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Abstract A precise definition of case fatality proportion for compartmental disease trans-
mission models with disease induced mortality rate is given. This is applied in classical
epidemic modeling frameworks to models with multiple infectious stages, with multi-
groups, with spatial patches, and with age of infection. It is shown that the case fatality
proportion is the sum over all stages of the product of the probability of dying from the
disease at a given stage and the probability of surviving to that stage. The derived expres-
sions for case fatality can be used to estimate the disease induced death rates from more
readily available data.
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1. Introduction

The case fatality proportion (sometimes called case fatality ratio, case mortality, or case
fatality rate) is an important epidemic parameter for a disease that causes mortality. It
measures the proportion of those who acquire an infection that eventually die from the
disease (see, e.g., MedicineNet.com, 2003; Anderson et al., 2004), and is often given as
a percentage. For example, Nandy et al. (2006) counted 92 deaths among 945 cases of
measles in an outbreak in eastern Niger in 2003, and gave the case fatality proportion as
9.7%. Estimates of the case fatality proportion for many human infectious diseases are
given in Chin (2000).

Dietz and Heesterbeek (2002) discussed a case fatality model, in which they studied
the probability that an individual is alive at age a given a force of infection λ(a). In their
model, they assume that an infective individual (who does not die naturally) dies from
the disease with probability c̃. Such models assume that infected individuals die from the
disease after they go through the infectious stage. The same idea can be applied to a pop-
ulation model. Safan et al. (Submitted) consider such a model with standard incidence
and input proportional to the population number. For most epidemics, the population can
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be regarded as approximately constant. Thus, we consider a model with mass-action inci-
dence and constant input. For simplicity, we ignore the latent stage. The compartmental
model can be written as

S ′ = λ − μS − βSI, (1a)

I ′ = βSI − μI − γ I, (1b)

R′ = (1 − c̃)γ I − μR, (1c)

where S, I , and R are the number of individuals who are susceptible, infectious, and
recovered, respectively. The susceptible class S is assumed to have a constant input λ > 0;
μ is the natural death rate; taking mass-action incidence, β is the transmission rate. For
γ > 0, 1/γ is the mean infectious period; if γ = 0, then no individuals recover from the
disease. Here, c̃ is usually called the case fatality proportion parameter. In fact, it can
be interpreted as the fraction of disease induced deaths among the infected individuals
who becomes noninfectious. If μ ≈ 0, i.e., the vital dynamics can be ignored, then c̃ is
indeed, the case fatality proportion. However, for diseases in which the vital dynamics
cannot be ignored, e.g., most childhood diseases (where birth is the dominant source of
new susceptibles), and HIV (which has a long progression time), c̃ is different from the
case fatality proportion because it ignores the natural deaths in class I .

One important feature of the case fatality model (1) is that c̃ does not affect the basic
reproduction number,

R0 = λβ

μ(μ + γ )
> 1,

because the disease induced deaths are assumed to occur after individuals leave class I .
Biologically, R0 is the average number of secondary infections caused by an infectious
individual in a completely susceptible population. The case fatality model is able to model
deaths in class I if c̃γ is interpreted as the death rate in class I , while (1− c̃)γ is the usual
recovery rate (Safan et al., Submitted). However, this interpretation predicts that if c̃ → 1,
then the time it takes to recover tends to ∞, which may be unrealistic.

Instead of employing the case fatality model, disease induced death is commonly mod-
eled by an “excess death rate” caused by the disease. Such models are called differential
mortality models. Day (2002) explored the relation between case mortality and differen-
tial mortality in the context of virulence evolution. In this paper, we discuss how to define
the case fatality proportion in more complex differential mortality models.

