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Abstract A multipatch model is proposed to study the impact of travel on the spa-
tial spread of disease between patches with different level of disease prevalence.
The basic reproduction number for the ith patch in isolation is obtained along with
the basic reproduction number of the system of patches, R0. Inequalities describ-
ing the relationship between these numbers are also given. For a two-patch model
with one high prevalence patch and one low prevalence patch, results pertaining
to the dependence of R0 on the travel rates between the two patches are obtained.
For parameter values relevant for influenza, these results show that, while banning
travel of infectives from the low to the high prevalence patch always contributes
to disease control, banning travel of symptomatic travelers only from the high to
the low prevalence patch could adversely affect the containment of the outbreak
under certain ranges of parameter values. Moreover, banning all travel of infected
individuals from the high to the low prevalence patch could result in the low preva-
lence patch becoming diseasefree, while the high prevalence patch becomes even
more disease-prevalent, with the resulting number of infectives in this patch alone
exceeding the combined number of infectives in both patches without border con-
trol. Under the set of parameter values used, our results demonstrate that if border
control is properly implemented, then it could contribute to stopping the spatial
spread of disease between patches.

Keywords Basic reproduction number · Border control · Influenza · Multipatch
model · Spatial spread · Travel rate
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1. Introduction

The H5N1 avian influenza, which has been circulating in Asia since late 2003, has
jumped to Africa and the Middle East and spread through Europe, affecting bird
populations in these regions. By early August 2006, this virus has caused at least
235 human infections and 137 deaths around the world (WHO, 2006). Seasonal
bird migration alone probably cannot explain the westward spread in Europe, so
imports of poultry and pet birds must also be considered as factors that might
lead to the spread of H5N1 through countries and continents (Butler, 2006). Fur-
thermore, its initial appearance on the African continent marks a huge leap in its
geographical range, and opens up a whole new front where the vast bird reservoir
could potentially spark a pandemic of human-to-human infections.

The 2003 severe acute respiratory syndrome (SARS) global epidemic demon-
strated the ability due to modern globalization of infectious disease spreading to
countries in several continents within a matter of days. In its aftermath and with
the potential threat of a flu pandemic, several models describing spatial spread
of infectious diseases have been proposed. These include the use of general com-
partmental models incorporating multiple patches (cities, countries, etc.) to ex-
plore the dynamics of spatial spread of disease (see, for example, Arino and van
den Driessche, 2003, 2006; Wang and Mulone, 2003; Wang and Zhao, 2004; Arino
et al., 2005; Salmani and van den Driessche, 2006). Examples of specific human
infectious diseases modeled in this way include influenza (Hyman and LaForce,
2003);(Sattenspiel and Herring, 2003)and SARS (Ruan et al., 2006)In addition,
patch models for animal diseases include foot-and-mouth disease (Chowell et al.,
2006)and tuberculosos in possums (Fulford et al., 2002)

In this work, we propose a multipatch model to study the spread of influenza
among the patches. We add a subpopulation of partially immune individuals to
account for this important feature of influenza. Although the model is intended to
be used for theoretical studies of the spread of human-to-human influenza, it can
also be used as a model for studying the spread of enzootic diseases such as avian
flu among birds. Partial immunity might not be important for studies of infectious
disease involving poultry bird populations where the birds are slaughtered for food
after a fixed time. It nonetheless could be an important consideration for studies
involving wild bird populations.

The paper is organized as follows. We formulate the model in Section 2, and in
Section 3, we give results regarding the basic reproduction number of the model.
In Section 4, some global analysis is obtained for the model with two patches. Nu-
merical simulations, with parameter values relevant for influenza, to complement
our analytical results are given in Section 5. In Section 6, we focus our discussion
on the impact of travel between high contact patches (e.g., school, hospital, urban
center) and low contact patches (e.g., general community, rural area) on the spatial
spread of disease.

2. Model formulation

In this section, we formulate a model describing the spread of a disease in a popula-
tion with n patches taking into consideration travel among patches (Arino and van
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den Driessche, 2006) and also including partially immune individuals (Hyman and
LaForce, 2003). The population in patch i is divided into compartments of suscep-
tible, incubating (infected but not yet showing symptoms), infective (infected with
symptoms), recovered, and partially immune individuals. Let Si , Ei , Ii , Ri , Pi de-
note, respectively, the associated population size. Then, the total population size in
patch i is Ni = Si + Ei + Ii + Ri + Pi for i = 1, 2, . . . , n. A partially immune com-
partment between the recovered and the susceptible compartments is introduced
in an influenza model (Hyman and LaForce, 2003) to account for people who have
partial immunity to the current strain of influenza from a previous infection by
an earlier strain. We include this partially immune compartment, and assume that
individuals in this compartment may become infected again (but with a reduced
rate). Also, the partial immunity wanes, with these individuals returning to the
susceptible compartment.

