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Abstract A staged-progression HIV model is formulated and used to investigate
the potential impact of an imperfect vaccine. The vaccine is assumed to have sev-
eral desirable characteristics such as protecting against infection, causing bypass
of the primary infection stage, and offering a disease-altering therapeutic effect
(so that the vaccine induces reversal from the full blown AIDS stage to the asymp-
tomatic stage). The model, which incorporates HIV transmission by individuals in
the AIDS stage, is rigorously analyzed to gain insight into its qualitative features.
Using a comparison theorem, the model with mass action incidence is shown to
have a globally-asymptotically stable disease-free equilibrium whenever a certain
threshold, known as the vaccination reproduction number, is less than unity. Fur-
thermore, the model with mass action incidence has a unique endemic equilibrium
whenever this threshold exceeds unity. Using the Li-Muldowney techniques for a
reduced version of the mass action model, this endemic equilibrium is shown to be
globally-asymptotically stable, under certain parameter restrictions. The epidemi-
ological implications of these results are that an imperfect vaccine can eliminate
HIV in a given community if it can reduce the reproduction number to a value
less than unity, but the disease will persist otherwise. Furthermore, a future HIV
vaccine that induces the bypass of primary infection amongst vaccinated individ-
uals (who become infected) would decrease HIV prevalence, whereas a vaccine
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with therapeutic effect could have a positive or negative effect at the community
level.

Keywords HIV/AIDS · Staged progression · Vaccination reproduction number ·
Global stability

1. Introduction

Since its appearance in the 1980s, the human immuno-deficiency virus (HIV) re-
mains a major global menace. In addition to accounting for nearly 20 million
deaths so far, an estimated 36–40 million people live with the disease, and the HIV
pandemic continues to inflict a major socio-economic burden on many developing
nations (World Bank, 1997; Fleck, 2004; WHO, 2004).

There is a growing body of opinion that curtailing the global spread of HIV
requires an effective vaccine (Chang et al., 2003; Esparza and Osmanov, 2003).
Owing to the global HIV vaccine enterprise (Klausner et al., 2003) and related
initiatives, several candidate HIV vaccines are currently undergoing clinical trials
(see Burton et al., 2004; Zinkernagel, 2004 and the references therein). However,
these efforts are unlikely to yield an effective vaccine soon. The current expec-
tation is that such a vaccine would be imperfect. That is, it may be effective in
some, but not all, people and/or may offer protection that wanes with time. The
vaccine may also offer some therapeutic benefits by altering the clinical course of
the disease (Shiver et al., 2002; Lee et al., 2004; Shiver and Emini, 2004). There
is a need, therefore, to evaluate the potential community-wide impact of such a
vaccine.

Several authors have, over the last two decades, used mathematical models to
assess the potential impact of an imperfect HIV vaccine (see, for example, McLean
and Blower, 1993; Blower and McLean, 1994; Corbett et al., 2003; Del Valle et al.,
2004; Smith and Blower, 2004) using relatively simple compartmental models. The
aforementioned models do not, however, incorporate some other important as-
pects of HIV disease such as the staged-progression nature of the disease, where
HIV-infected individuals pass through sequential infection stages; being highly
infectious during primary infection (first few weeks of infection), having low in-
fectivity in the asymptomatic phase (lasting many years) and becoming more in-
fectious in the AIDS stage. Staged progression models are considered in Hyman
et al. (1999), Perelson and Nelson (1999), and McCluskey (2003) but these do not
incorporate the use of a vaccine. Another important aspect that is often ignored
in HIV modeling is the role of individuals with AIDS in HIV transmission. For
instance, the models in McLean and Blower (1993), Blower and McLean (1994),
Del Valle et al. (2004), and Smith and Blower (2004) assume that individuals with
AIDS do not contribute in further spread of HIV. However, epidemiological ev-
idence supports the hypothesis that AIDS patients are capable of, and do engage
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in, risky sexual behavior such as having multiple sexual partners or inconsistent
condom use (Nicolosi et al., 1994; O’Brien et al., 1994; Lansky et al., 2000). Al-
though, Elbasha and Gumel (2006) presented an HIV vaccine model that con-
siders both staged progression and transmission by AIDS patients (in addition to
other vaccine and HIV features), their study does not include the possible vaccine-
induced bypass of primary infection and reversal from AIDS to chronic stage of
infection. Furthermore, no global stability results were presented in Elbasha and
Gumel (2006).

This study complements and extends the aforementioned studies by formulat-
ing, and rigorously analyzing, a new deterministic model for HIV transmission dy-
namics in the presence of an imperfect vaccine. The model, which incorporates the
staged-progression nature of HIV disease and HIV transmission by individuals in
the AIDS stage, allows the assessment of an imperfect vaccine with various charac-
teristics. These characteristics include waning protective immunity and incomplete
vaccine-induced protection (efficacy less than 100%). Furthermore, since an HIV
vaccine is expected to reduce the transmissibility of vaccinated infected individu-
als (break-through infections) by reducing their viral load (see Smith and Blower,
2004 and the references therein), and noting the positive correlation between viral
load and infectiousness (see, for instance, Gray et al., 2003; Baggeley et al., 2005),
this model assumes that an imperfect HIV vaccine could offer a therapeutic effect
by converting vaccinees in the highly infectious AIDS stage into the less infectious
asymptomatic stage. Furthermore, it is assumed that the vaccine could also induce
a bypass of primary infection in break-through infections, where a proportion of
vaccinated infected individuals move straight to the asymptomatic (chronic) stage.
In summary, in addition to carrying out a detailed qualitative analysis of a rel-
atively comprehensive HIV transmission model, one of the main novelties of this
study is that it allows for the assessment of the impact of two new expected vaccine-
related characteristics, namely: therapeutic effect and vaccine-induced bypass of
primary infection.

The paper is organized as follows. The model is formulated in Section 2, and the
vaccination reproduction number is defined and calculated in Section 3. Qualita-
tive results for the global asymptotic stability of the disease-free equilibrium in the
mass action case are also reported in Section 3. In Section 4, the existence of the
endemic equilibrium of the mass action model, and its global asymptotic stability
are investigated for a reduced model. In this case, an expression for the thresh-
old fraction of individuals needed to be vaccinated to attain herd immunity in the
community is also given. Numerical simulation results are reported in Section 5.

