently three-dimensional physical process
to two dimensions in order to fit in the two-dimensional model for the insects. We inves-
tigate the consequences of this dimension reduction, and we demonstrate that it seriously
affects the parameterization of the model for the infochemicals.

In the second part of this paper, we present the results of a sensitivity analysis. This
sensitivity analysis can be used in two manners: firstly, it tells us how general the simu-
lation results are if variations in the parameters are allowed, and secondly, we can use it
to infer which parameters need more precise quantification than is available now. It turns
out that the short term outcome of our model is most sensitive to the food odor production
rate and the fruit fly dispersivity. For the other parameters, the model is quite robust.

The dependence of the model outcome with respect to the qualitative model choices
cannot be investigated with a parameter sensitivity analysis. We conclude by suggesting
some experimental setups that may contribute to answering this question.

Keywords Parameterization · Sensitivity analysis · Chemotaxis · Spatial population
dynamics · Integro-difference equations

1. Introduction

Animal aggregation is a common phenomenon in ecological systems (Parrish and
Edelstein-Keshet, 1999; Wertheim et al., 2005). As the individuals can move freely, there
must be a clue that guides them to the aggregate, so the individuals must pick up informa-
tion and respond to it. The sensory cues involved herein can be visual, auditory, tactile,
or chemical. In insects, chemical information conveyance is important. Insects trying to
find a substrate or host plant use chemical information for long range detection; at smaller
distances, sight also becomes important. The infochemicals to which a species reacts can
be either substances emitted by its environment, such as food odors and plant volatiles, or
substances that the species itself emits, such as aggregation pheromone.

In order to study the implications of infochemical use on the dynamics of a single
species within a spatial context, we developed a model (Lof et al., 2008) that incorporates
odor dispersion and the responses of organisms, taking Drosophila melanogaster as a
model organism. As this species has been used as research model in many studies before,
its behavior is documented comparatively well.

In our model, the drosophilid population is divided into three states, according to their
activity: a searching state S (with fly density PS ), in which individuals use infochemicals
to find a suitable resource, a settled state R (with fly density PR), in which individuals
spend a period of time on a resource, and a moving state M (with fly density PM ), in which
individuals actively move away from the resource. Hence, we have three state variables
and three transitions. As the fruit flies use only the lowest layer (say, up to 2 m above
ground level), we can model their density as functions that depend on time and two spatial
variables. It should be noted that it would be easy to extend the model to three spatial
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variables; however, this seriously affects the run times for simulations with the model,
and thereby its practical usefulness.

Relevant modeling questions for transitions between states are: (1) In the transition
from the searching state S to the settled state R, what is the relative importance of smell
and vision on the fruit fly behavior, and how does this relation vary with the distance to
the resource? (2) In the transition from R to the moving state M, how long do fruit flies
remain settled on their resource? and (3) In the transition from M to the searching state S,
how long (or how far) do fruit flies fly away from their resource before they start to search
for a new resource?

There are also questions about the behavior of flies in a particular state that require
an answer: (4) In the searching state S, how do individuals of Drosophila melanogaster
search? Can they sample the infochemicals so frequently that they can smoothly follow
a concentration gradient, or is the sampling rate so low that their flight pattern consists
of connected line segments? And what is their sensory dose-response relation? (5) In
the settled state R, the actual population dynamics take place. Here, an appropriate model
must be chosen, possibly including scramble competition and/or an Allee effect. (6) In the
moving state M, the fruit fly first actively covers some distance from its former resource;
but how fast and how far?

There also are the physical laws for the spreading of the infochemicals: (7) How fast
are the infochemicals produced, how fast do they evaporate, and how fast do the evap-
orated infochemicals disperse through the air? Furthermore, there is a difference in the
vertical domain for the fruit flies and the infochemicals: whereas the fruit flies use only
the lowest layer, a fraction of the infochemicals may disperse higher than this. Therefore
(8), we have to estimate at what rate the infochemicals get out of reach.

Although we adopted quite basic models to describe these separate processes, there
still are a large number of parameters in the resulting model. In the first part of this paper,
we discuss how we use data that we found in the existing literature for the parameter-
ization of the model. Despite all performed research, many parameterization questions
remain unanswered: the experimental research was simply not aimed at mathematical
model building at the level of detail that we aim at. Nevertheless, even with a model in
which not all parameters are known, simulations can be done that lead to important eco-
logical results and questions. This is what we set out to do in our companion paper (Lof
et al., 2008), where we used the simulations to investigate the possible consequences of
infochemicals on the spatial population dynamics. In the absence of a proper parameter-
ization, the inferences are rather qualitative. Therefore, we also performed a sensitivity
analysis on our parameter values, which we present in the fourth section of this paper; the
results of this analysis can be used to determine the generality of our conclusions also for
different parameter values.

2. Parameterization of the model: short term dynamics

Our model deals with Drosophila fruit flies that have to search for resources (i.e., yeast-
infected apples), where they can eat, mate, and where females can oviposit. Details of the
spatial model structure are given in the companion paper (Lof et al., 2008). In this model,
the spatial domain is discretized into patches that can contain a resource item. The short
term dynamics of the fruit flies is modeled with Eqs. (1)–(8), describing the redistribution
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of adult Drosophila population P over three different states: the searching state (with
density of flies PS ), the settled state (with density of flies PR), and the moving state (with
density of flies PM ).