In Section 2, we illustrate the definition of the case fatality proportion, along the lines
of Day (2002), in a simple differential mortality model in which only infectious individu-
als may die from the disease. In Section 3, we extend the definition to multi-stage models,
in which disease deaths may occur after an individual becomes noninfectious. We then
further extend the definition to multi-group and patch models in Sections 4 and 5, re-
spectively. In Section 6, we discuss the dependency of case fatality proportion on age of
infection, and give some concluding remarks in Section 7.
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2. Definition of case fatality proportion in a simple differential mortality model

In this section, we discuss the relationship of the case fatality proportion and excess death
rate with a simple differential mortality model, in which it is assumed that disease-induced
mortality occurs before individuals leave the infectious stage. As in (1), we ignore the
latent stage. The model can be written as

S ′ = λ − μS − βSI, (2a)

I ′ = βSI − μI − γ I − δI, (2b)

R′ = sγ I − μR, (2c)

where δ is the excess death rate caused by the disease in class I . We assume that λ > 0
and μ > 0.

By summing Eqs. (2a–2c), the total population number, N = S+I +R, is governed by:

N ′ = λ − μN − δI. (3)

Note that the first octant is positively invariant, thus, I < N . It follows from (3) that

λ − μN − δN ≤ N ′ ≤ λ − μN.

Hence, the total population is positive and bounded.
We can follow the steps in Safan et al. (Submitted) and show that both (1) and (2) have

a unique globally stable endemic equilibrium, and by mapping (c̃γ, (1 − c̃)γ ) → (δ, γ ),
the two systems are equivalent to each other. Because in our two models the population
is finite, they do not differ in the extreme case of c̃ = 1 as do the models in Safan et
al. (Submitted). In that paper, the input is assumed to be proportional to N , standard
incidence is taken, and proportions of susceptible and infectives are considered.

The disease free equilibrium (DFE) is

S0 = λ

μ
, I 0 = 0, R0 = 0.

The basic reproduction number R0 is given from the next generation matrix (van den
Driessche and Watmough, 2002) as

R0 = λβ

μ(μ + γ + δ)
. (4)

Note that in this model R0 decreases as the excess death rate δ increases, because the
excess deaths in class I shorten the mean infectious period. In fact, as δ → ∞, R0 → 0,
because each infected individual dies before infecting any one else. Thus, the disease is
driven to extinction. However, this effect of large mortality is due to the implicit assump-
tion in the ordinary differential equation models that the time from infection to death is
exponentially distributed; thus, the mean duration that an individual stays in class I goes
to zero as δ → ∞. If we incorporate more realistic time-to-death distributions, the disease
may not die out, as observed in the case of bird flu among domesticated birds (OIE, 2007).



Case Fatality Proportion 121

Let D be the number of disease induced deaths, A be the total number of infected
individuals. Then the case fatality proportion c can be defined as

c = D

A
, (5)

where

D =
∫ ∞

0
δI (t) dt,

and

A =
∫ ∞

0
(μ + γ + δ)I (t) dt.

This immediately leads to

c = D

A
= δ

μ + γ + δ
. (6)

Here c can be interpreted as the probability that an infected individual dies from the
disease. Hence, c → 1 if and only if δ → ∞, which leads to R0 → 0. That is, if the
excess death rate is very large, then every infected individual dies before recovering.

With this definition in (5), we revisit the case fatality model (1). There the disease
deaths are

D = c̃γ

∫ ∞

0
I (t) dt,

and the total number of infected individuals is

A =
∫ ∞

0
(μ + γ )I (t) dt.

The case fatality proportion is

c = D

A
= c̃γ

∫ ∞
0 I (t) dt∫ ∞

0 (μ + γ )I (t) dt
= c̃γ

μ + γ
.

Thus, the case fatality proportion c is equivalent to the parameter c̃ only if μ = 0. If μ > 0,
then c̃ > c.

