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Abstract This paper presents a number of deterministic models for theoretically
assessing the potential impact of an imperfect prophylactic HIV-1 vaccine that
has five biological modes of action, namely “take,” “degree,” “duration,” “in-
fectiousness,” and “progression,” and can lead to increased risky behavior. The
models, which are of the form of systems of nonlinear differential equations, are
constructed via a progressive refinement of a basic model to incorporate more
realistic features of HIV pathogenesis and epidemiology such as staged progres-
sion, differential infectivity, and HIV transmission by AIDS patients. The mod-
els are analyzed to gain insights into the qualitative features of the associated
equilibria. This allows the determination of important epidemiological thresholds
such as the basic reproduction numbers and a measure for vaccine impact or ef-
ficacy. The key findings of the study include the following (i) if the vaccinated
reproduction number is greater than unity, each of the models considered has a
locally unstable disease-free equilibrium and a unique endemic equilibrium; (ii)
owing to the vaccine-induced backward bifurcation in these models, the classical
epidemiological requirement of vaccinated reproduction number being less than
unity does not guarantee disease elimination in these models; (iii) an imperfect
vaccine will reduce HIV prevalence and mortality if the reproduction number for
a wholly vaccinated population is less than the corresponding reproduction num-
ber in the absence of vaccination; (iv) the expressions for the vaccine character-
istics of the refined models take the same general structure as those of the basic
model.
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1. Introduction

The HIV/AIDS pandemic poses an unprecedented threat to global health and hu-
man development. An estimated 34–46 million people are currently living with
HIV/AIDS. More than 20 million people have died from AIDS during the last
20 years, of which an estimated 3 million deaths occurred in 2003 alone. AIDS is
now the leading cause of death in sub-Saharan Africa and the fourth-leading cause
of death globally. The pandemic has cut life expectancy significantly in many coun-
tries in sub-Saharan Africa. For example, life expectancy in Botswana decreased
from 65 years in 1985–1990 to 40 years in 2000–2005 (WHO, 2004).

In addition to being a serious public health problem, HIV/AIDS has far reaching
consequences to all social and economic sectors of society. It exacerbates poverty,
reduces educational opportunities, devastates the workforce, creates large num-
bers of orphans, and exerts tremendous pressure on already limited health and
social services (World Bank, 1997; UN, 2004). For example, HIV/AIDS has cut
annual growth rates in Africa by 2–4% per year (Dixon et al., 2002). The an-
nual economic loss of slower economic growth as a result of HIV/AIDS-related
death or disability in 50 countries (US, Russia, 5 in Asia, 8 in Latin America,
and 35 in sub-Saharan Africa) during 1992–2000 is estimated at $25 billion (Fleck,
2004).

The use of an effective vaccine is widely considered to be the best way to slow
or curtail the HIV/AIDS pandemic (Chang et al., 2003; Esparza and Osmanov,
2003). However, it is unlikely that a highly effective vaccine will be available soon.
Instead, the current expectation is that the most likely vaccine that will be de-
veloped in the foreseeable future may have lower efficacy in protecting against
infection and/or result in a shorter duration of protection in successfully immu-
nized people than most traditional vaccines. In addition, by eliciting broad cellular
immune responses, such a vaccine may reduce viral RNA concentrations and re-
duce infectiousness in infected vaccinated individuals. The vaccine may also offer
some therapeutic benefits by altering the clinical course of the disease (Shiver et
al., 2002; Calarota and Weiner, 2003; Berzofsky et al., 2004; Lee et al., 2004; Santra
et al., 2004; Shiver and Emini, 2004). Furthermore, due to the attributes of these
vaccines as well as the behaviors associated with HIV transmission, it has been
suggested that widespread vaccination may cause behavioral reversals where vac-
cinated people are likely to engage in more risky behaviors (Chesney et al., 1997;
Griensven et al., 2004; Newman et al., 2004). The wide ranging vaccine properties,
modes of transmission, and associated behavioral issues imply the need for de-
veloping adequate mathematical models to assess the community-wide impact of
vaccination strategies before imperfect prophylactic HIV-1 vaccines are deployed.