2. Model formulation and basic properties

Following Hyman et al. (1999), the population being studied is assumed to be
a small, high-risk subset of a larger population. It is further assumed that the
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larger population is relatively free of HIV and provides a constant source of
uninfected individuals entering the high-risk population. The model monitors the
temporal dynamics of the high-risk population, which is sub-divided into the sub-
populations of unvaccinated (Su(t)) and vaccinated (Sv(t)) susceptible individuals,
HIV-infected individuals in primary (I1(t)), secondary (I2(t)) and AIDS (I3(t))
stages of infection. The total high-risk population is N(t) = Su(t) + Sv(t) + I1(t) +
I2(t) + I3(t). As noted by Hyman et al. (1999), such a formulation could be ap-
plied to a homosexual community of a major city (e.g. the San Francisco gay
community).

The unvaccinated susceptible sub-population (Su(t)) is increased by the daily
recruitment of uninfected sexually-active individuals from the larger embedding
population (at a rate �) and by waning of vaccine-induced immunity (at a per
capita rate ω). The sub-population is decreased by infection, which may be ac-
quired via horizontal transfer from infected individuals in any of the three infected
classes, by vaccination (at a per capita rate ξ) and by natural death (at a per capita
rate µ). The natural death parameter (µ) also includes the rate at which individ-
uals leave the high-risk population due to migration or other reasons not directly
related to HIV infection. Let C(N) be the average number of contacts sufficient
to transmit infection in unit time per infective individual in the population (of size
N) with C′(N) ≥ 0. Then, the number of new infections in unit time is C(N)SI/N,
where S and I represent the populations of susceptible and infected individuals,
respectively. It is convenient to define the transmission probability per contact,
β(N), as β(N) = C(N)/N with β(N) > 0 for N > 0. The term β(N)I1 is the force
of infection from the primary infection stage, that is the average number of con-
tacts with infected individuals in the primary stage per unit time. The parameter
0 ≤ η2 < 1 accounts for the assumed reduced infectivity of infected individuals in
the secondary infection stage (due to their low viral load). Similarly, a modification
parameter η3, with 0 ≤ η3 ≤ 1, is used alongside β to model the transmission rate
from individuals in the AIDS stage (it is assumed that individuals in the AIDS
stage make a similar number of effective contacts as individuals in the primary
infection stage). The term β(N)(I1 + η2 I2 + η3 I3) thus gives the total force of in-
fection, and the incidence (the number of new cases per unit time) from the un-
vaccinated susceptible individuals is given by the product of this with Su. The rate
of change of Su is

dSu

dt
= � + ωSv − β(N) (I1 + η2 I2 + η3 I3) Su − ξ Su − µSu. (1)

The sub-population of vaccinated susceptible individuals (Sv(t)) is generated by
the vaccination of unvaccinated susceptible individuals (at the per capita rate ξ)
and diminished by infection, vaccine waning (at the per capita rate ω) and natural
death (at the per capita rate µ). Here, 0 < ε < 1 accounts for the efficacy of the
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vaccine-induced protection against infection (for a vaccine that offers 100% pro-
tection, ε = 1; thus in reality ε < 1). Since a vaccine is assumed to lead to reduction
in viral load in break-through infections (Smith and Blower, 2004), it is further
assumed that a proportion (δ) of vaccinated infected individuals move straight
to the secondary infection stage (by bypassing the primary infection stage). It is
worth noting that although there is no conclusive biological evidence supporting
the vaccine-induced bypass of the primary infection stage (following HIV infec-
tion of vaccinated susceptible individuals), our model is robust enough to accom-
modate such; setting δ = 0 accounts for the case where such accelerated transition
does not occur. This case is discussed in Section 4.2. The above assumptions give:

dSv

dt
= ξ Su − β(N)(1 − ε) (I1 + η2 I2 + η3 I3) Sv − ωSv − µSv. (2)

The sub-population of individuals in the primary infection stage (I1(t)) is gen-
erated by the infection of susceptible individuals, and decreased by progression to
the secondary infection stage (at a per capita rate σ1) and natural death (at the per
capita rate µ). This gives

dI1

dt
= β(N) (I1 + η2 I2 + η3 I3) [Su + (1 − δ)(1 − ε)Sv] − σ1 I1 − µI1. (3)

The sub-population of individuals at the secondary infection stage (I2(t)) is gen-
erated by the infection of some vaccinated susceptible individuals (proportion δ),
the progression of individuals in the primary infection stage (at the per capita rate
σ1) and via vaccine-induced conversion of individuals in the AIDS stage to the
asymptomatic stage (at a per capita rate τ ). It is worth emphasizing that in the
absence of a cure for HIV, current anti-HIV therapeutic treatments are geared
towards reducing viral load to levels consistent with the secondary infection stage
(thereby elongating the lifespan of those treated individuals; see Baggeley et al.
(2005) for a general review of HIV models that incorporate anti-retroviral ther-
apy). We assume that a putative HIV vaccine could have such a characteristic. Ad-
ditionally, the secondary infection class is diminished by progression to the AIDS
stage (at a per capita rate σ2) and natural death (at the per capita rate µ). Thus,

dI2

dt
= β(N)δ(1 − ε) (I1 + η2 I2 + η3 I3) Sv + σ1 I1 + τ I3 − σ2 I2 − µI2. (4)

The sub-population of individuals in the AIDS stage of infection (I3(t)) is gen-
erated by the progression to AIDS of individuals in the secondary infection stage
(at the per capita rate σ2). This population is diminished by the vaccine-induced
therapeutic effect (at the per capita rate τ ), natural death (at the per capita rate µ)
and disease-induced death (at a per capita rate ψ), giving
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Fig. 1 Flowchart diagram for model (1)–(5).

dI3

dt
= σ2 I2 − τ I3 − µI3 − ψ I3. (5)

A schematic description of the model, given by Eqs. (1)–(5), is depicted in Fig. 1
where � = β(N)(I1 + η2 I2 + η3 I3) is the force of infection on unvaccinated suscep-
tible individuals.