The definition of case fatality proportion in (5) can be applied to more complex mod-
els. Since the case fatality proportion is a measure of the disease virulence, intuitively, it
should not depend on the transmission process. This can be illustrated by the following
vector disease model. A typical vector disease model is the Ross–McDonald model (An-
derson and May, 1991, Section 14.3), which describes the transmission of malaria among
the human population via mosquitoes. The disease spreads by infected mosquitoes biting
susceptible humans, while mosquitoes are infected when biting an infected human. Let
SH and IH denote the number of susceptible and infectious humans, SM and IM repre-
sent the number of susceptible and infectious mosquitoes. Assume that the human and



122 Ma and van den Driessche

mosquito populations have constant inputs, so that both populations remain bounded. It
is assumed that, once infected, mosquitoes carry the pathogen and remain infectious until
they die. For simplicity, we ignore any acquired immunity of infected humans. The model
can be written as

S ′
H = λH − μH SH − β1SH IM + γ IH , (7a)

I ′
H = β1SH IM − μH IH − γ IH − δIH , (7b)

S ′
M = λM − μMSM − β2SMIH , (7c)

I ′
M = β2SMIH − μMIM, (7d)

where β1 is the transmission rate from mosquito to human, β2 is the transmission rate from
human to mosquito, γ and δ are the human recovery and excess death rates, respectively,
λi are the human and mosquito population inputs, and μi are the natural death rates for
i = H,M .

Considering only human case fatality, the total number of infected individuals is

A =
∫ ∞

0
(μH + γ + δ)IH (t) dt,

and the total number of disease deaths is

D =
∫ ∞

0
δIH (t) dt.

Hence,

c = D

A
= δ

μH + γ + δ
.

Not surprisingly, this is equivalent to (6), and does not depend on the transmission process.

3. Disease deaths in multiple infectious stages

The simple differential mortality model (2) assumes that disease induced deaths occur in
class I . However, an infected individual may die weeks after becoming noninfectious. For
example, in the recent SARS epidemics, patients died on average 35.9 days after being
admitted to hospital (Donnelly et al., 2003). In order to model deaths after an individual
becomes noninfectious, we can keep track of excess deaths in class R. This leads to the
model:

S ′ = λ − μS − βSI, (8a)

I ′ = βSI − μI − γ I − δI, (8b)

R′ = γ I − μR − θR, (8c)

where θ is the excess death rate in class R. But this model presents a problem: 1/θ is the
mean disease-induced time-to-death in class R, which for many diseases (e.g., SARS) is
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magnitudes shorter than 1/μ, i.e., θ � μ. Since the probability that an individual exits
class R because of disease induced death is θ

μ+θ
, this predicts that individuals in class R

will die from the disease with a probability approaching 1.
To work around the problem, we introduce another class T , to which individuals enter

when they stop being infectious. In this class, individuals are still affected by the disease
(e.g., have disease complications), and thus have the possibility of dying from the disease.
When they leave T , they are deemed fully recovered and enter the class R, where they
will not die from the disease. The extended model can be written as

S ′ = λ + μS − βSI, (9a)

I ′ = βSI − μI − γ I − δI, (9b)

T ′ = γ I − μT − ρT − θT , (9c)

R′ = ρT − μR, (9d)

where θ is the excess death rate in class T , and 1/ρ is the mean duration time in class
T without counting deaths. The latter time period can sometimes be approximated by the
hospitalization period.

System (9) is a special multi-stage model (a model with multiple infectious stages),
where the class T can be considered an infectious stage with zero transmission rate. In
addition to incorporating the T class, multi-stage models can be used to describe the
dynamics of diseases such as HIV/AIDS. The standard SEIR model is also a special case
of a multi-stage model, with zero transmission rate in the latent stage. In general, we
consider a multi-stage model with n infectious stages (an SInR model):

S ′ = λ − μS −
n∑

k=1

βkSIk, (10a)

I ′
1 =

n∑
k=1

βkSIk − μI1 − γ1I1 − δ1I1, (10b)

I ′
k = γk−1Ik−1 − μIk − γkIk − δkIk, 2 ≤ k ≤ n , (10c)

R′ = γnIn − μR, (10d)

where δk is the excess death rate in the infectious stage k, βk is the transmission rate in
the infectious stage k, and γk is the rate of passing from stage Ik to Ik+1 (with stage In+1

equal to class R). Summing (10) gives the population dynamics

N ′ = λ − μN −
n∑

k=1

δkIk. (11)

As in the previous section, we can show that the population N is positive and bounded.
The DFE is ( λ

μ
,0, . . . ,0). The basic reproduction number is

R0 = λ

μ

n∑
k=1

βkνk

μ + γk + δk

, (12)
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where

νk =
k−1∏
i=1

γi

μ + γi + δi

, (13)

for k ≥ 2, and ν1 = 1. Note that νk is the probability that an infected individual survives
to stage k. If R0 > 1, then the DFE is unstable.