For patch i , let Ai be the recruitment, αi , γi , δi , and ηi be the progression rates
of the incubating, infective, recovered, and partially immune individuals, respec-
tively, di be the natural death rate, and εi be the disease-related death rate. All
parameters are assumed to be positive except that εi , δi , ηi can be zero. We as-
sume that individuals do not change their disease state during travel, and mK

i j
for K = S, E, I, R, P are the constant travel rates from patch j to patch i for
i �= j of susceptible, incubating, infective, recovered, and partially immune indi-
viduals, respectively, with mK

ii = 0. The rate mK
i j can be thought of as the prob-

ability per day that an individual of disease state K travels from patch j to
patch i . The travel rate matrices MK = [mK

i j ] for K = S, E, I, R, P are assumed
irreducible (in Section 6, the consequence of some of these being reducible is
examined).

The number of new individuals infected by infectives per unit time in patch i
is given by βi (Ni )Si Ii . The term βi (Ni )Si is the product of βi (Ni )Ni , the average
number of contacts made by each individual in patch i per unit time, and Si

Ni
, the

proportion of susceptibles. It is assumed that infectivity βi (Ni ) is a continu-
ously differentiable, nonincreasing function of Ni with βi (0) finite. Note that the
above assumptions encompass the widely used mass action and standard inci-
dence disease transmission terms defined for Ni > 0 as well as many other forms
of saturating incidence. Reduced transmissibility of incubating individuals toward
susceptible individuals, and reduced infectivity of infectious individuals toward
partially immune individuals are given by σiβi (Ni ) and νiβi (Ni ), respectively,
where σi , νi ∈ [0, 1). It is also assumed that incubating and infective individuals
can reinfect those who are partially immune. The model flow chart for patch i
omitting natural death and travel is given in Fig. 1. The above assumptions lead to
the following SEIRP model for i = 1, 2, . . . , n:

dSi

dt
= Ai − βi (Ni )Si (Ii + σi Ei ) − di Si + ηi Pi +

n∑

j=1

mS
i j Sj −

n∑

j=1

mS
ji Si ,

dEi

dt
= βi (Ni )(Si + νi Pi )(Ii + σi Ei ) − (di + αi )Ei +

n∑

j=1

mE
i j Ej −

n∑

j=1

mE
ji Ei ,
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Fig. 1 Flow diagram of the SEIRP model.

dIi

dt
= αi Ei − (γi + εi + di )Ii +

n∑

j=1

mI
i j Ij −

n∑

j=1

mI
ji Ii ,

dRi

dt
= γi Ii − (di + δi )Ri +

n∑

j=1

mR
i j Rj −

n∑

j=1

mR
ji Ri ,

dPi

dt
= δi Ri − (di + ηi )Pi − νiβi (Ni )Pi (Ii + σi Ei )

+
n∑

j=1

mP
i j Pj −

n∑

j=1

mP
ji Pi . (1)

Initially, each variable is assumed to be nonnegative with Si (0) > 0 and∑n
i=1 Ei (0) + Ii (0) > 0. It follows that for a given set of nonnegative initial con-

ditions, there is a unique solution to system (1). The total population size in all n
patches is N(t) = ∑n

i=1 Ni (t). Let d̄ = min{d1, d2, . . . , dn} and A = ∑n
i=1 Ai . Then,

the following result, which can be proved in a similar way to that of Theorem 1.1
in Salmani and van den Driessche (2006), indicates that the model is well posed
and all variables remain nonnegative and bounded.

Theorem 2.1. Consider system (1) with nonnegative initial conditions sat-
isfying Si (0) > 0 and

∑n
i=1 Ei (0) + Ii (0) > 0. Then for each i = 1, 2, . . . , n,

Ei (t), Ii (t), Ri (t), Pi (t) remain nonnegative, Si (t) and Ni (t) remain positive, and the
total population N(t) is in the interval (0, max{A/d̄, N(0)}].

Notice that our patch model is an extension of those in Arino and van den
Driessche (2006) and Salmani and van den Driessche (2006). It includes a new
compartment, namely, partially immune individuals in each patch, and also the
probability of disease transmission by incubating individuals. These additional
features may be important for modeling diseases such as influenza. In Hyman
and LaForce (2003), which does not include an incubating compartment in a
model for the spread of influenza, travel is assumed to be independent of dis-
ease status and symmetric. Moreover, the disease does not cause death, and the
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population of each patch remains constant. Notice also that our patch model
keeps track of individuals present in patch i at time t , but does not keep track of
where an individual resides. Models that include this are developed in Arino and
van den Driessche (2003, 2006) and Sattenspiel and Herring (2003). In addition,
Ruan et al. (2006) use such a model to study the effect of travel on the spread of
SARS. Wang and Zhao (2006) study the spatial dispersal of disease by propos-
ing a 2-patch SIR model with mass action incidence and a constant infectious
period.

3. The basic reproduction number

In this section, we derive a formula to compute the basic reproduction number R0

for the general model, represented by Eq. (1), and then give a lower bound for R0.
Both lower and upper bounds of R0 are given for a special case.

A diseasefree equilibrium (DFE) is a steady state solution of the system, rep-
resented by Eq. (1), with Si = N∗

i > 0 and all other variables Ei , Ii , Ri , Pi equal
to 0 for i = 1, 2, . . . , n. Let S∗ = (N∗

1 , N∗
2 , . . . , N∗

n )T. Then from the first equa-
tion in Eq. (1), there is a DFE if and only if S∗ satisfies CS∗ = A with A=
(A1, A2, . . . , An)T and C = D − MS, where D = diag(

∑n
j=1 mS

ji + di ). Note that
C, which involves the travel of susceptibles, is irreducible, has positive column
sums d1, d2, . . . , dn, and negative off-diagonal entries. Thus, C is a nonsingular
M-matrix (p. 141, Berman and Plemmons (1979)), and therefore C−1 > 0. Hence
S∗ = C−1 A> 0 is the unique solution of CS∗ = A. This shows that the DFE always
exists and is unique. In the absence of disease, the system, represented by Eq. (1),
reduces to just the first equation and S∗ is stable.