By assumption, all parameters of the model are assumed non-negative with the
natural death rate positive (µ > 0). Since the model, consisting of Eqs. (1)–(5),
monitors human populations, it is further assumed that all the state variables are
non-negative at time t = 0 with I1 + η2 I2 + η3 I3 > 0. It then follows from the dif-
ferential equations that the variables are non-negative for all t ≥ 0. Furthermore,
adding Eqs. (1)–(5) gives dN/dt = � − µN − ψ I3. Consequently, in the absence
of HIV infection, N → �/µ as t → ∞ and �/µ is an upper bound of N(t) pro-
vided that N(0) ≤ �/µ. Also, if N(0) > �/µ, then N will decrease to this level.
Thus, the following feasible region:

D = {(Su, Sv, I1, I2, I3) ∈ R
5
+ : Su + Sv + I1 + I2 + I3 ≤ �/µ},

is positively invariant. It is therefore sufficient to consider solutions in D. In this re-
gion, the usual existence, uniqueness and continuation results hold for the system.
In general, the model cannot be reduced to a lower dimensional model without
making additional assumptions on the parameters.

3. Stability analysis of disease-free equilibrium

3.1. Local stability

The model has a disease-free equilibrium (DFE), obtained by setting the right-
hand sides of (1)–(5) to zero, given by

E0 : (S∗
u, S∗

v , I∗
1 , I∗

2 , I∗
3 ) =

(
(ω + µ)�

µ(µ + ξ + ω)
,

�ξ

µ(µ + ξ + ω)
, 0, 0, 0

)
. (6)
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Following van den Driessche and Watmough (2002), the linear stability of E0 is
obtained using the next generation matrix for the system (1)–(5) as follows. Using
the notation in van den Driessche and Watmough (2002) and the variables I1, I2

and I3, the non-negative matrix F and the non-singular M-matrix V, for the new
infection terms and the remaining transfer terms respectively, are given by

F =

⎛
⎜⎜⎝

β(N∗)S∗ β(N∗)η2S∗ β(N∗)η3S∗

β(N∗)δ(1 − ε)S∗
v β(N∗)δ(1 − ε)η2S∗

v β(N∗)δ(1 − ε)η3S∗
v

0 0 0

⎞
⎟⎟⎠,

V =

⎛
⎜⎝

σ1 + µ 0 0

−σ1 σ2 + µ −τ

0 −σ2 τ + µ + ψ

⎞
⎟⎠,

with N∗ = S∗
u + S∗

v + I∗
1 + I∗

2 + I∗
3 = �/µ and S∗ = S∗

u + (1 − δ)(1 − ε)S∗
v . The

vaccination reproduction number, denoted by Rvac, is then given by Rvac =
ρ(FV−1) where ρ denotes the spectral radius (dominant eigenvalue). It follows
that

Rvac = Q1

[
1

σ1 + µ
+ η2σ1(τ + µ + ψ)

detV
+ η3σ1σ2

detV

]

+ Q2

detV
[η2(τ + µ + ψ) + η3σ2] (σ1 + µ), (7)

where detV = (σ1 + µ) [(µ + ψ)(σ2 + µ) + µτ ] and the quantities Q1 and Q2 are
defined by

Q1 = β(N∗)S∗ = β(N∗) (S∗
u + (1 − δ)(1 − ε)S∗

v ) and Q2 = β(N∗)δ(1 − ε)S∗
v .

Thus, using Theorem 2 of van den Driessche and Watmough (2002), the following
result is obtained.

Lemma 1. The disease-free equilibrium E0 of (1)–(5), given by (6), is locally-
asymptotically stable if Rvac < 1 and unstable if Rvac > 1.

In the absence of vaccination (so that parameters ξ = τ = 0, and hence S∗
v = 0),

the reproduction number Rvac reduces to

R0 = �β(N∗)
µ

[
1

σ1 + µ
+ η2σ1

(σ1 + µ)(σ2 + µ)
+ η3σ1σ2

(σ1 + µ)(µ + ψ)(σ2 + µ)

]
, (8)

where R0 is the basic reproduction number (see Anderson and May, 1991; Brauer
and Castillo-Chavez, 2000; Hethcote, 2000; van den Driessche and Watmough,
2002) associated with the model (1)–(5) in the absence of any anti-HIV control
measure.



2112 Bulletin of Mathematical Biology (2006) 68: 2105–2128

3.2. Interpretation of vaccination reproduction number

Let Tj be the average duration that an individual spends in class Ij per visit to this
class. Then from Eqs. (3)–(5), it follows that T1 = 1/(σ1 + µ), T2 = 1/(σ2 + µ) and
T3 = 1/(τ + µ + ψ).

Associated with an infected individual is a random walk that describes the in-
dividual’s passage through the infective stages. This walk continues until the indi-
vidual leaves the active population, and may begin in one of two ways (see Fig. 1).
Either the individual, upon infection, enters I1 and, assuming survival, proceeds
to I2, or the individual may bypass I1 and enter directly into I2 (if vaccinated). In
either case, the random walk continues with the individual moving back and forth
between I2 and I3 until leaving the active population.

Near the disease-free equilibrium, the fraction of new infections that enter into
I1 is

f1 = S∗

S∗
u + (1 − ε)S∗

v
,

with the remaining fraction

f2 = δ(1 − ε)S∗
v

S∗
u + (1 − ε)S∗

v
,

entering directly into I2. Of those entering into I1, a fraction

g12 = σ1

σ1 + µ
,

survive, proceeding to I2. Thus, the fraction of infected individuals that pass
through I1 is f1 and the fraction that pass through I2 is f1g12 + f2.

For an individual in I2, the probability of proceeding to I3 and then returning to
I2 is

g232 =
(

σ2

σ2 + µ

) (
τ

τ + µ + ψ

)
.

Thus, given that an individual has reached I2 initially, the expected number of visits
to I2 is

v2 = 1 + g232 + g2
232 + · · ·

= 1
1 − g232

= (σ2 + µ)(τ + µ + ψ)
(σ2 + µ)(τ + µ + ψ) − σ2τ

.
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Additionally, since a fraction

g23 = σ2

σ2 + µ
,

of individuals in I2 proceed to I3, the expected number v3 of visits to I3, given that
an individual has reached I2 is

v3 = g23 v2 = σ2(τ + µ + ψ)
(σ2 + µ)(τ + µ + ψ) − σ2τ

.