In this model

D =
n∑

k=1

∫ ∞

0
δkIk(t) dt.

Each infected individual has to pass through the first stage I1, but not necessarily later
stages (because of death). Thus, the total number of infected individuals is

A =
∫ ∞

0
(μ + γ1 + δ1)I1(t) dt.

Hence,

c = D

A
=

n∑
k=1

δk

∫ ∞
0 Ik(t) dt

(μ + γ1 + δ1)
∫ ∞

0 I1(t) dt
. (14)

Integrating (10c) gives

Ik(∞) − Ik(0) = γk−1

∫ ∞

0
Ik−1(t) dt − (μ + γk + δk)

∫ ∞

0
Ik(t) dt,

which on dividing becomes

Ik(∞) − Ik(0)

(μ + γk + δk)
∫ ∞

0 Ik−1(t)dt
= γk−1

μ + γk + δk

−
∫ ∞

0 Ik(t) dt∫ ∞
0 Ik−1(t) dt

.

Assuming Ik(0) is small, the left-hand side is zero (because either Ik(∞) = 0 or∫ ∞
0 Ik−1(t) dt = ∞). Thus,

γk−1

μ + γk + δk

=
∫ ∞

0 Ik(t) dt∫ ∞
0 Ik−1(t) dt

. (15)

Hence, for k ≥ 2,

∫ ∞

0
Ik(t) dt =

k∏
i=2

γi−1

μ + γi + δi

∫ ∞

0
I1(t) dt = μ + γ1 + δ1

μ + γk + δk

vk

∫ ∞

0
I1(t) dt.

Substituting the above equations into (14) gives the case fatality proportion

c =
n∑

k=1

δk

μ + γk + δk

νk . (16)
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Here c is the sum of the product of the probability of surviving to stage k and the proba-
bility of dying from the disease in stage k.

For model (9), since class T corresponds to I2 in model (10), θ corresponds to δ2, thus
the case fatality proportion is

c = δ

μ + γ + δ
+ γ θ

(μ + γ + δ)(μ + ρ + θ)
. (17)

For model (8), class R corresponds to I2 in model (10) with the corresponding γ2 = 0,
then the case fatality proportion for (8) is

c = δ

μ + γ + δ
+ γ θ

(μ + γ + δ)(μ + θ)
. (18)

This reveals the problem of model (8) that we mentioned at the beginning of this section,
namely, if μ ≈ 0 (i.e., μ 
 θ and μ 
 γ + δ), then c ≈ 1.

Note that μ ≈ 0 is often assumed if we are interested in a single epidemic, as in the
case of the recent SARS epidemic, where the vital dynamics can be neglected. In such a
case, μ = λ = 0, and the case fatality proportion becomes

c =
n∑

k=1

δk

γk + δk

νk, (19)

where vk becomes

νk =
k−1∏
i=1

γi

γi + δi

,

In this case, c → 1 if there is a δk → ∞.

4. Multi-group models

In this section, we study fatality in multi-group models, where the population is divided
into n groups (e.g., social groups). We assume individuals in group j can transmit the
disease to group i with rate βij . Note that the contact matrix B = [βij ] need not be sym-
metric. The model can be written as

S ′
i = λi − μiSi −

n∑
j=1

βij IjSi, (20a)

I ′
i =

n∑
j=1

βij IjSi − μiIi − δiIi − γiIi , (20b)

T ′
i = γiIi − μiTi − θiTi − ρiTi, (20c)

R′
i = ρiTi − μiRi, (20d)
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where 1 ≤ i ≤ n, λi , μi , γi , ρi are the input, natural death rate, removal rate, and recovery
rate in group i, respectively, δi and θi are the disease induced death rates in class Ii

and Ti , respectively. The removal rate γi may be different in each group because the
effective infectious period can be shortened by various control measures, and these control
measures can have different effectiveness in each group.