R(x, y) =
{

0 if there is no apple at position (x, y) at time t ,

1 if there is an apple at position (x, y) at time t ,
(1)

∂

∂t
PS = DP ∇2PS − ∇ · [νPS∇f (F,A)

] + α2PM − λRPS, (2)

∂

∂t
PR = λRPS − α1PR, (3)

∂

∂t
PM = α1PR − α2PM, (4)

f (F,A) = F

F0 + F
+ η

FA

F0A0 + FA
, (5)

∂

∂t
F = DI∇2F − μF + θF R, (6)

∂

∂t
A = DI∇2A − μA + ωAR, (7)

∂

∂t
AR = θAPR − ωAR. (8)

Here F and A are the concentrations in the air of food odors and of aggregation
pheromone, respectively. The amount of aggregation pheromone (in liquid or adsorbed
form) at the resource is AR , and f is a sensory index function with a nonlinear interde-
pendence on both infochemicals, to be explained in Section 2.3. The parameters in these
model equations are given in Table 1.

In Eqs. (2)–(8), we did not mention the time and spatial coordinates explicitly, but all
dynamic variables depend on time and position: the fly densities PS , PR and PM as well as
the infochemical concentrations F , A and the amount of liquid pheromone AR . Clearly,
the settled flies (PR) can only be present on the resource items. The fruit flies come into
the moving state by actively flying away from their resources, but in Eq. (4), it is not stated
explicitly how this movement is modeled. In our companion paper (Lof et al., 2008), we
assume that the fruit flies actively fly away with a velocity ρ from the resource in arbitrary
directions. This process cannot be modeled with ordinary or partial differential equations;
in an integro-difference equation it is modeled with a ring random dispersal kernel.

2.1. Fruit fly behavioral parameters

2.1.1. Transition rates
No quantitative information is available on the probability that a fruit fly actually settles on
a resource after having detected it. Experimental work by Wertheim et al. (2002) showed
that the numbers of fruit flies that settled quickly built up in the first 15 minutes of the
experiment, subsequently followed by a more gradual increase up to on average 100 out
of the 200–400 released fruit flies. However, it is hard to derive an estimate for a settling
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Table 1 The model parameters involved in the short time dynamics and their values as discussed in the
text

Name Description Value Units

DP Dispersal coefficient of at random
moving fruit flies

0.058 m2 min−1

α1 Resource leaving rate of settled fruit
flies

0.002 min−1

α2 Start-to-search rate of moving fruit
flies

0.5 min−1

λ Settlement rate of searching fruit flies 0.25 min−1

ρ Velocity of movement away from the
resource

1 m min−1

F0 Saturation parameter for food odors 10 ng m−2

A0 Saturation parameter for aggregation
pheromone

0.04 ng m−2

DI Dispersion coefficient of
infochemicals

1 m2 min−1

μ(720) Loss rate of infochemicals in a
12 hours period (measured from the
moment of production)

0.025 min−1

μ(5) Loss rate of infochemicals in a
5 minutes period (measured from the
moment of production)

0.171 min−1

θF Food odor production by the resource 2 ng apple−1 min−1

θA Aggregation pheromone production
by settled fruit flies

0.83 ng fly−1 min−1

ω Evaporation rate of liquid aggregation
pheromone

4.10−4 min−1

ν Attraction to infochemicals 5DP m2 min−1

η Attraction ratio of food odor together
with aggregation pheromones relative
to the attraction to food odor alone

2.51 –

rate from their data, because the total number of flies is not exactly known. Nevertheless,
the experiment suggests that there is a rather high probability that a fruit fly settles the
moment it finds a resource, and we use λ = 0.25 min−1. With this value, 71% of the
searching population that found a resource settles within an interval of 5 minutes (this is
the time step size in our simulations).

The gradual increase after the quick settlement indicates that fruit flies remained on
the resource for a period of time (Wertheim et al., 2002). Again, we adopt the simplest
possible model: the probability of a settled fly leaving the resource per unit of time is
constant, not depending on its residence time on that resource or on the local fruit fly
density. This proportionality constant must be small as compared to λ: we take α1 =
0.002 min−1. Then in each interval of 5 minutes, 99% of the settled population remains
on the resource.
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We further assume that after leaving the resource, fruit flies quickly start searching for
a new resource. We choose α2 = 0.5 min−1. This means that on average a fruit fly moves
away from a resource for 2 minutes, after which it starts to search for a new resource.

Using these parameter values, the fractions of P S , P R, and P M in equilibrium (in a
homogeneous domain) can be calculated. In equilibrium, the time derivatives in Eqs. (2)–
(4) vanish. In that case,

α2P M = α1P R = λP S. (9)

Using the fact that these fractions add up to 1, we obtain

P M = α1λ

α1α2 + α1λ + α2λ
,

P R = α2λ

α1α2 + α1λ + α2λ
, (10)

P S = α1α2

α1α2 + α1λ + α2λ
.

Hence, for λ = 0.25, α1 = 0.002, and α2 = 0.5, we find that P M = 0.004, P R = 0.988,

and P S = 0.008. Thus, in a homogeneous world of suitable substrate, fruit flies would
spend 98.8% of their time on the substrates and only 1.2% flying.