Let Ttotal
j be the expected total time that a newly infected individual spends in

Ij , j = 1, 2, 3. Then,

Ttotal
1 = f1 T1

= S∗

S∗
u + (1 − ε)S∗

v

1
σ1 + µ

,

Ttotal
2 = ( f1g12 + f2) v2 T2

=

((
σ1

σ1 + µ

)
S∗ + δ(1 − ε)S∗

v

)
(τ + µ + ψ)

(S∗
u + (1 − ε)S∗

v )((σ2 + µ)(τ + µ + ψ) − σ2τ )

= (σ1S∗ + δ(1 − ε)S∗
v (σ1 + µ))

(
τ + µ + ψ

)
(
S∗

u + (1 − ε)S∗
v

)
det V

,

and

Ttotal
3 = ( f1g12 + f2) v3 T3

=

((
σ1

σ1 + µ

)
S∗ + δ(1 − ε)S∗

v

)
σ2

(S∗
u + (1 − ε)S∗

v )((σ2 + µ)(τ + µ + ψ) − σ2τ )

= σ1σ2S∗ + δ(1 − ε)S∗
v (σ1 + µ)σ2

(S∗
u + (1 − ε)S∗

v ) det V
.

Finally, the rate at which a single infected individual in Ij produces new in-
fections in a wholly susceptible population (near the disease-free equilibrium), is
β(N∗)η j (S∗

u + (1 − ε)S∗
v ) (where η1 = 1). Thus, new infections occur at a rate

β(N∗)(S∗
u + (1 − ε)S∗

v )(Ttotal
1 + η2Ttotal

2 + η3Ttotal
3 )

= Q1
1

σ1 + µ
+ Q1η2

σ1(τ + µ + ψ)
det V

+ Q1η3
σ1σ2

det V

+ Q2η2
(σ1 + µ)(τ + µ + ψ)

det V
+ Q2η3

(σ1 + µ)σ2

det V
= Rvac.
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Hence, Rvac can be interpreted as the average total number of new infections
caused by a single infected individual, introduced into a susceptible population
in which some individuals have been vaccinated.

3.3. Global stability for mass action model

In D, since N ≤ �/µ, it follows from (1) that

dSu

dt
≤ � + ωSv − (ξ + µ)Su,

≤ � + ω(�/µ − Su − I1 − I2 − I3) − (ξ + µ)Su,

≤ (ω + µ)�
µ

− (µ + ξ + ω)Su = (µ + ξ + ω)(S∗
u − Su).

Thus, if Su > S∗
u, then dSu/dt < 0; hence Su ≤ S∗

u provided that Su(0) ≤ S∗
u. Sim-

ilarly, from (2) and using the above bound, dSv/dt ≤ −(ω + µ)Sv + ξ S∗
u = (ω +

µ)(S∗
v − Sv) so that if Sv > S∗

v , then dSv/dt < 0; hence Sv ≤ S∗
v provided that

Sv(0) ≤ S∗
v . It follows from these bounds that the region

D∗ = {(Su, Sv, I1, I2, I3) ∈ D : Su ≤ S∗
u, Sv ≤ S∗

v },

is also positively invariant and attracts all solutions in D. In fact, it can be shown
that each solution in D either enters D∗ in finite time or limits to E0.

From now on, we consider a special case of (1)–(5) with C(N) = βN, thus
β(N) = β, a positive constant, which is the mass action coefficient. This gives the
following model (the mass action model):

dSu

dt
= � + ωSv − β (I1 + η2 I2 + η3 I3) Su − ξ Su − µSu,

dSv

dt
= ξ Su − β(1 − ε) (I1 + η2 I2 + η3 I3) Sv − ωSv − µSv,

dI1

dt
= β (I1 + η2 I2 + η3 I3) [Su + (1 − δ)(1 − ε)Sv] − σ1 I1 − µI1, (9)

dI2

dt
= βδ(1 − ε) (I1 + η2 I2 + η3 I3) Sv + σ1 I1 + τ I3 − σ2 I2 − µI2,

dI3

dt
= σ2 I2 − τ I3 − ψ I3 − µI3.

Although standard incidence, where β(N) is proportional to 1/N, is often pre-
ferred for sexually-transmitted diseases (Hethcote, 2000), the use of mass action
seems plausible since the total size of the target group used in the numerical sim-
ulations of this paper (the San Francisco gay community) is small (64,000 people)
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and stays relatively constant during the simulations period (thereby justifying the
use of mass action incidence).

The above mass action model has a disease-free equilibrium, given by E0 in (6).
Furthermore, the following global stability result holds, showing that, for the mass
action model, the disease dies out for R < 1, where

R = Q1

[
1

σ1 + µ
+ η2σ1(τ + µ + ψ)

detV
+ η3σ1σ2

detV

]

+ Q2

detV
[η2(τ + µ + ψ) + η3σ2] (σ1 + µ). (10)

In (10), Q1 = β (S∗
u + (1 − δ)(1 − ε)S∗

v ), Q2 = βδ(1 − ε)S∗
v and all other variables

and quantities are as defined before. We give a proof that directly uses a compar-
ison theorem; alternatively the method of the Theorem in Section 3 of Castillo-
Chavez et al. (2002) can be used.

Theorem 1. The disease-free equilibrium of the mass action model (9), given by
E0 in (6), is globally asymptotically stable if R < 1.

Proof. All solutions starting in D∗ remain in D∗, and all other solutions approach
D∗. Thus, it may be assumed that

0 ≤ Su(t) ≤ S∗
u and 0 ≤ Sv(t) ≤ S∗

v for all t ≥ 0. (11)

Consequently, since β(N∗) = β, the last three equations of (9) can be expressed in
the following differential inequality

⎛
⎜⎜⎜⎜⎜⎜⎝

dI1(t)
dt

dI2(t)
dt

dI3(t)
dt

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ (F − V)

⎛
⎜⎜⎝

I1(t)

I2(t)

I3(t)

⎞
⎟⎟⎠. (12)

Consider the linear ODE system given by equality in (12). If R < 1, then
ρ(FV−1) < 1 (see Section 3.1), which is equivalent to F − V having all its eigen-
values in the left-half plane (van den Driessche and Watmough, 2002). It follows
that the linear system given by equality in (12) is stable whenever R < 1, and
hence (I1(t), I2(t), I3(t)) → (0, 0, 0) as t → ∞ for this linear ODE system. Con-
sequently, after using a standard comparison theorem (Lakshmikantham et al.,
1989, p. 31; Smith and Waltman, 1995, Theorem B.1; Appendix B), the variables
(I1(t), I2(t), I3(t)) → (0, 0, 0) as well for the nonlinear system given by the last
three equations of (9). Returning now to the first two equations of (9) and sub-
stituting I1 = I2 = I3 = 0 in these equations gives a linear system with Su(t) → S∗

u
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and Sv(t) → S∗
v as t → ∞. Thus, (Su(t), Sv(t), I1(t), I2(t), I3(t)) → (S∗

u, S∗
v , 0, 0, 0)

as t → ∞ for R < 1, so that E0 is globally asymptotically stable if R < 1.