Summing the Eqs. (20) gives

(Si + Ii + Ti + Ri)
′ = λi − μi(Si + Ii + Ti + Ri) − δiIi − θiTi .

Hence, Si , Ii , Ti , and Ri are bounded in each group i. The DFE is given by Si = λi/di ,
Ii = Ti = Ri = 0. The basic reproduction number R0 is given by the spectral radius of
diag(λi/μi)BV −1, where V = diag(μi + δi + γi). Our Si , Ii , Ti system is a special case
of the model of Guo et al. (2006). Assuming that R0 > 1, Guo et al. (2006) prove that the
disease settles to a globally asymptotically stable endemic equilibrium with Ii(t) = Ii(∞)

if R0 > 1.
In each group, a case fatality ci can be defined as in previous sections. Let Di be the

disease induced deaths in group i, and Ai be the total number of infected individuals in
group i, then

Di =
∫ ∞

0
δiIi(t) dt +

∫ ∞

0
θiTi(t) dt,

Ai =
∫ ∞

0
(μi + γi + δi)Ii(t) dt.

Hence, ci can be defined as

ci = Di

Ai

= δi

∫ ∞
0 Ii(t) dt + θi

∫ ∞
0 Ti(t) dt∫ ∞

0 (μi + γi + δi)Ii(t) dt
.

Integrating (20c) gives

Ti(∞) − Ti(0) = γi

∫ ∞

0
Ii(t) dt − (μi + θi + ρi)

∫ ∞

0
Ti(t) dt. (21)

As for the derivation of (15), Eq. (21) gives

∫ ∞
0 Ti(t) dt∫ ∞
0 Ii(t) dt

= γi

μi + ρi + θi

,

because Ti(∞) is bounded. This leads to

ci = δi

μi + γi + δi

+ γiθi

(μi + γi + δi)(μi + ρi + θi)
.

At the overall population level, however, the case fatality should be defined as

c =
∑n

i=1 Di∑n

i=1 Ai

=
∑n

i=1 ciAi∑n

i=1 Ai

=
n∑

i=1

ci

Ai∑n

j=1 Aj

.
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Since

Ai∑n

j=1 Aj

= (μi + γi + δi)
∫ ∞

0 Ii(t) dt∑n

j=1(μj + γj + δj )
∫ ∞

0 Ij (t) dt
.

Applying L’Hôpital’s rule gives

Ai∑n

j=1 Aj

= (μi + γi + δi)Ii(∞)∑n

j=1(μj + γj + δj )Ij (∞)
.

Hence,

c =
n∑

i=1

ci

(μi + γi + δj )Ii(∞)∑n

j=1(μj + γj + δj )Ij (∞)
. (22)

Unlike the homogeneous models we discussed previously, in group models, the transmis-
sion process affects the case fatality proportion c through Ii(∞). This is intuitively easy to
understand: a patch with a larger epidemic size has a larger weight in total excess deaths.

5. Patch model with travel

In this section, we study a modified patch model that takes the travel of individuals into
account. For n patches, the model is given by the following 4n equations, which is similar
to that considered by Salmani and van den Driessche (2006):

S ′
i = λi − μiSi − βSiIi +

n∑
j=1

mijSj −
n∑

j=1

mjiSi, (23a)

I ′
i = βSiIi − μiIi − δiIi − γiIi +

n∑
j=1

mij Ij −
n∑

j=1

mjiIi, (23b)

T ′
i = γiIi − μiTi − θiTi − ρiTi +

n∑
j=1

mijTj −
n∑

j=1

mjiTi, (23c)

R′
i = ρiTi − μiRi +

n∑
j=1

mijRj −
n∑

j=1

mjiRi, (23d)

where i = 1,2, . . . , n; and mij > 0 is the travel rate from patch j to patch i, which is
assumed to be the same for each class.