As these values hold only for a homogeneous domain, they are not very indicative
for the actual proportions. Indeed, when the soil is covered with yeast-infected apples,
the necessity for searching is virtually eliminated. In the real world, the resources are
scarce and ephemeral; therefore, the above-mentioned percentages are rather unrealistic.
As the flies must spend more time searching, the actual value for P S , is much higher
(depending on the resource density), and the values for P R and P M are correspondingly
lower. If the spatial layout is specified, one may compute the equilibrium fractions by
solving the corresponding time-invariant partial differential equations. Based on a few of
these experiments, we estimate that fruit flies spend 70% of their time on the resources
and 30% dispersing.

2.1.2. Fruit fly dispersal
Usable data on the mobility of fruit flies are scarce. From the results reported by
Timofeeff-Ressovsky and Timofeeff-Ressovsky (1941), we infer that Drosophila melano-
gaster moves 10 m or less per day in the field. As the mean dispersal distance of a two-
dimensional random dispersal process is

√
πDP t , this would indicate a dispersal coeffi-

cient DP = 30 m2 per day if this displacement could be attributed to a completely random
movement of the entire fruit fly population. However, in our model a considerable part
of the movement is attributed to active searching, and this reduces the dispersion coeffi-
cient. Therefore, a dispersion coefficient DP = 12.5 m2 per day for the total population,
as adopted by Etienne et al. (2002) seems to be realistic.

The dispersion coefficient DP = 12.5 m2 per day relates to the displacement per day
for the total population. Since we divided the population into two active states and one
static state, the two active states also have to make up for the part of the population that
does not disperse. When we estimate that fruit flies spend 70% of their time on the re-
sources and 30% dispersing, the value D = 12.5 m2 per day for the total population gives
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DP = 12.5/0.3 = 41.7 m2 per day for the searching population. With a day length of 12
hours, this is equivalent to DP = 0.058 m2 min−1 (Table 1).

2.1.3. Leaving the resource
No information is available on the distance covered by fruit flies between leaving a re-
source and starting to search actively for a new one. It is obvious that they first have to
move actively away from the resource, because a fruit fly that starts searching for a re-
source as soon as it leaves a resource only has a small probability of not returning to the
same resource. We arbitrarily chose a flight speed of ρ = 1 m min−1, in a random direc-
tion from its leaving point, and a transition rate to the searching state α2 = 0.5 min−1.
This implies that the flies fly away from the resource during on average 2 min before they
start to search again. During this time, they cover an average distance of 2 m.

2.2. Infochemical distribution

2.2.1. Infochemical dispersion
In our model study (Lof et al., 2008), we assumed calm weather conditions, that is, no
wind (in such weather conditions, the fruit flies are most active). However, even in the
absence of an advective wind flow, the air is subject to turbulence. Thus, the infochemicals
are dispersed randomly, with a turbulent dispersion coefficient (or eddy diffusivity) that
is much larger than the molecular diffusion coefficient. (For small molecules in air, the
molecular diffusion coefficient is about 10−3 m2 min−1.) We studied the dispersion of soap
bubbles in a closed room, and estimated that DI = 1 m2 min−1. Note that for the value of
the dispersion coefficient, it is not relevant whether the dispersion process takes place in
one, two or three dimensional space.

2.2.2. Infochemical production and emission
Recently mated females emit 300 ng of Drosophila aggregation pheromone (cis-vaccenyl
acetate or cVA) on the substrate in the first 6 hours after mating (Bartelt et al., 1985).
This gives an aggregation pheromone deposition on the resource (AR) of θA = 0.83 ng
per adult female per minute.

Before the pheromone that is deposited at the resource gets available to the searching
fruit flies in the air, it has to evaporate first. This evaporation is a very slow process. In a
laboratory experiment, Bartelt et al. (1985) found that 31% of the original amount of cVA
in a dish was still present after 2 days. We used this figure to estimate the evaporation
rate ω of the cVA, assuming a steady linear decay process for the liquid phase (Eq. (11)),
which results in a value for ω of 1.3 · 10−4 min−1.∫ 2days

0
ω exp(−ωτ)dτ = 0.31. (11)

It is not very obvious how this laboratory evaporation rate should be transferred to field
conditions. Probably, evaporation in the field is considerably faster than in the laboratory,
firstly because of the higher turbulence (even without wind), and secondly because of
heating by sunlight. On the other hand, however, cooling down at night hampers evapora-
tion. As our model aims to simulate field conditions in daytime hours, we use an evapo-
ration rate that is considerably higher than in the laboratory: ω = 4 · 10−4 min−1.
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Fig. 1 Odor produced by a unit source as function of the time t (in minutes). Dotted line: total amount
produced. Solid line: Q3D(t,2), amount within a 2 m layer at ground level. Dashed lines: Q2D(t,μ),
amount in a 2D domain with a loss rate μ = 0.015, 0.02 and 0.025, respectively.

To quantify the production of food odors we chose ethyl acetate as a characteristic
food odor. Yeast infected apples produce this chemical, and D. melanogaster responds
to it (Hutner et al., 1937; Echeverría et al., 2003). Echeverría et al. (2003) found that at
harvest date, such apples release 4,800 ng ethyl acetate per kg into the air in 8 hours.
Assuming there are approximately 5 apples in 1 kg, this gives an emission of food odors
of θF = 2 ng per apple per minute.