The public health implication of the above result is that HIV will be elimi-
nated from the community if the anti-HIV measures adopted can bring R < 1.
It is worth noting that the result of Theorem 1 holds for any non-decreasing β(N)
(i.e., β(N) ≤ β(N∗) in D∗), but the proof technique does not work for the standard
incidence function since in that case, the inequality (12) no longer holds. Thus, un-
like the vaccination models in Kribs-Zaleta and Velasco-Hernández (2000), Arino
et al. (2003), Corbett et al. (2003), and Elbasha and Gumel (2006), the mass action
model (9) does not undergo the phenomenon of backward bifurcation where the
disease-free equilibrium co-exists with a stable endemic equilibrium when R < 1.
The absence of backward bifurcation in (12) may be attributed to the mass action
assumption that has been made.

4. Existence and stability of endemic equilibrium

4.1. Existence of endemic equilibrium for mass action model

Positive endemic equilibria (steady states with I1, I2, I3 > 0) of the mass action
model cannot easily be expressed cleanly in closed form. Here, we provide a tech-
nique for determining such solution(s). Define

G∗∗ = β (I∗∗
1 + η2 I∗∗

2 + η3 I∗∗
3 ), (13)

as the force of infection at an endemic equilibrium (the average number of contacts
with infectives per unit time, assuming that the infectives are at an endemic equi-
librium). Then, the equations in (9) at endemic equilibrium can be simplified to:

S∗∗
u = � [(1 − ε)G∗∗ + µ + ω]

K0
, S∗∗

v = ξ�

K0
,

I∗∗
1 = G∗∗� [(1 − ε)G∗∗ + µ + ω + (1 − δ)(1 − ε)ξ ]

K0(σ1 + µ)
,

(14)
I∗∗
2 = (τ + µ + ψ)

[
δ(1 − ε)G∗∗S∗∗

v + σ1 I∗∗
1

]
(σ2 + µ)(ψ + µ) + µτ

,

I∗∗
3 = σ2

[
δ(1 − ε)G∗∗S∗∗

v + σ1 I∗∗
1

]
(σ2 + µ)(ψ + µ) + µτ

,

where K0 = [(1 − ε)G∗∗ + µ](G∗∗ + ξ + µ) + (G∗∗ + µ)ω. Using (14) in (13) and
simplifying gives

G∗∗ = β�G∗∗

K0 detV

{
K1 K2 + δ(1 − ε)(σ1 + µ)K3ξ

σ1

}
, (15)
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where

K1 = (σ2 + µ)(µ + ψ) + µτ + K3,

K2 = (1 − ε)G∗∗ + µ + ω + (1 − δ)(1 − ε)ξ,

K3 = σ1η2(τ + µ + ψ) + σ1σ2η3.

The positive (endemic) equilibria of (9) can then be obtained by solving for G∗∗

in (15) and substituting the result into (14). Clearly, G∗∗ = 0 is a fixed point of
(15), which corresponds to the disease-free equilibrium E0. For G∗∗ 	= 0, (15) can
be simplified to:

a0(G∗∗)2 + a1G∗∗ + a2 = 0, (16)

where

a0 = 1 − ε,

a1 =
[
ξ + µ − β�

(
1

σ1 + µ
+ K3

detV

)]
(1 − ε) + µ + ω, (17)

a2 = µ(µ + ξ + ω)(1 − R).

Since all model parameters are assumed nonnegative with µ > 0 and 0 < ε < 1,
it follows from (17) that a0 > 0 and a2 < 0 for R > 1. Thus, the quadratic equa-
tion (16) has a unique positive root when R > 1. Alternatively, noting that R < 1
implies βS∗

u/detV
(
detV/σ1 + µ + K3

)
< 1, it follows (by substituting for S∗

u) that
ξ + µ − β�

(
1/σ1 + µ + K3/detV

)
> 0, so that the coefficient a1 > 0. Thus, for

R < 1, all three coefficients of the quadratic (16) are positive, so that the quadratic
has no positive root when R < 1. Furthermore, for R = 1, it follows that a2 = 0
and a1, a0 > 0. Consequently, the mass action model (9) cannot exhibit back-
ward bifurcation at R = 1 (this is in line with the global stability result of E0 in
Theorem 1). Thus, we have established the following result.

Lemma 2. The mass action model (9) has a unique positive (endemic) equilibrium
if and only if R > 1.

4.2. Stability of endemic equilibrium of reduced mass action model

To simplify the calculations associated with the unique endemic equilibrium of the
mass action model, we consider a special case of (9) with no bypass of primary
infection (δ = 0), no HIV transmission by AIDS patients (η3 = 0) and the vaccine
does not offer a therapeutic effect (τ = 0). This gives the following (reduced mass
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action model):

dSu

dt
= � + ωSv − β (I1 + η2 I2) Su − ξ Su − µSu,

dSv

dt
= ξ Su − β(1 − ε) (I1 + η2 I2) Sv − ωSv − µSv,

dI1

dt
= β (I1 + η2 I2) [Su + (1 − ε)Sv] − σ1 I1 − µI1, (18)

dI2

dt
= σ1 I1 − σ2 I2 − µI2,

dI3

dt
= σ2 I2 − ψ I3 − µI3.

Since AIDS patients do not interact with the rest of the population, I3 can be
determined from the last equation in (18), and this equation decouples. For this
reduced model, the associated vaccination reproduction number (obtained from
R|δ=η3=τ=0) is

R(r) = β�(σ2 + µ + η2σ1) [ω + µ + (1 − ε)ξ ]
µ(µ + ξ + ω)(σ1 + µ)(σ2 + µ)

.

Define D0 = {
(Su, Sv, I1, I2, I3) ∈ D∗ : I1 = I2 = I3 = 0

}
(which is the stable mani-

fold of the DFE).