Summing the Eqs. (23) gives

N ′
i = λi − μiNi +

n∑
j=1

mijNj −
n∑

j=1

mjiNi − δiIi − θiTi,
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where Ni = Si + Ii + Ti + Ri . This system is bounded above by the following system:

X′
i = λi − μiXi +

n∑
j=1

mijXj −
n∑

j=1

mjiXi. (24)

This can be written in matrix form:

X′ = Λ − AX,

where Λ = [λi]T , and A = [aij ] is an n × n matrix, where aii = μi + ∑n

j=1 mji , and
aij = −mij for j �= i. Note that (24) governs the dynamics of the population in the absence
of the disease. Assuming μi > 0, A is a nonsingular M-matrix (Horn and Johnson, 1991,
Section 2.5), therefore, all eigenvalues of A have positive real parts, and also entries of
A−1 are positive. Thus, assuming Λ �= 0, (24) has a unique globally asymptotically stable
equilibrium X∗ = A−1Λ > 0, which is indeed the DFE of the system (23). The DFE
is unstable if R0 > 1, where R0 is the spectral radius of FV −1, with F = diag(βiX

∗
i ),

and V = [vij ] with vii = μi + γi + δi + ∑n

j=1 mji and vij = −mij for i �= j (see van
den Driessche and Watmough, 2002). Also, Ni ≤ Xi implies that Si , Ii , Ti , and Ri are
bounded.

To define the case fatality proportion c in this model, let

D =
n∑

i=1

(∫ ∞

0
δiIi(t) dt +

∫ ∞

0
θiTi(t) dt

)
,

A =
n∑

i=1

(μi + γi + δi)

∫ ∞

0
Ii(t) dt.

Then

c = D

A
=

∑n

i=1

(∫ ∞
0 δiIi(t) dt + ∫ ∞

0 θiTi(t) dt
)

∑n

i=1(μi + γi + δi)
∫ ∞

0 Ii(t) dt
.

We assume that if R0 > 1, then the system converges to an endemic equilibrium, i.e.,
I (t) → I (∞), T (t) → T (∞). Applying L’Hôpital’s rule gives

c =
∑n

i=1 δiIi(∞) + θiTi(∞)∑n

i=1(μi + γi + δi)Ii(∞)
.

Summing the Eq. (23c) over all i gives

n∑
i=1

T ′
i =

n∑
i=1

γiIi − μiTi − θiTi − ρiTi .

Hence

n∑
i=1

(μi + θi + ρi)Ti(∞) =
n∑

i=1

γiIi(∞).
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This leads to

c =
∑n

i=1

[
δi + θi γi

μi+ρi+θi

]
Ii(∞)∑n

i=1(μi + γi + δi)Ii(∞)
.

We can see that in this case, there is no simple expression for ci in each patch.
However, ci can be explicitly found if we make the assumption that individuals do not

move to other patches after they become infectious and before they fully recover. Under
this assumption, a latent class E is needed to allow the cross-patch transmission of the
disease. The model then becomes

S ′
i = λi − μiSi − βiSiIi +

n∑
j=1

mijSj −
n∑

j=1

mjiSi, (25a)

E′
i = βiSiIi − μiEi − σiEi +

n∑
j=1

mijEj −
n∑

j=1

mjiEi, (25b)

I ′
i = σiEi − μiIi − γiIi − δiIi , (25c)

T ′
i = γiIi − μiTi − θiTi − ρiTi, (25d)

R′
i = ρiTi − μiRi +

n∑
j=1

mijRj −
n∑

j=1

mjiRi, (25e)

where 1
σi

is the mean latent period in patch i without counting deaths.
In this model, the DFE is the same as the DFE of the system (23), with Ei = 0. The

basic reproduction number R0 is the spectral radius of FV −1, where

F =
[

0 βiX
∗
i

0 0

]
and V =

[
V11 0

V21 V22

]
,

V11 = [uij ] with uii = μi + σi + ∑n

j=1 mji and uij = −mij for i �= j , V21 = −diag(σi),
and V22 = diag(μi + γi + δi).