Next, we consider the local stability of the DFE for the system, represented by
Eq. (1). To this end, we order the infected variables by E1, E2, . . . , En, I1, I2, . . . , In

and make use of the result in van den Driessche and Watmough (2002) to obtain

F =
[

F11 F12

0 0

]
=

[
diag(σiβi (N∗

i )N∗
i ) diag(βi (N∗

i )N∗
i )

0 0

]
,

with

V =
[

V11 0
−V21 V22

]
,

where

V11 = diag

⎛

⎝di + αi +
n∑

j=1

mE
ji

⎞

⎠ − ME,

V22 = diag

⎛

⎝γi + εi + di +
n∑

j=1

mI
ji

⎞

⎠ − MI ,

V21 = diag(αi ), i = 1, 2, . . . , n.

Note that V11 and V22 are both irreducible nonsingular M−matrices with positive
column sums and hence

V−1
11 > 0, V−1

22 > 0. (2)
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The basic reproduction number for the system, denoted by R0 is then the spectral
radius of FV−1, i.e., R0 = ρ{FV−1} where

FV−1 =
[

F11 F12

0 0

] [
V−1

11 0

V−1
22 V21V−1

11 V−1
22

]
.

Therefore,

R0 = ρ
(
F11V−1

11 + F12V−1
22 V21V−1

11

)
. (3)

The first term accounts for infection from incubating individuals, while the second
term accounts for infection from infective individuals who survive the incubat-
ing compartment. Travel rates of infectious individuals influence the average time
spent in the incubating and infective compartments. Note that R0 does not depend
on the parameters νi , δi , ηi for i = 1, 2, . . . , n, nor on the travel rates of recovered
and partially immune individuals.

The basic reproduction number gives an important threshold for the disease, as
shown in the following result.

Theorem 3.1. Consider the model, represented by Eq. (1). If R0 < 1, then the DFE
is locally asymptotically stable and if R0 > 1, the DFE is unstable. Moreover, if the
disease transmission is standard incidence, then the DFE is globally asymptotically
stable provided that R0 < 1.

Proof. It follows from Theorem 2 of van den Driessche and Watmough (2002) that
the DFE is locally asymptotically stable if R0 < 1 and is unstable if R0 > 1. If the
disease transmission is standard incidence, then βi (Ni )Ni = βi for i = 1, 2, . . . , n.
Note that Si + νi Pi ≤ Ni . This gives the inequality

dEi

dt
≤ βi (Ii + σi Ei ) − (di + αi )Ei +

n∑

j=1

mE
i j Ej −

n∑

j=1

mE
ji Ei .

Consider the linear system

dEi

dt
= βi (Ii + σi Ei ) − (di + αi )Ei +

n∑

j=1

mE
i j Ej −

n∑

j=1

mE
ji Ei ,

dIi

dt
= αi Ei − (γi + εi + di )Ii +

n∑

j=1

mI
i j Ij −

n∑

j=1

mI
ji Ii . (4)

The right-hand side of the above system has F − V as its coefficient matrix. Again,
by proof of Theorem 2 of van den Driessche and Watmough (2002), each eigen-
value of F − V has negative real part if R0 < 1. Thus, any solution of Eq. (4)
satisfies lim

t→∞ Ei = 0 and lim
t→∞ Ii = 0 for i = 1, 2, . . . , n. Using a comparison
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theorem (Theorem B.1, Smith and Waltman, 1995), each solution of the system,
represented by Eq. (1), satisfies lim

t→∞ Ei = 0 and lim
t→∞ Ii = 0 for i = 1, 2, . . . , n. Us-

ing a similar argument as in the proof of Theorem 2.2, Salmani and van den
Driessche (2006), lim

t→∞ Ri (t) = 0, and similarly lim
t→∞ Pi (t) = 0. Thus the DFE is

globally asymptotically stable provided that R0 < 1.
Let ai = γi + εi + di and ci = di + αi for i = 1, 2, . . . , n. In the rest of the paper,

we assume standard incidence disease transmission, namely, βi (Ni ) = βi
Ni

giving
βi (Ni )Ni = βi > 0. In the case that there is no travel between patch i and all other
patches, the basic reproduction number in patch i in isolation is given by

R(i)
0 = σiβi

ci
+ βiαi

ai ci
. (5)

We define a modified reproduction number (modified by travel of infecteds out
of patch i) in patch i ,

R̃(i)
0 = σiβi

ci + ∑n
j=1 mE

ji

+ βiαi(
ci + ∑n

j=1 mE
ji

) (
ai + ∑n

j=1 mI
ji

) < R(i)
0 . (6)

The following result gives bounds for the basic reproduction number for the sys-
tem, represented by Eq. (1), in terms of the numbers defined in Eqs. (5) and (6)
for each patch.