Theorem 2. For R(r) > 1, the unique endemic equilibrium of the reduced mass
action system (18) is globally-asymptotically stable in D∗ \ D0 if η2 = 0 and either

ω < µ and σ1 < µ + ξ, (19)
or

σ1 < µ + ω. (20)

Proof. For R(r) > 1, the omega limit set of each solution of (18) that inter-
sects D∗ \ D0 is contained in the interior of D∗. Combining this with the fact that
E∗∗ = (S∗∗

u , S∗∗
v , I∗∗

1 , I∗∗
2 , I∗∗

3 ) is the only equilibrium in the interior of D∗, it is clear
that any further conditions which imply that solutions limit to an equilibrium, im-
ply that E∗∗ is globally asymptotically stable in D∗ \ D0. We now demonstrate that,
for η2 = 0, (S∗∗

u , S∗∗
v , I∗∗

1 ) is a globally asymptotically stable equilibrium for the
(Su, Sv, I1) sub-system of (18). Then it follows that I2 and I3 approach I∗∗

2 and I∗∗
3 ,

respectively.
For η2 = 0, the (Su, Sv, I1) sub-system of (18) is equivalent to the (S, V, I)

sub-system of (2.2) of Arino et al. (2003) where the quantities (S, V,

I, R, φ, θ, d, α, ν, σ, γ, β) of Arino et al. (2003) are set equal to (Su, Sv, I1, I2, ξ,

ω, µ, 0, 0, 1 − ε, σ1, β�/µ) to agree with the quantities used here. Thus, Remark
5.7 of Arino et al. (2003) implies that E∗∗ is globally asymptotically stable if (19)
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holds. Note that other conditions are given in Arino et al. (2003), but for the model
studied here, those conditions are more restrictive than those given here.

The proof in Arino et al. (2003) is based on the Li-Muldowney techniques (Li
and Muldowney, 1995, 1996). The key step in the proof is to demonstrate the uni-

form asymptotic stability of systems z′ = Qz where Q = P′ P−1 + P ∂ f
∂x

[2]
P−1. In

this expression, P(x) is a transformation matrix for which ||P−1|| is bounded, P′

is the matrix constructed by replacing each entry of P with its time-derivative and
∂ f
∂x

[2]
is the second additive compound of the Jacobian matrix ∂ f

∂x . Here, the unifor-
mity is over initial conditions for x = (Su, Sv, I1)T . In demonstrating the uniform
asymptotic stability, a norm is used as a Lyapunov function.

Using a similar calculation, with transformation matrix P = diag(1/I1,
1/I1, 1/I1) and norm

‖z‖ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max{|z1|, |z2| + |z3|} if sgn (z1) = sgn (z2) = sgn (z3)

max{|z2|, |z1| + |z3|} if sgn (z1) = sgn (z2) = −sgn (z3)

max{|z1|, |z2|, |z3|} if sgn (z1) = −sgn (z2) = sgn (z3)

max{|z1| + |z3|, |z2| + |z3|} if − sgn (z1) = sgn (z2) = sgn (z3),

we obtain the result that E∗∗ is globally asymptotically stable if (20) holds. This
calculation involves an extensive case analysis, based on the expressions for ‖z‖.
We omit the details and refer the reader to Section 5 of Arino et al. (2003), where a
similar calculation is performed, and to McCluskey (2005), where the construction
of such norms is described in detail.

The proof of Theorem 2 is, in fact, sufficient to show that solutions approach
the endemic equilibrium with exponential speed. Thus, the result is robust under
small perturbations. This means that any parameter set for which the necessary
conditions are satisfied (implying that the result holds) is contained in an open
neighbourhood of parameter values for which the result holds. In particular, this
means that if inequality (19) or inequality (20) is satisfied, and η2 is positive, but
not too large, then the result still holds; i.e. for R(r) > 1, there is a globally asymp-
totically stable endemic equilibrium. Similarly, if δ, η2, η3, and τ are positive, but
not too large, then the corresponding result holds for system (9) with R > 1, as
stated below.

Corollary. Suppose R > 1 and that (19) and (20) are satisfied. If δ, η2, η3, and τ

are sufficiently small, then the unique endemic equilibrium of system (9) is globally
asymptotically stable in D∗ \ D0.

Extensive numerical simulations suggest that Theorem 2 and the subsequent
Corollary hold even when inequalities (19) and (20) are violated. Thus, we offer
the following conjecture.
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Conjecture. The unique endemic equilibrium of the mass action model (9) (re-
duced mass action model (18)) is globally asymptotically stable in D∗ \ D0 whenever
R > 1 (R(r) > 1).

4.3. Threshold fraction of vaccinated population for the reduced
mass action model

Since the mass action model (9) has a globally-stable DFE for R < 1, it follows that
the reduced model (18) has a globally-stable DFE for R(r) < 1. It is instructive to
determine elimination conditions in terms of the fraction (p) of the population that
are vaccinated at equilibrium, which is given by p = S∗

v/N∗ = ξ/(µ + ξ + ω). This
enables the determination of a critical fraction that must be vaccinated in order
to achieve herd immunity, where the unvaccinated susceptible members of the
community receive indirect protection due to high levels of vaccination amongst
the remaining segments of the population (Hethcote, 1989; Anderson and May,
1991; McLean and Blower, 1993). Define R(r)

0 = R(r)|ξ=0,ω=0 = R0|β(N)=β,η3=0, the
basic reproduction number associated with the reduced mass action model (18).
Then R(r) = R(r)

0 (1 − εp). Setting R(r) = 1, and solving for the critical vaccinated
fraction p = pc gives

pc = 1
ε

(
1 − 1

R(r)
0

)
. (21)

Threshold conditions similar to pc have been reported by a number of authors
(see, for instance, Hethcote, 1989; McLean and Blower, 1993; Blower and McLean,
1994). From (21), pc is positive if R(r)

0 > 1, marking the case in which vaccination
has a positive impact on disease control by decreasing HIV prevalence. On the
other hand, if R(r)

0 < 1, then the disease dies out without vaccination (since the
disease-free equilibrium of the vaccination-free model is globally asymptotically
stable if R(r)

0 < 1). For the reduced mass action model (18) with R(r)
0 > 1, HIV

can be eliminated from the community if the fraction of individuals vaccinated at
steady-state exceeds the threshold pc (i.e., herd immunity is achieved if p > pc).