We can define the per patch case fatality proportion, by letting

Di =
∫ ∞

0
δiIi(t) dt +

∫ ∞

0
θiTi(t) dt,

Ai =
∫ ∞

0
(μi + γi + δi)Ii(t) dt.

Then

ci = Di

Ai

=
∫ ∞

0 δiIi(t) dt + ∫ ∞
0 θiTi(t) dt∫ ∞

0 (δi + γi + μi)Ii(t) dt
.

Integrating (25d) gives
∫ ∞

0 Ti(t) dt∫ ∞
0 Ii(t) dt

= γi

μi + ρi + θi

.
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Thus

ci = δi + γi θi

μi+ρi+θi

μi + γi + δi

= δi

μi + γi + δi

+ γiθi

(μi + γi + δi)(μi + ρi + θi)
.

Then, at the overall population level, we can define the case fatality proportion c as in (22).
In this case, we still cannot deduce an analytical form of Ii(∞).

6. Case fatality proportion as a function of age of infection

The case fatality proportion is usually measured for individuals who die from the disease
within a given period of time τ after infection (see, e.g., Nandy et al., 2006, Fig. 3). We
denote this by cτ . Note that this is usually expressed as a percentage associated with age
of infection τ . In fact, the case fatality proportion c in previous sections is c∞. The models
of previous sections cannot be applied to compute cτ , because the stage-age information
is lacking in those models. To study cτ , we need to explicitly model the stage-age. The
common approach is to use a system of partial differential equations as formulated by
Kermack and McKendrick (1932, in Eqs. (28–29)) for a model with both chronological
age and age of infection. For simplicity, we ignore chronological age and vital dynamics
(thus results are conditional upon the host not dying of natural causes), and consider the
following system

S ′ = −S(t)

∫ ∞

0
β(a)I (t, a) da, (26a)

∂I

∂t
+ ∂I

∂a
= −[

γ (a) + δ(a)
]
I, (26b)

I (t,0) = S(t)

∫ ∞

0
β(a)I (t, a) da, (26c)

R′ =
∫ ∞

0
γ (a)I (t, a) da, (26d)

where a is the age of infection.
In this model, the number of individuals D(a) that die at time a after infection is

D(a) =
∫ ∞

0
δ(a)I (t, a) dt = δ(a)

∫ ∞

0
I (t, a) dt.

Let A be the total number of infected individuals. Then, from (26a) and (26c),

A =
∫ ∞

0
I (t,0) dt = S(0) − S(∞).

The case fatality proportion is

cτ =
∫ τ

0

D(a)

A
da =

∫ τ

0 δ(a)
∫ ∞

0 I (t, a) dt da

A
. (27)
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Let u(a, s) = I (s + a, a), where t = s + a (see, e.g., Thieme, 2003), then

∂u

∂a
(a, s) = ∂I

∂a
+ ∂I

∂t
= −[

γ (a) + δ(a)
]
I (s + a, a) = −[

γ (a) + δ(a)
]
u.

Integrating with respect to a gives

I (s + a, a) = u(a, s) = u(0, s)e− ∫ a
0 [γ (x)+δ(x)]dx.

Hence,

I (t, a) = I (t − a,0)e− ∫ a
0 [γ (x)+δ(x)]dx. (28)

Substituting (28) into (27) gives

cτ = 1

A

∫ τ

0
δ(a)

∫ ∞

0
I (t − a,0)e− ∫ a

0 [γ (x)+δ(x)]dx dt da,

= 1

A

∫ τ

0
δ(a)e− ∫ a

0 [γ (x)+δ(x)]dx

∫ ∞

0
I (t − a,0) dt da.

Assume that
∫ 0

−∞ I (t, a) dt 
 1, then

∫ ∞

0
I (t − a,0) dt =

∫ 0

−a

I (t,0) dt +
∫ ∞

0
I (t, a) dt ≈ A.

Hence, the case fatality proportion is approximately equal to

cτ =
∫ τ

0
δ(a)e− ∫ a

0 [γ (x)+δ(x)]dx da. (29)