Theorem 3.2. For the system, represented by Eq. (1),

R0 ≥ max
1≤i≤n

R̃(i)
0 . (7)

Furthermore, if ai = a, αi = α, σi = σ , and di = d for i = 1, 2, . . . , n, then

max
(

max
1≤i≤n

R̃(i)
0 , min

1≤i≤n
R(i)

0

)
≤ R0 ≤ max

1≤i≤n
R(i)

0 . (8)

Proof. For j = 1, 2, let Vj j [1′] denote the matrix Vj j with row and column 1
deleted, Y = [yi j ] and Z = [zi j ] denote V−1

11 and V−1
22 , respectively. Let W =

[wi j ] = G + H, where G = [gi j ] = F11Y, H = [hi j ] = F12 ZV21Y. It follows from (2)
that yi j > 0, zi j > 0 for i, j = 1, 2, . . . , n. Then, by Corollary 8.1.20 in Horn and
Johnson (1985),

R0 = ρ(W) ≥ wi i = gii + hii for i = 1, 2, . . . , n.

Note that g11 = σ1β1 y11 = σ1β1
detV11[1′]

detV11
. By virtue of Fischer’s inequality (p. 117,

Horn and Johnson, 1991), it follows that

det V11 ≤
⎛

⎝c1 +
n∑

j=1

mE
j1

⎞

⎠ detV11[1′].
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Therefore,

g11 ≥ σ1β1

c1 + ∑n
j=1 mE

j1

.

Similarly,

h11 = β1α1z11 y11 +
n∑

k=2

β1αkz1kyk1.

Thus,

h11 ≥ β1α1z11 y11 = β1α1
detV22[1′]

detV22

detV11[1′]
detV11

.

Again, by Fischer’s inequality, it follows that

h11 ≥ β1α1(
c1 + ∑n

j=1 mE
j1

) (
a1 + ∑n

j=1 mI
j1

) .

Adding these shows that

R0 ≥ R̃(1)
0 .

Similarly, it can be shown that

R0 ≥ R̃(i)
0 for i = 2, 3, . . . , n

and this gives Eq. (7).
If ai = a, αi = α, σi = σ , and di = d (thus ci = c) for i = 1, 2, . . . , n, then

wi j = σβi yi j + αβi
∑n

k=1 zikykj for i, j = 1, 2, . . . , n. Without loss of generality, as-
sume that 0 < β1 ≤ β2 ≤ . . . ≤ βn. From the fact that the matrix V11 has each col-
umn sum equal to c > 0 and the matrix V22 has each column sum equal to a > 0,
it follows that

∑n
i=1 yi j = 1

c ,
∑n

i=1 zi j = 1
a for j = 1, 2, . . . , n. Therefore, for the

matrix W, the sum of column j is given by

n∑

i=1

wi j =
n∑

i=1

σβi yi j +
n∑

i=1

αβi

n∑

k=1

zikykj

≤ σβn

n∑

i=1

yi j + αβn

n∑

i=1

n∑

k=1

zikykj

= σβn

n∑

i=1

yi j + αβn

n∑

k=1

(
n∑

i=1

zik

)
ykj

= σβn

c
+ αβn

ac

= R(n)
0 .
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Similarly,
∑n

i=1 wi j ≥ σβ1
c + αβ1

ac = R(1)
0 . From Theorem 8.1.22 in Horn and Johnson

(1985), ρ(W) lies between the minimum and maximum column sums of W.
Thus,

min
1≤i≤n

R(i)
0 ≤ R0 = ρ(W) ≤ max

1≤i≤n
R(i)

0 .

Combining with Eq. (7) immediately gives the desired Eq. (8).
The analytical results give the basic reproduction numbers in isolation of the

individual patches as upper and lower bounds for the basic reproduction number
of the system. However, its usefulness is rather limited in practice since the range
for the bounds could be too large.

Remark 3.1. If mass action incidence, rather than standard incidence is assumed
(i.e., βi (Ni ) = βi , rather than βi (Ni ) = βi

Ni
), then R(i)

0 defined in Eq. (5) depends
on the travel rates of susceptibles. Mass action incidence is assumed by Wang and
Zhao (2004), and they show that for their two-patch SIS model, it is possible for
the basic reproduction number of the system to be greater than the reproduction
number of each individual patch in isolation.

In the next section, we consider the case of only two patches, and obtain more
explicit results giving insight about the impact of travel on the spatial spread of
disease between patches.

4. The model with two patches

From now on, we consider the special case of Eq. (1) with only two patches and
assume standard incidence. Thus, we consider the system