The quantity 1 − 1/R(r)
0 in (21) is the minimum vaccine coverage level needed

to eliminate a disease for a vaccine that offers 100% protection against infection
(i.e., ε = 1). It is clear from (21) that the lower the efficacy of the vaccine (lower
ε), the higher the fraction of the population that needs to be vaccinated to attain
herd immunity. Using the lower bound estimate of the basic reproduction num-
ber for HIV in San Francisco equal to two (Blower and McLean, 1994) (so that
R(r)

0 = 2), it follows that, for an HIV vaccine that offers 80% efficacy, a threshold
vaccinated fraction of pc = 0.625 must be attained in order to eliminate HIV from
the community. Similarly, an HIV vaccine with lower efficacy, such as ε = 0.5,
would necessitate vaccinating a much larger fraction of the population to achieve
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herd immunity (in this case, pc = 1, requiring the vaccination of the entire popu-
lation).

5. Numerical simulations and discussions

To illustrate the various theoretical results contained in this paper, the mass ac-
tion model (9) is simulated using the parameter values/ranges in Table 1. The
parameter values are estimated as follows. The recruitment rate (�) models the
inflow of uninfected people into the high-risk sexually-active community. Follow-
ing Maclean and Blower (1993), this parameter is estimated based on the HIV
transmission data in the San Francisco gay community. Here, the mean duration
of sexual activity is 32 years (so that µ = 1/32 per year) and the approximate size
of the homosexual community is 64,000. Thus, � ≈ 2000 per year. Furthermore,
for this population, the expected lifespan after diagnosis with AIDS is estimated
to be 20 months (so that ψ = 0.6 per year); Hyman et al. estimated the mean du-
ration of the AIDS stage to be 3 years (so that ψ = 0.333) (Hyman et al., 1999).
For this reason, we take the average value, namely ψ = 0.47. McLean and Blower
estimated the contact rate to be βc = 0.62 (in their notation, where c represents
the average number of new partners per unit time). Thus, in our notation, the mass
action coefficient is estimated as β = 0.62 × µ/� = 9.61 × 10−6.

Table 1 Description and estimation of parameters for mass action model.

Parameter Description Estimated value/range

� Recruitment rate of susceptible people 2000 (year)−1

into the community
β Mass action transmission coefficient 9.61 × 10−6

η2 Modification factor of transmission rate for η2 ∈ [0, 1)
asymptomatically-infected individuals

η3 Modification factor of transmission rate η3 ∈ [0, 1]
for AIDS individuals

ξ Per capita vaccination rate variable (year)−1

ω Per capita waning rate of vaccine 1/20 (year)−1

1/µ Average duration of sexual activity 32 years
δ Fraction of infected individuals that bypass δ ∈ [0, 1)

primary infection
ε Vaccine efficacy ε ∈ (0, 1)
τ Per capita rate of vaccine-induced reversal from τ ≥ 0 (year)−1

AIDS to asymptomatic stage
σ1 Per capita rate of progression from primary 13 (year)−1

to asymptomatic stage
σ2 Per capita rate of progression from asymptomatic 0.0885 (year)−1

to AIDS stage
ψ Per capita disease-induced mortality rate 0.47 (year)−1

Note. Sources of estimates: McLean and Blower (1993) and Hyman et al. (1999).
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Table 2 Effect of R on number of HIV cases at steady-state using τ = 0.

ε ξ δ R I∗∗
1 + I∗∗

2 + I∗∗
3

0.1 0.3 0.3 2.034 10100
0.3 0.3 0.5 1.683 8183
0.6 0.4 0.5 1.105 1971
0.72 0.25 0.6 1.007 152
0.73 0.25 0.6 0.991 0

Note. The Table is generated using various values of ξ, δ, ε with η2 = 0.3, η3 = 0.7 and all other
parameters as in Table 1.

It is assumed that the duration of vaccine effect is 20 years (so that ω = 0.05
per year). Following Hyman et al. (1999), it is assumed that the duration of the
primary infection stage is 4 weeks (i.e., σ1 = 13 per year) and 11 years for the mean
duration in the asymptomatic stage (σ2 = 0.0885). Furthermore, the modification
parameters η2 and η3 are set at η2 = 0.3 and η3 = 0.7, respectively. The parameters
0 < ε < 1, ξ > 0, τ > 0 and 0 ≤ δ ≤ 1 are variable.

The effect of the numerical size of the vaccination reproduction number for the
mass action model (R) on the total number of HIV cases is monitored firstly (by
obtaining G∗∗ from (16) and (17) and substituting in (14)) using combinations of
the parameters in Table 1 resulting in various R values. Two scenarios are tabu-
lated. One for the case τ = 0 (i.e., for a vaccine that offers no therapeutic effect)
(Table 2) and the other for τ > 0 (Table 3). These results show that the total num-
ber of HIV infections increases with increasing R. Furthermore, in line with the
aforementioned Corollary and Conjecture, these tables show HIV persistence for
values of R > 1 and elimination for values of R < 1. It is instructive to note that
higher total number of infections are recorded for the case when τ > 0 in compar-
ison with using a vaccine with no therapeutic effect (τ = 0).

Figures 2A and 2B depict the combined effect of vaccine efficacy (ε) and fraction
of individuals vaccinated at steady-state (given by S∗

v/N∗ = ξ/(µ + ξ + ω)) on the
vaccination reproduction number (R) for τ = 0 and τ = 0.5, respectively. These
contour plots show a marked decrease in R with increasing vaccine efficacy and
fractional vaccine coverage rate. Significantly high efficacy and fractional coverage
rate are needed to eliminate the disease (achieve R < 1). In particular, even if

Table 3 Effect of R on number of HIV cases at steady-state using τ > 0.

τ R I∗∗
1 + I∗∗

2 + I∗∗
3

100 3.340 45615
20 3.195 42584
10 3.039 39353
1 1.986 17917
0.5 1.698 12289

Note. The Table is generated using ε = 0.5, ξ = 0.5, δ = 0.2, η2 = 0.3, η3 = 0.7 and all other
parameters as in Table 1.
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Fig. 2 Contour plots of R as a function of vaccine efficacy (ε) and fraction of individuals vacci-
nated at steady-state (ξ/(µ + ξ + ω)). Parameters are as in Table 1, with τ = 0, δ = 0.3, η2 = 0.3
and η3 = 0.7 (A) and with τ = 0.5, δ = 0.3, η2 = 0.3 and η3 = 0.7 (B).
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80% of individuals are vaccinated at steady state (a realistic target), an efficacy
level of at least 70% (for the case τ = 0) or 80% (for the case τ = 0.5) would be
needed to effectively control HIV spread. It is worth noting that the increase in
threshold efficacy needed for elimination is a consequence of using a vaccine with
therapeutic benefit (τ > 0).