2.2.3. Infochemical loss
Our fruit fly model is essentially two dimensional in space. This implies that the vertical
component is ignored. We envision the physical fruit fly habitat as a 2 m thick air layer
above ground level, and model the number of flies per unit area of the field. Whereas the
flies can be considered to be confined to such a layer, the emitted infochemicals obviously
are not. Hence, there is a certain loss of infochemicals as they move upward by dispersion,
out of reach of the flies. In this section, we discuss this loss rate into the third dimension.

Consider a constant odor source with an emission rate c(t) (ng/min) starting at t = 0
at the origin. The amount of odor in a layer with thickness h at time t (in minutes) is

Q3D(t, h) =
∫ t

0
c(t − τ)erf

(
h

2
√

DIτ

)
dτ. (12)

So, for a constant emission rate c = 1 (ng/min) starting at t = 0,

Q3D(t, h) =
∫ t

0
erf

(
h

2
√

DIτ

)
dτ

=
(

− h2

2DI t
erfc

(
h

2
√

DI t

)
+ erf

(
h

2
√

DI t

)
+ h√

πDI t
exp

(
− h2

4DI t

))
t.

(13)

Figure 1 shows the graph of this function for DI = 1 m2/s and h = 2 m, on a time interval
of 36 hours. Note that for c = 1 the total odor released at time t equals t .

It is clear that for increasing t , there is a quite large and increasing fraction that leaves
the layer; initially, however, the loss is quite small. This was to be expected, as the odor
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Fig. 2 Odor produced by a unit source as function of the time t (in minutes). Dotted line: total amount
produced. Solid line: Q3D(t,2), amount within a 2 m layer at ground level. Dashed line: Q2D(t,0.165),
amount in a 2D domain with a loss rate μ = 0.165.

Fig. 3 Average loss rate μ, as a function of the length t of the time interval on which it is used.

is released at the bottom of the layer, and it takes time to get to the boundary at the top of
the layer where it can escape. This behavior is essential for the 3D model, and it cannot
be captured in a 2D model.

In an attempt to mimic the 3D behavior as much as possible, we introduce a loss rate
for infochemicals in the 2D model. With a loss rate μ, the amount of odor from a source
with constant emission rate c = 1 (ng/min) starting at t = 0 is

Q2D(t,μ) =
∫ t

0
exp

(
μ(τ − t)

)
dτ = 1 − exp(−μt)

μ
. (14)

Using a constant (nonzero) loss rate causes the available amount in the 2 m thick layer to
be bounded, whereas in the 3D model this amount grows unboundedly as a function of
time, see Fig. 1. However, for a small time interval, the 2D loss model can approximate
the 3D layer model much more accurately (see Fig. 2).

Given a time interval, we can adapt the loss rate in such way that the time average over
that interval for the 2D model with that loss rate and the 3D model both result in the same
amount of odor to disappear from the layer (see Fig. 3).

The resulting function has a maximum approximately at t = 5 min. For larger values,
the loss rate must be decreasing to give the proper average value.
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For t < 30 min, the 2D model approximates the 3D model accurately enough. For
larger times, the 2D approximation with the loss rate overestimates the total odor amount
in the first half of the interval, and underestimates this amount at later times. Typical
average loss rates μ(τ) are 0.085, 0.165, 0.171, 0.155, 0.109, 0.081, 0.048, and 0.025
min−1 for averaging times τ of 1, 3, 5, 10, 30, 60, 180, and 720 min, respectively. In our
model, we used μ(5) for the recently produced odors and μ(720) for the odors that were
already present in the system. Note that all results depend on the layer thickness h and
dispersivity DI .

2.3. Fruit fly response to infochemicals

In modeling the response of fruit flies to infochemicals, the following considerations are
taken into account.

1. The strength of smell of the flies depends on the fraction of neuro-receptors that is
occupied by infochemical molecules. As the total number of receptors is finite, this
implies that there is a saturation effect at high levels of infochemical concentration,
which can be represented by a Michaelis–Menten type of response (Postma, 2003).

2. Fruit flies react on food odors and aggregation pheromone in a rather complicated way.
Bartelt et al. (1985) showed that for D. melanogaster, the aggregation pheromone is
only attractive when food odors are also present; and that the combination of food
odors and its aggregation pheromone is about four times more attractive than food
odors alone.

Although many sensory response functions are conceivable that are consistent with
these considerations, functions that depend only on a linear combination of the concen-
trations are not among these. A simple relation that is consistent with these findings is
given in Eq. (5).

In adopting a sensory response relation, we assume that the fruit flies’ sense of direc-
tion does not depend on the actual concentration gradients of the infochemicals, but rather
on how the fruit flies perceive this gradient. For a relation as Eq. (5), the effect of this as-
sumption is manifest especially at high concentration levels, in the saturation region of
the Michaelis–Menten equation. There, the differences in response to concentrations may
become so low that the smell loses its direction.

2.3.1. Attractiveness of infochemicals and attraction ratio
The attractiveness of infochemicals (ν) is a parameter that quantifies the directionality of
the movement. Instead of parameterizing ν directly, we use κ = ν/DP as characteristic
ratio between the random motion and the active search motion: when κ = 0, movement
is random, and the higher the value of κ , the more the movement is directed toward the
odor source. No specific estimate was available for the attractiveness of infochemicals
for D. melanogaster. Powell et al. (1998) used κ = 10 for mountain pine beetles. As the
population dynamics in our system take place at a smaller spatial scale than the dynamics
of the mountain pine beetle, we assumed that κ would be smaller, too. We arbitrarily
chose κ = 5.