dS1

dt
= A1 − β1

N1
S1(I1 + σ1 E1) − d1S1 + η1 P1 + mS

12S2 − mS
21S1,

dE1

dt
= β1

N1
(S1 + ν1 P1)(I1 + σ1 E1) − (d1 + α1)E1 + mE

12 E2 − mE
21 E1,

dI1

dt
= α1 E1 − (γ1 + ε1 + d1)I1 + mI

12 I2 − mI
21 I1,

dR1

dt
= γ1 I1 − (d1 + δ1)R1 + mR

12 R2 − mR
21 R1,

dP1

dt
= δ1 R1 − (d1 + η1)P1 − ν1

β1

N1
P1(I1 + σ1 E1) + mP

12 P2 − mP
21 P1,

dS2

dt
= A2 − β2

N2
S2(I2 + σ2 E2) − d2S2 + η2 P2 + mS

21S1 − mS
12S2,

dE2

dt
= β2

N2
(S2 + ν2 P2)(I2 + σ2 E2) − (d2 + α2)E2 + mE

21 E1 − mE
12 E2,
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dI2

dt
= α2 E2 − (γ2 + ε2 + d2)I2 + mI

21 I1 − mI
12 I2,

dR2

dt
= γ2 I2 − (d2 + δ2)R2 + mR

21 R1 − mR
12 R2,

dP2

dt
= δ2 R2 − (d2 + η2)P2 − ν2

β2

N2
P2(I2 + σ2 E2) + mP

21 P1 − mP
12 P2.

The DFE of Eq. (9) is given by

S∗ =
[

N∗
1

N∗
2

]
=

[
d1 + mS

21 −mS
12

−mS
21 d2 + mS

12

]−1 [
A1

A2

]
.

Also,

F11 = diag(σ1β1, σ2β2), F12 = diag(β1, β2), V21 = diag(α1, α2),

and, recalling that ai = γi + εi + di and ci = di + αi for i = 1, 2,

V11 =
[

c1 + mE
21 −mE

12

−mE
21 c2 + mE

12

]
, V22 =

[
a1 + mI

21 −mI
12

−mI
21 a2 + mI

12

]
.

Hence, R0 = ρ(W), where

W = F11V−1
11 + F12V−1

22 V21V−1
11 =

[
w11 w12

w21 w22

]
(9)

with

w11 = σ1β1
(
c2 + mE

12

)

c1c2 + c1mE
12 + c2mE

21

+ β1α1
(
c2 + mE

12

)(
a2 + mI

12

) + β1α2mE
21mI

12(
c1c2 + c1mE

12 + c2mE
21

)(
a1a2 + a1mI

12 + a2mI
21

) ,

w12 = σ1β1mE
12

c1c2 + c1mE
12 + c2mE

21

+ β1α1mE
12

(
a2 + mI

12

) + β1α2
(
c1 + mE

21

)
mI

12(
c1c2 + c1mE

12 + c2mE
21

)(
a1a2 + a1mI

12 + a2mI
21

) ,

w21 = σ2β2mE
21

c1c2 + c1mE
12 + c2mE

21

+ β2α1mI
21

(
c2 + mE

12

) + β2α2mE
21

(
a1 + mI

21

)
(
c1c2 + c1mE

12 + c2mE
21

)(
a1a2 + a1mI

12 + a2mI
21

) ,

w22 = σ2β2
(
c1 + mE

21

)

c1c2 + c1mE
12 + c2mE

21

+ β2α1mE
12mI

21 + β2α2
(
c1 + mE

21

)(
a1 + mI

21

)
(
c1c2 + c1mE

12 + c2mE
21

)(
a1a2 + a1mI

12 + a2mI
21

) .

It follows from Eq. (9) that

R0 = 1
2

(
w11 + w22 +

√
(w11 − w22)2 + 4w12w21

)
. (10)
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From Theorem 3.1, we have the following result.

Theorem 4.1. For the two-patch model, assume that the disease transmission is
standard incidence. Then, the DFE is globally asymptotically stable if R0 < 1 and is
unstable if R0 > 1, where R0 is given by Eq. (10).

As expected, an increase in σi or βi increases R0. The dependence of R0 on αi is
more complicated, since αi is contained in ci , which appears in both the denomina-
tor and numerator of entries of W. To investigate how R0 changes with the other
parameters, we first assume that all travel rates for incubating and infective indi-
viduals are equal, namely, mE

i j = mI
i j = m for i, j = 1, 2. The proof of the following

result is given in the Appendix.

Theorem 4.2. If mE
i j = mI

i j = m for i, j = 1, 2 and σ1 = σ2 = σ, α1 = α2 = α, a1 =
a2 = a, c1 = c2 = c, β1 �= β2, then an increase in a or m decreases R0.

In the case that infectives of both patches are too sick to travel (mI
i j = 0 for

i, j = 1, 2) with other conditions as in Theorem 4.2, a similar technique shows that
an increase in travel of incubating individuals (mE

i j ) decreases R0.
It is analytically interesting to note that, with the conditions of Theorem 4.2,

as the travel rate becomes large, the basic reproduction number R0 in Eq. (10)
approaches the mean value of R(1)

0 and R(2)
0 , i.e., R0 → 1

2 (R(1)
0 + R(2)

0 ) as m → ∞.

This can be seen from the form of W in the proof of Theorem 4.2. Thus if R(i)
0 > 2,

then R0 > 1. In this limit case, the two patches merge into one, and even large
travel rates do not control the disease.

A referee pointed out that the result of Theorem 4.2 is in accord with previous
work in ecological modeling (e.g., Hastings, 1983; McPeek and Holt, 1992; and
Cantrell and Cosner, 2003). These authors demonstrate that for ecological models
with spatial heterogeneity but with dispersal rates that do not depend on location,
increasing the rate of dispersal is often detrimental to a population.