From (29)

cτ =
∫ τ

0

δ(a)

γ (a) + δ(a)

[
γ (a) + δ(a)

]
e− ∫ a

0 [γ (x)+δ(x)]dx da,

where [γ (a) + δ(a)]e− ∫ a
0 [γ (x)+δ(x)]dx is the probability density that an infected individual

leaves class I at age of infection a, and δ(a)

γ (a)+δ(a)
is the probability that an individual

dies when exiting class I at age of infection a. Thus, (29) has a similar interpretation
to (16), i.e., it is the “sum” of the probability of disease induced death times the survival
probability for the period of infection up to infection age τ . As τ → ∞, (29) for c∞ agrees
with Day (2002).

Fung and Yu (2003) use a different definition for the case fatality proportion for SARS
that depends on the progression of epidemics. Specifically, they studied the ratio of the
number of disease induced deaths to the sum of disease induced deaths and recoveries
within a given period of time after the epidemic started. Mathematically, that is

ĉτ =
∫ τ

0

∫ ∞
0 δ(a)I (t, a) da dt∫ τ

0

∫ ∞
0 [γ (a) + δ(a)]I (t, a) da dt

. (30)
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This is not in general equivalent to (29). In fact, it is equivalent to (29) with τ → ∞ if
and only if δ and γ do not depend on a. In this special case, they both reduce to (6) with
μ = 0. However, for most diseases the infectious and time-to-death period distributions
are not exponential. Thus γ and δ usually depend on a, and thus ĉτ depends on I (t, a)

for 0 ≤ t ≤ τ . This means that the transmission process affects ĉτ . Yet case fatality pro-
portion describes the probability of an individual dying from the disease after becoming
infected, which in general should be independent of the transmission process, as we have
discovered in the homogeneously mixed models considered previously.

7. Conclusion

We have discussed how to compute the case fatality proportion using an excess death rate
in models that describe disease induced deaths. Mathematically, it is the sum of the prob-
ability of dying from the disease at a given stage times the probability that an individual
survives to the given stage. This formula gives us a relationship among the excess death
rates and the case fatality proportion. Since the excess death rate is usually difficult to
measure, while survival probability and case fatality are usually measurable, this formula
can be used to estimate the excess death rates.

The case fatality proportion formulas derived give relationships between the case fa-
tality proportion and the excess mortality rate. For example, from (6),

δ = c(μ + γ )

1 − c
; (31)

as Day (2002, Eq. (2.15)). The parameters c, μ, and γ can be estimated from data, thus
giving an estimate of δ. This formula (31) is used by Chowell et al. (2006) to estimate the
mortality rates for the 1918 pandemic influenza in Geneva, which were found to be 0.008
for the spring wave, and 0.02 for the fall wave.

For some diseases (e.g., SARS and influenza), the case fatality proportion depends
on the chronological age of the patients. For SARS, it is reported (Donnelly et al., 2003;
Anderson et al., 2004) that the case fatality proportion was 6.8% for patients younger than
60 years, and 55% for patients older than 60. Our multi-group model in Section 4, with
n = 2 representing younger and older age groups, can be applied to this situation.

The case fatality proportion, by our definition, does not depend on the transmission
process, if every infected individual has the same probability of dying from the disease,
as demonstrated by the vector-transmitted disease model in Section 2. This means that
the results hold for both R0 < 1 and R0 > 1. However, it may depend on the age of
infection and/or chronological age. As stated above, the chronological age dependence
can be handled by our multi-group model. Its dependence on age of infection can be
handled as in (29).

For simplicity, we have not discussed compartmental models with loss of immunity,
or more general force of infection. But for homogeneously mixed models, the same tech-
niques can be applied, and the case fatality formulas are identical, since these do not
depend on the flow rate from susceptible to the first infectious stage.
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