Bartelt et al. (1985) showed that after 3 minutes in a wind tunnel, about four times
more adult D. melanogaster were attracted by the combination of food odors and the
aggregation pheromone than by food odors alone. In a field experiment, Wertheim et al.
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Fig. 4 The combination of pheromones and food odor is 4.5 times as attractive as food odor alone. The
corresponding value of η depends on the food odor concentration.

(2006) found after 10 minutes a 1:4.5 ratio of fruit fly numbers on substrates with food
odor only (F) and food odor combined with aggregation pheromone (F+A), respectively.
These results are very alike. We used Wertheim’s 1:4.5 ratio in combination with our
chosen κ to estimate the attraction ratio η. Therefore, we set up a simulation on a 2D
domain similarly sized as Wertheim’s field experiment, with four F resources containing
only apple-yeast mixture, and four F+A resources, containing an apple-yeast mixture with
4500 ng synthetic pheromone evaporating at a rate of ω = 4 ·10−4 min−1. Thus, we have a
pheromone emission rate of 18 ng min−1. The resources were placed in two rows of four,
at regular intervals in alternating order (3 m between rows and 2 m between resources in
a row).

The initial adult population is homogeneously distributed. We ran the simulation for
10 minutes, with time steps of 0.25 minute, for varying values of η and for varying values
for the production of food odors. Figure 4 shows (for κ = 5) the values for η correspond-
ing to a 1:4.5 ratio for the average number of fruit flies on the two types of resources for
various values of the food odor production. There is a minimum value for η = 2.5 for
which the experimental results of Wertheim can be reproduced, at a food odor production
of 2.5–3 ng per resource per minute. For all other values of food odor production, the
value of η must be taken higher.

By coupling κ and η, we kept the attraction ratio constant (at 1:4.5) and, therefore, we
could study the sensitivity of the model for our chosen κ on its own. In our sensitivity
analysis, we simulated for κ = 2.5 with η = 5 and for κ = 7.5 with η = 1.67.

2.3.2. Half saturation value for aggregation pheromone and food odor
Wertheim et al. (2006) studied the dose response relation of D. melanogaster for cVA. We
used their Fig. 1e to calculate the half saturation value of pheromone. This figure depicts
the average number of fruit flies found on substrates containing four different doses of
cVA (q = 0, 0.45, 4.5, and 45 µg). The number of fruit flies was counted every 10
minutes for 3 hours. We used nonlinear regression to estimate the half saturation value
(q0), using the Michaelis–Menten equation as the model,

P = P0 + bq

q0 + q
, (15)
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where P0 is the number of settled fruit flies settled on substrates without aggregation
pheromone, and b is a parameter describing the increase in number of fruit flies due to the
presence of aggregation pheromone. We found q0 = 3.5 µg (with P0 = 8.5 and b = 18.2)
as the best solution.

Again, we translate this into concentrations of volatile compounds in the air. Using the
previously derived evaporation rate ω = 4 ·10−4 min−1, we approximate the emission rate
as q0ω in the transient phase (up to one day). If the pheromone spreads by a 3D dispersion
process, then its concentration at distance r from the source is

u(r, t) = q0ω

∫ t

0

exp(− r2

4Dτ
)

(4πDτ)3/2
dτ. (16)

The length scale of the experiments of Wertheim et al. (2006) was 2 m, and satura-
tion effects were observable after 20 minutes. Therefore, we assume that the A0 value as
calculated in Eq. (17) is an indication of the half-saturation value for pheromone:

A0 = u(2,10) = q0ω

∫ 10

0

exp(− 1
Dτ

)

(4πDτ)3/2
dτ = 4.2 · 10−5 µg m−3. (17)

3. Parameterization of the model: long term dynamics

3.1. Between-generation dynamics: reproduction and survival

Adult females that have settled on a resource (PR) deposit on average ξ eggs per minute.
The cumulative number of eggs (L) on each resource item after three days (in generation
n) is, therefore,

L(x, y,n) =
∫ 3

0
ξPR(x, y,n) dt. (18)

Due to the Allee effect and scramble competition, the probability of successful larvae
development depends on the number of larvae and, therefore, on L. Hence, the next female
population has density P (x, y,n + 1),

P (x, y,n + 1) = ϕL(x, y,n)sA(L)sC(L), (19)

sA(L) = 1

1 + e−cA(L−LA)
, sC(L) = 1

1 + ecC(L−LC)
, (20)

where sA(L) and sC(L) model the reduction of the larvae survival rate because of the
Allee effect and the scramble competition, respectively. The sex ratio ϕ is the fraction of
females in the larval population.

3.2. Fecundity

A study of Boulétreau (1978) showed that D. melanogaster has a mean fecundity of 6
eggs per day in the field. As we use a day length of 12 hours in our simulations, we set
ξ = 6 eggs per 720 min = 0.0083 eggs min−1.
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Table 2 The model parameters involved in the reproduction dynamics

Name Description Value Units

ξ Fecundity of the settled population 0.0083 min−1

ϕ Sex ratio of the larvae (fraction of
females)

0.5 –

LA Number of larvae per apple at which
50% survives the Allee effect

25 –

LC Number of larvae per apple at which
50% survives competition

250 –

cA Slope sigmoid survival curve
modeling the Allee effect

0.088 –

cC Slope sigmoid survival curve
modeling the competition

0.044 –

Fig. 5 Larval survival probabilities as functions of the number of larvae on a resource item. The dashed
line shows the larval survival related to the Allee effect (sA), the solid line gives larval survival related to
competition (sC ), as given in Eq. (20).