5. Numerical simulations

Assuming standard incidence disease transmission, we present some numeri-
cal simulations for two patches to illustrate how R0 changes with travel rates,
with a choice of parameters relevant for human influenza (Ferguson et al., 2005;
Hyman and LaForce, 2003). In the next section, we present simulations for re-
stricted travel.

The model parameters with time unit as 1 day are taken as: α1 = α2 = 0.5,
γ1 = γ2 = 0.25 (the average incubating time is 2 days and the average infective
time is 4 days), ε1 = ε2 = 2.0 × 10−5, d1 = d2 = 1

60×365 ≈ 4.57 × 10−5, β1 = 0.35,

β2 = 0.1, σ1 = σ2 = 0.01, δ1 = δ2 = 2.74 × 10−3, η1 = η2 = 1.37 × 10−3, ν1 = ν2 =
0.01 and A1 = A2 = 1. Note that the two patches are assumed to differ only in in-
fectivity, modeling high and low contact patches for the same disease outbreak.
These parameters yield the respective basic reproduction numbers in isolation of
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12 = mI
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21. Parameters as in text. The three curves from top to
bottom correspond to : mE

21 = mI
21 = 0.05, 0.1, 0.2, respectively.

R(1)
0 ≈ 1.41 > 1 and R(2)

0 ≈ 0.40 < 1. Hence, we consider the hypothetical scenario
of disease spread between a high prevalence endemic region (patch 1) and a low
prevalence region where a minor outbreak could be eradicated (patch 2). We first
keep mE

21 = mI
21 fixed with values at 0.05, 0.1, and 0.2 and let mE

12 = mI
12 vary from

0 to 0.2. The curves of R0 are given in Fig. 2.
Figure 2 shows that by keeping the same travel rate from patch 1 to patch 2, an

increase in the travel rate from patch 2 (the patch with lower disease transmission
rate) to patch 1 (the patch with higher disease transmission rate) results in an in-
crease in R0. Consequently, we can conclude that travel between the two patches
may cause the disease to become endemic in both patches if the travel rate from
patch 2 to patch 1 is sufficiently large and that from patch 1 to patch 2 is sufficiently
small. The numerical simulation in Fig. 2 also shows that for the chosen parameters
and keeping mE

12 = mI
12 fixed, an increase in mE

21 = mI
21 leads to a decrease in R0.

In particular, R0 could conceivably decrease to a value less than 1 if the travel rate
from the high prevalence patch to the low prevalence patch, namely mE

21 = mI
21, is

high enough.
If all travel rates from one patch to the other are the same, i.e., mE

12 = mI
12 =

mE
21 = mI

21 = m, then an increase in m leads to a decrease in R0 (Fig. 3), as pre-
dicted by Theorem 4.2. Note that, for these parameter values, R0 < 1 if m > 0.16.

Taking m = 0.18 and subsequently R0 < 1, the disease dies out eventually since
the DFE is globally asymptotically stable by Theorem 4.1. To investigate how the
infective population sizes in the two patches change over time and die out even-
tually, we numerically simulate the system, represented by Eq. (9), using the pa-
rameter values given at the beginning of this section, and in Fig. 4 plot I1 and I2

against time. The infective population sizes in both patches eventually decrease to
zero although there is an initial increase of infectives in patch 2.

Next, we use the same parameter values except that m = 0.02, and subsequently
R0 > 1 (see Fig. 3). For a time period of 6000 days, the numerical simulation of
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the system, represented by Eq. (9), in this case given in Fig. 5 shows that in both
patches there is an initial shape increase in the number of infectives followed by a
decrease. There are damped transient oscillations about an endemic equilibrium;
whereas Hyman and LaForce (2003) observe sustained oscillations when βi is pe-
riodic.

Some interesting observations can be made from our results regarding the role
that travel plays in the spatial spread of a disease. Figure 2 demonstrates the pos-
sibility that, for a low prevalence patch with a minor disease outbreak (basic re-
production numbers in isolation R(2)

0 less than 1), open travel with a high preva-
lence patch could lead to the disease becoming endemic. However, for a high
prevalence patch with endemic disease in isolation (basic reproduction numbers

0 50 100 150 200 250
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10

12

14

16

18

20

t

I 1 &
 I 2

Fig. 4 Numerical solution of the system, represented by Eq. (9), with parameters as in the
text and m = 0.1 showing I1 (dashed curve) and I2 (solid curve) vs. time t . Initial conditions
are: S1(0) = 17000, E1(0) = 10, I1(0) = 20, R1(0) = 0, P1(0) = 3000; S2(0) = 17200, E2(0) = 1,

I2(0) = 3, R2(0) = 0, P2(0) = 3000.
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Fig. 5 Numerical solution of the system, represented by Eq. (9), showing I1 (dashed curve) and
I2 (solid curve) vs. time t . Parameter values and initial conditions are the same as in Fig. 4 except
that m = 0.02.

in isolation R(1)
0 greater than 1), open travel with a low prevalence patch could

eradicate the disease. Essentially, under appropriate parameter ranges, travel be-
tween patches dilutes the overall prevalence to the point that it could either lessen
the severity of an endemic patch or worsen a minor outbreak region. Further
evidence can be found in Figs. 3 and 4 in which assuming all travel rates are
equal, the disease can be eventually eradicated if the travel rates are sufficiently
large.