One essential aspect of this study is that it enables the assessment of the hy-
pothesis that an HIV vaccine could cause some infected vaccinated individuals to
bypass primary infection (δ > 0). We investigate the effect of this potential phe-
nomenon. It is easy to see that

∂R
∂δ

= − β�(1 − ε)ξ
µ(µ + ξ + ω)detV

{µ(µ + ψ + τ )(1 − η2) + σ2[µ(1 − η3) + ψ]} < 0,

by the assumptions on the efficacy (ε) and modification parameters (η2 and η3).
Thus, R is a decreasing function of δ. Since it is shown in Tables 2 and 3 that
reduction in R corresponds to a decrease in the number of HIV cases, it follows
that a future HIV vaccine that can induce a bypass of primary infection amongst
vaccinated infected individuals would decrease HIV prevalence.

The effect of waning rate of the vaccine (ω) can be assessed by differentiating
the expression for R with respect to ω. This gives

∂R
∂ω

= β�ξ

µ(µ + ξ + ω)2detV
(A1 + A2 − A3),

with

A1 = [(µ + ψ)(σ2 + µ) + µτ ][ε + δ(1 − ε)],

A2 = [η2(τ + µ + ψ) + η3σ2][δµ + σ1]ε,

A3 = [η2(τ + µ + ψ) + η3σ2]δµ.

Noting that A3 ≤ A1, it follows that R increases with increasing ω. Thus, as ex-
pected, an increase in the waning rate of vaccine would result in an increase in
HIV prevalence.

The vaccine-induced therapeutic effect of converting individuals in the AIDS
stage into the asymptomatic (secondary) stage is investigated. It can be shown that

∂R
∂τ

= β�(σ1 + µ)

µ(µ + ξ + ω)(detV)2 {A4[η2(µ + ψ) − η3µ]σ2},

with A4 = σ1(ω + µ) + ξ(1 − ε)(σ1 + δµ). Since 0 < ε < 1, it follows that R is an
increasing function of τ provided η3 < η2(µ + ψ)/µ. Figure 3 shows contours of
R as a function of vaccine efficacy (ε) and vaccine-induced therapeutic effect (τ ),
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Fig. 3 Contour plot of R as a function of vaccine efficacy (ε) and vaccine-induced therapeutic
effect (τ ). Parameters are as in Table 1 with ξ = 0.05, η2 = 0.3, η3 = 0.7 and δ = 0.3.

from which it is clear that a vaccine that induces reversal from AIDS stage to
the asymptomatic stage (τ > 0) must be highly efficacious to result in effective
control of the epidemic in a population. Note that, in this simulation, η3 = 0.7 <

η2(µ + ψ)/µ = 4.812 (satisfying the above inequality). Thus, although a vaccine
with therapeutic effect alleviates the high morbidity and mortality suffered by vac-
cinated individuals in the AIDS stage (by reverting them to the asymptomatic
stage), such a vaccine also results in an increase in HIV prevalence owing to its
impact in extending the lifespan of infected individuals at the AIDS stage (by
reverting them to the asymptomatic stage). Thus, while a therapeutic vaccine is
certainly beneficial to successfully vaccinated infected individuals, its cumulative
community-wide impact could be detrimental by resulting in an increase in HIV
prevalence.

The reduced mass action model (18) was simulated using the aforementioned
parameter values with η2 = η3 = δ = τ = 0, ξ = 0.25, ε = 0.2 and different values
of β so that R(r) > 1. It should be noted that with this choice of parameter values,
the inequalities in (19) and (20) are violated. The results obtained, tabulated in
Table 4, show the sizes of the infected classes at the unique endemic equilibrium
point, to which the simulations did converge, supporting the Conjecture.
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Table 4 Effect of β on R(r) and prevalence using reduced mass action model.

β R(r) I∗∗
1 I∗∗

2 I∗∗
3

0.00961 40.07 150 16296 2877
0.006 25.02 148 16068 2837
0.004 16.68 145 15756 2782
0.002 8.34 136 14795 2612
0.001 4.17 118 12817 2263
0.0007 2.92 102 11099 1960
0.0003 1.25 31 3395 599
0.00025 1.04 6 690 122

Note. Parameters are as in Table 1 except: η2 = η3 = δ = τ = 0, ε = 0.2, ξ = 0.25 and various
values of β.

6. Conclusions

A five-dimensional, deterministic, staged-progression model is developed and used
to assess the potential impact of an imperfect HIV vaccine in curtailing the spread
of HIV in a homosexual community. The model is rigorously analyzed to investi-
gate the existence and stability (including global stability) of the associated equi-
libria. Numerical simulations were carried out using reasonable sets of parameter
values to assess the impact of various vaccine features and characteristics on dis-
ease control. The main findings of the study are summarized below:

(i) The model with mass action incidence has a globally-asymptotically stable
disease-free equilibrium whenever the vaccinated reproduction number is less
than unity. When this number is greater than one, there is a unique endemic
equilibrium, which is shown to be globally asymptotically-stable for a reduced
version of the model (under stated parameter restrictions). Unlike other vac-
cination models for HIV, this model does not undergo the phenomenon of
backward bifurcation.

(ii) An imperfect HIV vaccine can eliminate HIV from a community provided
it can reduce the vaccination reproduction number to values less than unity.
Higher values of vaccine efficacy and coverage rate are needed to achieve
elimination.

(iii) A vaccine that induces a bypass of primary infection amongst vaccinated indi-
viduals would decrease HIV prevalence.

(iv) An increase in waning rate of vaccine-induced protection results in an increase
of the vaccinated reproduction number, and, hence, an increase in HIV preva-
lence.

(v) Whilst the use of vaccine with therapeutic benefits is beneficial to successfully
vaccinated individuals, its cumulative community-wide effect may be detri-
mental since it can result in higher HIV prevalence.
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Overall, this study shows that a future imperfect HIV vaccine, with certain de-
sirable characteristics, can significantly help in halting the spread of HIV in a given
community, such as the San Francisco gay community.
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