3.3. Larval survival

The larval survival probability is modeled with the sigmoid functions sA(L) for the Allee
effect and sC(L) for the competition, both of which contain two parameters. In the model,
we use yeast-infected apples as the substrate for larval development. One apple can sup-
port development of at most 200–300 D. melanogaster larvae (Sang, 1956). We assume
that in the interval (200, 300) competition reduces larval survival approximately from 90%
to 10%, see Fig. 5. This implies 50% survival at LC = 250 larvae and a slope cC = 0.044.

For the Allee effect, no quantitative data were found in literature. An indication can
be found in Rohlfs and Hoffmeister (2003), who observe a high mortality at low larval
densities. Therefore, we (arbitrarily) choose 50% survival at LA = 25, increasing to 90%
survival at 50 larvae see Fig. 5; this implies a slope cA = 0.088.
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4. Sensitivity analysis

The primary state variables of our model are the three functions of time and position
PS(t, x, y), PR(t, x, y), PM(t, x, y), modeling the density of searching, settled and mov-
ing fruit flies, respectively. Since the output of the model contains many data, there are
numerous ways to measure and weigh the effects of a parameter change in the model.
As described in Lof et al. (2008), the model was tested on several time scales: the short
term (up to one generation), and the long term (from one to ten generations). It turned out
that the long term dynamics displays a chaotic pattern (see Lof et al., 2008, Fig. 7). This
behavior is caused by the counteracting effects of the competition and the Allee effect,
and it is persistent over a wide range of parameters. Therefore, a sensitivity analysis is not
very useful in this situation: the qualitative result, displaying chaotic oscillations, is quite
robust, but the quantitative result at any point in time and space may depend critically on
the parameter values (and initial conditions).

At the short term, a sensitivity analysis is much more useful. It enables us to investigate
how the changes in the parameters of the model affect the fruit fly behavior, especially
with respect to its success rate in finding a suitable resource. For this sensitivity analysis,
we ran one day simulations as described in Lof et al. (2008), on a symmetric field, starting
with 500 flies in the first quadrant, and 100 flies in each of the other three quadrants.
For output variables, we compared using the default parameter value and two alternative
values,

1. The total number of flies in the first quadrant, Ptot,1(t), may decrease by dispersion
and increase by chemotactically induced aggregation. Therefore, this number acts as
an indication of the relative strength of these two opposite effects;

2. The number of settled flies in the first quadrant, PR,1(t). This number gives an indica-
tion of the success in finding resources.

Both Ptot,1(t) and PR,1(t) may be used as indicators for aggregation, Ptot,1(t) on a
larger spatial scale than PR,1(t). We compared Ptot,1(t) and PR,1(t) for the different pa-
rameter values in two manners: (1) a qualitative comparison of the behavioral dynamics
curves of Ptot,1(t) and PR,1(t) on the interval 0 ≤ t ≤ 12 hr, and (2) a quantitative com-
parison of the final values Ptot,1(12 hr) and PR,1(12 hr).

4.1. Fruit fly behavioral parameters

4.1.1. Transition rates: λ, α1, α2

The settlement rate λ (with standard value 0.25 min−1) has been varied from 0.125 to
0.375 min−1. This causes the settlement after 5 minutes to vary from 46.5% to 84.7%,
and affects the distribution over the states through the settled population (Table 3). As
expected, the settled population increases with an increasing settlement rate.

The model is most sensitive for the patch leaving rate α1. Varying α1 (with standard
value 0.002 min−1) between 0.001 and 0.003 min−1 causes a fraction from 0.5% to 1.5%
of the settled population to leave the resource within 5 minutes. Increasing α1 impedes
the growth in the number of settled adults considerably over the whole 12 hours interval,
and thus causes a strong decrease in the number of settled adults after 12 hours (Table 3).
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Table 3 Sensitivity analysis. The value in the third column is the reference value as used in the simula-
tions. The fourth column contains alternative values for the parameters, all other parameters being on their
reference values. The fifth and sixth column give the relative change in percentage of the number of fruit
flies after a 12 hr simulation Ptot,1(12 hr) and PR,1(12 hr). The seventh and eighth column give a qual-
itative comparison of the behavioral dynamics of the total and settled population numbers Ptot,1(t) and
PR,1(t), – means much slower dynamics – means slower dynamics, a blank means approximately equal
dynamics, + means faster, ++ much faster dynamics of the population

Name Description Reference value Alternative values Ptot,1(12) PR,1(12) Ptot,1(t) PR,1(t)