The value R(1)
0 ≈ 1.41 taken is near the lower bound of the range 1.4–2 of pan-

demic influenza R0 values examined recently by Ferguson et al. (2006) and is
slightly lower than the range 1.6–2.4 considered by Germann et al. (2006). From
our discussion under Theorem 4.2, if R(1)

0 > 2, then the disease cannot be con-
trolled by equal travel rates.

6. Discussion of travel restrictions

To consider hypothetical intervention scenarios, we set mI
21 = 0 and keep all other

parameters the same as for Fig. 2. This models a situation in which the authority
bans all travel of symptomatic travelers from patch 1 (the high prevalence patch),
to patch 2 (the low prevalence patch). In comparison with Fig. 2, Fig. 6 shows
this gives an overall increase in the value of the basic reproduction number R0.
More specifically, for mE

21 = 0.2, stopping all travel of symptomatic travelers from
patch 1 to patch 2 adversely impacts the epidemic by driving the basic reproduction
number above 1, thus prolonging the epidemic that otherwise would be eradicated.

Conversely, Fig. 7 shows that stopping all travel of symptomatic travelers from
patch 2 to patch 1 (setting mI

12 = 0) could alleviate the epidemic, lowering the basic
reproduction number to below 1, thus successfully preventing further spread of the
outbreak.
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Therefore, the policy of border control to ban travel of symptomatic travelers
only from the high to the low prevalence patch could affect the containment of
the outbreak adversely (Figs. 2 and 6). However, banning travel of symptomatic
travelers only from the low to the high prevalence patch always has a positive
impact (Figs. 2 and 7).

We now set mI
21 = 0 and keep all other parameters the same as in Fig. 5. Figure 8

shows that the disease is still endemic in both patches, but with a larger number of
infectives in the high prevalence patch and a smaller number of infectives in the
low prevalence patch. Thus, once again, banning all travel of symptomatic travelers
from the high to the low prevalence patch may be detrimental to the intervention
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Fig. 7 R0 vs mE
12 with mI

12 = 0 for fixed mE
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21 = 0.1.
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Fig. 8 Numerical solution of the system, represented by Eq. (9), showing I1 (dashed curve) and
I2 (solid curve) vs time t . Parameters as in Fig. 5 except that mI

21 = 0.

and control of the outbreak in patch 1, and the total number of infecteds may
increase.

Now, when we set mI
12 = 0 and keep all other parameters the same as in Fig. 5,

i.e., banning travel of symptomatic travelers from the low to the high prevalence
patch only, the disease persists in both patches but with (slightly) smaller numbers
of infectives in the high prevalence patch (Fig. 10). This indicates the importance
of border control out of a low prevalence patch and into a high prevalence patch.

Travel restrictions previously considered maintain the matrix W given by
Eq. (9) irreducible. In the event that there is no travel of infecteds from patch i
to patch j , then ME and MI become reducible and hence W becomes reducible.
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Fig. 9 Numerical solution of the system, represented by Eq. (9), showing I1 (dashed curve) and
I2 (solid curve) vs time t . Parameters are the same as in Fig. 5 except that mE

21 = mI
21 = 0.
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Fig. 10 Numerical solution of the system, represented by Eq. (9), showing I1 (dashed curve) and
I2 (solid curve) vs time t . Parameters as in Fig. 5 except that mI

12 = 0.

Setting mE
21 = mI

21 = 0, i.e., banning all travel of infecteds from the high to the
low prevalence patch, the infected equations for patch 2 uncouple. If E2(0) =
I2(0) = 0, then E2(t) = I2(t) = 0 for all t ≥ 0, i.e., patch 2 remains diseasefree. If
E1(0) + I1(0) > 0, then disease persists in patch 1 provided R(1)

0 > 1, but it dies

out if R(1)
0 < 1. If Ei (0) + Ii (0) > 0 for i = 1, 2, then the dynamics in patch 1 is

governed by R(1)
0 and the dynamics in patch 2 is governed by R̃(2)

0 .

Taking the same parameters as in Fig. 5 except that mE
21 = mI

21 = 0, then R(1)
0 ≈

1.41 > 1 and R̃(2)
0 ≈ 0.36 < 1. Thus, the disease in patch 1 becomes endemic and

the disease in patch 2 dies out very rapidly (see Fig. 10).
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Fig. 11 Numerical solution of the system, represented by Eq. (9), showing I1 (dashed curve) and
I2 (solid curve) vs time t . Parameters and initial conditions as in text. mE

12 = mI
12 = 0, mE

21 = mI
21 =

0.02.



1372 Hsieh et al.

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

t

I 1 &
 I 2

Fig. 12 Numerical solution of the system, represented by Eq. (9), showing I1 (dashed curve) and
I2 (solid curve) vs time t . Parameters and initial conditions as in text. mE

12 = mI
12 = 0, mE

21 = mI
21 =

0.10.