κ&η Attraction ratio 5.0&2.5 7.5&1.67 2.2 3.6 +
2.5&5.0 −2.2 −4.0 –

DP Dispersivity 0.58 0.87 0.2 1.3 + +
of Drosophila 0.29 −3.5 −7.9 – – – –

ρ Resource leaving 1 1.5 −0.4 −0.6

flight speed 0.5 0.3 0.5

λ Settlement rate 0.25 0.375 1.9 3.5

0.125 −4.8 −9.5 –

α1 Leaving rate 0.002 0.003 −5.1 −10.9 – – –

0.001 6.9 14.2 + ++
α2 Start-to-search 0.5 0.75 0.1 0.2

rate 0.25 −0.6 −1.1

DI &μ Dispersivity 1.0&0.14 1.5&0.1 −1.5 −1.3

and loss rate 0.5&0.2 5.9 5.6 + +
of chemicals

F0 Food odor 10 15 3.7 4.5

saturation 5 −6.8 −8.2 – –

A0 Pheromone 0.04 0.06 2.9 3.0

saturation 0.02 −5.2 −5.5 – –

θF Food odor 2 3 −3.8 −4.6 – –

production 1 6.3 7.5 + +
θA Pheromone 0.83 1.215 −2.8 −3.0 – –

production 0.415 4.9 5.2 + +
ω Pheromone 4.10−4 6.10−4 −2.8 −3.0 – –

evaporation 2.10−4 4.9 5.2 + +

The rate α2 has been varied between 0.25 and 0.75 min−1. Although this has some
effect on the rate at which moving individuals start searching at short term (varying be-
tween 71.3 and 97.6% after 5 minutes), it hardly affects the behavioral dynamics or the
number of settled adults during or after 12 hours (Table 3).

4.1.2. Fruit fly dispersal: DP and ρ

The dispersal constant DP (with standard value 0.058 m2 min−1) of the fruit fly population
has a strong effect on the behavioral dynamics of the settled fruit fly population. For
increasing values of DP between 0.029 and 0.087, the slope of the settled fruit flies graph
increases, and hence the numbers of settled fruit flies present after 12 hours increases
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(Table 3). Thus, the farther the fruit flies can disperse the faster fruit flies find a resource
and settle.

Varying the velocity ρ of the ring-random dispersal from 0.5 to 1.5 m min−1 causes no
noticeable effect on the behavioral dynamics (Table 3).

4.1.3. Fruit fly response: F0 and A0

The half-saturation parameters F0 and A0 concerning fruit fly response toward food odors
or aggregation pheromone, respectively, have a moderate effect on both the total and the
settled population. Halving the values for F0 or A0, from 10 to 5 or from 0.04 to 0.02,
respectively, slightly decreases the total number of fruit flies and the number of settled
fruit flies after 12 hours (Table 3). Increasing the values for F0 or A0 by 50% did not
have a great effect. Note that the effect of variation in F0 is stronger than that in A0.
This is due to the fact that fruit flies only react to aggregation pheromone in the presence
of food odors. It is reflected in the two terms in the sensory index, one depending on
the food odor concentration, the other one depending on the product of food odor and
pheromone concentration. Because of its structure, the latter term is equally sensitive to
relative changes in food odor concentration and pheromone concentration. In combination
with the first term, the sensitivity to relative changes in food odor concentration must be
larger than the sensitivity to relative changes in pheromone concentration.

4.1.4. Attractiveness to infochemicals: κ coupled with η

As pointed out above, we couple κ (the ratio between random movement and odor-
directed movement) and η (the parameter determining the relative attractiveness of
pheromone in relation to food odor) in order to keep the 1:4.5 ratio of fruit fly numbers on
substrates with food odor only (F) and food odor combined with aggregation pheromone
(F+A) as observed by both Bartelt et al. (1985) and Wertheim et al. (2006). Therefore,
in the sensitivity analysis, we increase or decrease κ by 50%, and adapt η in such a way
that the above mentioned 1:4.5 ratio is maintained. It is then found that the model was not
sensitive to this parameter (Table 3).

4.2. Odor distribution: DI coupled with μ

Decreasing the dispersal constant DI of the infochemicals to values below 1 m2 min−1

affects the behavioral dynamics of the total and the settled fruit fly population (Table 3).
The total population size and the number of settled fruit flies in the first quadrant both
increase faster for DI = 0.5. Decreasing DI thus increases the total number of fruit flies
and number of settled fruit flies present after 12 hours. This indicates that fruit flies have
less difficulty in finding the odor source when the dispersal of the infochemicals is slow.

As the loss rate μ is fitted on the dispersal rate DT and the time scale, its sensitivity
was not analyzed separately. However, the reduction from 3D to 2D that is represented by
this parameter may have a considerable effect on the model results.

4.3. Odor production parameters: θF , θA, and ω

Decreasing the production rate of food odors or aggregation pheromone θF or θA, respec-
tively) had an effect on both the total and the settled population. When the production
rate was halved, the total number of fruit flies and the number of settled fruit flies after 12
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hours increased (Table 3). Doubling the value for θF or θA had no effect. Thus, more fruit
flies could find the resources when there were less food odors or aggregation pheromone
available in the air. This indicates that in our simulation both infochemicals where avail-
able in concentrations that caused saturation of the sensory system of the fruit flies. To
understand this phenomenon, one should realize that in our model the fruit flies do not
respond to the gradient of the infochemicals concentration itself, but to the gradient of the
sensory index of the infochemicals. At full saturation, the sensory index has a constant
level, and so its gradient vanishes. Then the fruit flies loose a directional cue, although
the infochemical concentration may have a gradient that is quite useful at lower concen-
tration levels. Thus, under conditions of saturation, fruit flies move at random, and have
more difficulties in finding the resources.

The standard parameter values that we use are based on the experimental studies of
Wertheim et al. (2006). We notice that in the setup in their study, the fruit flies are exposed
to large amounts of food odor and pheromone. Therefore, it is not unreasonable that in
these experiments the concentration level is close to saturation. From an evolutionary
point of view, it seems plausible that the chemotactical abilities of fruit flies are better
tuned to finding a resource when resources are scarce than in finding a resource quickly
when resources are abundant.

The model was equally sensitive to variation in the evaporation rate of the aggregation
pheromone, ω, as to the production rate θA (Table 3). Indeed, a clear interdependency of
ω and θA can be observed. This is not surprising, as the amount of available pheromone
odor that gets available per time unit depends on the product of ω and θA.

5. Conclusion and discussion

For a spatio-temporal model of Drosophila based on reaction to food odors and aggrega-
tion pheromone, realistic parameter values are hard to obtain. In general, any model for
the reaction of insects on odor in the air can be divided into three parts:

1. A model for insect behavior where the population members are divided among states
depending on their activity.

2. A model for production, evaporation and dispersion of the odor substances.
3. A model for the detection of odors by insects, and their reaction thereupon.

The further investigation and parameterization of these submodels requires input from
quite different disciplines.

The first submodel lies in the field of behavioral ecology. As mentioned, the transi-
tions between the three states are known from a biological point of view, because the
Drosophila-based food web is already thoroughly studied (e.g., Wertheim, 2001). Quan-
titative measures of the rate λ at which the searching flies S in the close vicinity of a
resource item settle, the rate α1 at which the settled flies R leave their resource, and the
rate α2 at which moving flies M start searching again still lack. As these parameters model
population processes that have their roots in individual insect behavior, more accurate es-
timates should be obtainable from insect behavioral experiments, either in artificial setups,
or in the field, or both. A study by Wertheim et al. (2002) indicates that fruit flies after
an initial choice for a resource mostly stay on that substrate for (at least) 2 hours. There-
fore, the choice of 0.02 for the patch leaving rate α1 seems reasonable. Still, research on
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the patch residence time of D. melanogaster that can be translated to the population level
responses is needed. The same applies to oviposition rates of Drosophila.

The second submodel lies in the field of physics, organic chemistry, and micro-
meteorology. A good measurement of evaporation rates seems to be within reach; also
a possible degradation of infochemicals can be studied. Models for plume transport on
short and intermediate distances should be investigated further. As we have shown, the
reduction of the three-dimensional dispersion of infochemicals to two dimensions may
lead to concentration patterns that are qualitatively and quantitatively different. These dif-
ferences can be remediated only in part with the parameterization. Therefore, it may be
interesting to investigate to what extent the results from a full 3D spatial model for insect
behavior agree with the results that we find with our essentially 2D model.

The third submodel lies in the field of biophysics and neurology. This submodel may be
the most challenging. Although some knowledge exists on how fruit flies react to aggrega-
tion pheromone (Wertheim et al., 2002), nothing is known about the spatial dose-response
relationship to food odors and aggregation pheromone. In the model for the reaction of
fruit flies to infochemicals that we used, two parts may be distinguished: the sensory in-
dex function that describes the perception of our virtual fruit flies to infochemicals, and
an additional parameter ν describing the strength of chemotaxis as compared to random
walk movement. At this moment, quantitative data are so scarce that this submodel is
clearly overparameterized. We have solved this problem by fixing a combination of the
parameters κ and η. It will not be easy to decouple these parameters just by ethologi-
cal experiments, as this would require a very controlled setup to establish a quantitative
relation between fruit fly behavior and measured infochemical concentration gradients.

More fundamentally, one may discuss the type of the sensory index function that we
used. For a sensory index function for one infochemical, the use of a Michaels–Menten
type of function for saturated response can be made plausible from the limited availabil-
ity of sensory nerve cells to accommodate infochemical molecules (e.g., Postma, 2003).
However, for two interrelating infochemicals, many types of sensory index functions are
conceivable, and we have chosen a simple one from them. It may require neurological
research on fruit flies to validate this choice.

The sensitivity analysis shows that the model is most sensitive to changes in the fruit
fly dispersivity DP and the patch leaving rate α1. It should be feasible to obtain better
information on these parameters in controlled experiments, either in the field or in the
laboratory. A second group of sensitive parameters are the infochemical parameters ω,
θA and θF , especially at the lower density levels. This sensitivity might be caused by the
sensory response function that we have adopted. However, independent of the sensory
response function, this sensitivity highlights the importance of a careful treatment of the
infochemical loss.

Insight into the spatial ecology of aggregation should be derived from a multidisci-
plinary approach that includes the identification of the cues that mediate aggregation,
the behavioral responses of individuals to these cues, and the spatial variation in the re-
sponses that result from spatial variation in pheromone distribution. With the results of
the sensitivity analysis in mind, especially reliable estimates for the parameters A0, F0,
DI , DP , and α1 are required. This is exactly what we plan to obtain in future experiments.
However, even without these experiments, the sensitivity analysis shows that the overall
conclusions in our companion paper (Lof et al., 2008) for the resource density of 5 apples
per m2 hold over a wide range of plausible parameter values. The same probably applies
for other resource densities.
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