Similarly, setting mE
12 = mI

12 = 0 (i.e., banning all infected travelers from patch 2

to patch 1), the dynamics of patches 1 and 2 are governed by R̃(1)
0 and R(2)

0 , respec-

tively. For R(1)
0 > 1 and R(2)

0 > 1, disease becomes endemic in patch 2, but patch

1 may become diseasefree if travel rates give R̃(1)
0 < 1, even if E2(0) = I2(0) = 0

and E1(0) + I1(0) > 0 (i.e., patch 2 is initially diseasefree and patch 1 is not).
As demonstrated in Fig. 11, the disease persists in both patches; whereas in
Fig. 12, patch 1 becomes diseasefree very rapidly and disease persists in patch
2. In both Figs. 11 and 12, all parameter values are the same as stated at the
beginning of Section 5 except that β1 = 0.4, β2 = 0.3. Thus R(1)

0 ≈ 1.61 > 1 and

R(2)
0 ≈ 1.21 > 1. We set mK

i j = 0.02 for K = S, R, P and i, j = 1, 2. In Fig. 11, we

set mE
12 = mI

12 = 0, mE
21 = mI

21 = 0.02, which yields R̃(1)
0 ≈ 1.43 > 1. In Fig. 12, we

set mE
12 = mI

12 = 0, mE
21 = mI

21 = 0.10, which yields R̃(1)
0 ≈ 0.96 < 1. Initial con-

ditions are: S1(0) = 16, 000, E1(0) = 15, I1(0) = 28, R1(0) = 0, P1(0) = 5, 000;
S2(0) = 16, 000, E2(0) = 0, I2(0) = 0, R2(0) = 0, P2(0) = 5, 000.

During the 2003 SARS outbreak, travel warnings to all affected areas were is-
sued by WHO (2003) to prevent travelers from entering and becoming infected.
Dozens of countries also issued border control either banning travelers from
entering or placing them under quarantine. See Ruan et al. (2006) for a study of
a patch model for the spread of SARS. For our influenza model, from a public
health point of view, it is imperative for the low prevalence patch to stop travel
of sick (both incubating and infective) individuals from the high prevalence patch.
Our results show that, for the parameter values considered, border control does
not necessarily always have a positive impact on the overall spread of disease
and it is more important to ban travel of infected individuals from a low preva-
lence patch to a high prevalence patch. Moreover, an increase of travel rates in
the opposite direction (from a high to a low prevalence patch), while theoreti-
cally alleviating the spatial spread of the disease, may not be an implementable
policy.



Impact of Travel Between Patches for Spatial Spread of Disease 1373

The conclusions drawn in this work are valid for the set of parameters used,
most of which were taken from recent literature. In the event of a new highly
pathogenic influenza strain, which might result in vastly different disease parame-
ter values, our analytic results would hold, but numerical simulations would need
to be redone.

As a final remark, we note again that while the model is proposed for the spread
of human influenza, it can also be used, with some appropriate modifications and
parameter changes, as the basis of a theoretical model to study the spread of en-
zootic diseases such as avian flu among birds.

Appendix: Proof of Theorem 4.2

Proof. It is clear that an increase in a decreases each entry in the matrix W, and so
decreases the basic reproduction number R0. Under the parameter assumptions,

W =
[

β1u β1v

β2v β2u

]
,

where

u = σ (c + m)
c(c + 2m)

+ α(2m2 + (a + c)m + ac)
ac(c + 2m)(a + 2m)

,

v = σm
c(c + 2m)

+ αm(a + c + 2m)
ac(c + 2m)(a + 2m)

.

By Eq. (10), R0 is the larger root of the quadratic equation

λ2 − (β1 + β2)uλ + β1β2(u2 − v2) = 0. (A.1)

It follows from the above expressions that

u + v = α + σa
ac

, u − v = α + σ (a + 2m)
(c + 2m)(a + 2m)

,

giving

u2 − v2 = α + σa
ac

α + σ (a + 2m)
(c + 2m)(a + 2m)

.

It follows from u + v = α+σa
ac that ∂u

∂m = − ∂v
∂m . Taking partial derivatives with re-

spect to m for Eq. (A.1) gives

(2λ − (β1 + β2)u) ∂λ
∂m = λ(β1 + β2)

∂u
∂m

− β1β2
∂(u2 − v2)

∂m

=
(

λ(β1 + β2) − 2β1β2
α + σa

ac

)
∂u
∂m

.
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From the definition of u,

∂u
∂m

= −α(4m + a + c) + σ (4m2 + 4am + a2)
[(c + 2m)(a + 2m)]2

< 0.

Note that 2λ|λ=R0 > (β1 + β2)u. Therefore, to show that ∂R0
∂m < 0, i.e., to show

∂λ
∂m |λ=R0 < 0, it suffices to show that for λ = R0,

(β1 + β2)λ − 2β1β2
α + σa

ac
> 0.

We first claim that λ > 1
2 (β1 + β2)(u + v). Since

λ = 1
2

[
(β1 + β2)u +

√
(β1 + β2)2u2 − 4β1β2(u2 − v2)

]
,

it is equivalent to show that

(β1 + β2)2u2 − 4β1β2(u2 − v2) > (β1 + β2)2v2,

or
(β1 − β2)2(u2 − v2) > 0.

This is automatically true since u > v > 0. It follows from λ > 1
2 (β1 + β2)(u + v)

that

(β1 + β2)λ >
1
2

(β1 + β2)2(u + v) = 1
2

α + σa
ac

(β1 + β2)2.

Thus, as required,

(β1 + β2)λ − 2β1β2
α + σa

ac
>

1
2

α + σa
ac

(β1 − β2)2 > 0.
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