Over the last decade, several compartmental mathematical models have been
developed to model the transmission dynamics of HIV and assess the impact of
imperfect vaccines. For instance, Blower and McLean developed a mathematical
model to explore the impact of various types of imperfect HIV prophylactic
vaccines (McLean and Blower, 1993; Blower and McLean, 1994; Blower and
McLean, 1995). The characteristics of the vaccine considered in these studies in-
clude: having effect in some but not all people; reducing, but not fully eliminating,
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susceptibility in those immunized; waning protective immunity with time; reducing
the transmissibility of virus and/or reducing the mean duration of infectiousness
of breakthrough infections. These four modes of action are referred to as “take,”
“degree,” “duration,” and “reduced infectiousness,” respectively. Other studies
that build on this model include Massad et al. (2001), and Porco and Blower
(1998, 2000). The latter model was also used to predict the impact of vaccination
programs when two HIV subtypes are circulating.

In addition to the four modes of actions discussed above, recent mathematical
studies have considered characteristics of imperfect HIV-1 vaccines that include
lengthening of the incubation period (by slowing “progression” to AIDS) and in-
creasing risky behaviors (see, for instance, Anderson and Garnett, 1996; Massad
et al., 2001; Blower et al., 2002; Smith and Blower, 2004; Anderson and Hanson,
2005). Generally, these models have several equilibrium solutions, including the
perverse outcome of higher prevalence and AIDS-related mortality following
vaccination.

This paper provides a rigorous qualitative analysis of a basic HIV-1 vaccination
model that incorporates the key features of these models. It also offers several
extensions to this basic model. First, the contribution of AIDS patients in the
transmission of HIV is often ignored in most HIV epidemic models by imposing
the simplifying assumptions that AIDS mortality is instantaneous or that AIDS
patients are not capable of mixing and acquiring new sex partners. Usually no
empirical support is offered to justify these assumptions. In this paper, a model
that incorporates the contribution of HIV-infected people in the AIDS stage on
the transmission dynamics of HIV-1 is developed and analyzed. Second, studies
of HIV RNA in infected individuals show that viral levels vary widely between
individuals, with individuals having higher viral loads during the chronic phase
tending to develop AIDS more rapidly. Because RNA levels are correlated with
infectiousness (e.g., Gray et al., 2001), earlier HIV models need to be extended to
study the impact of an HIV vaccine given the variations in infectiousness and the
increase in the average progression time from infection to AIDS that goes along
with a decreased viral load during the chronic phase of infection (Hyman et al.,
1999). This paper presents a differential infectivity model to investigate the effects
of vaccination on the distribution of infected individuals in different RNA strata.
Finally, it is well-known that an HIV-infected individual typically passes through
several infection stages, being highly infectious during the preantibody phase (pri-
mary infection stage), maintaining low infectivity during the asymptomatic phase
(secondary infection stage), and becoming highly infectious as s/he progresses
toward AIDS (AIDS stage) (Longini et al., 1989; Hethcote and Ark, 1992; Fauci
et al., 1996; Hyman et al., 1999; Perelson and Nelson, 1999; McCluskey, 2003).
These multiple infection stages are essential part of HIV transmission dynamics
and are considered in this study via the use of a staged progression model. A
staged progression model is designed to study the variation of infectiousness in
a given individual over time and to capture the effects of vaccination on HIV
transmission as infected individuals pass through these different stages.

The paper is organized as follows. A basic model for assessing the impact
of an anti-HIV prophylactic vaccine with certain characteristics is developed
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and analyzed in Section 2. The model is then extended to incorporate the
effect of HIV transmission by individuals in the AIDS stage in Section 3.
Further extensions to incorporate differential infectivity and staged progres-
sion are given in Sections 4 and 5, respectively. The work is summarized in
Section 6.

2. Basic HIV-1 vaccine model

We begin by analyzing a deterministic model of HIV-1 transmission dynamics to
assess the impact of an imperfect vaccine (McLean and Blower, 1993; Anderson
and Garnett, 1996; Blower et al., 2002; Smith and Blower, 2004). The model
stratifies the homogeneously mixing sexually-active population into five classes:
susceptibles (X), vaccinated who are not infected yet (V), infecteds who are not
vaccinated (Y), vaccinated who acquired infection (W), and AIDS cases (A). It
is assumed that, at any moment in time, new recruits enter the sexually active
population at a rate �. These individuals are assumed to be susceptible (i.e.,
they are categorized in the X class) and a proportion p of these individuals are
successfully vaccinated (and moved to the vaccinated class V). As in other models
(e.g., McLean and Blower, 1993; Anderson and Garnett, 1996; Blower et al.,
2002), we consider only cohort vaccination where only the new recruits into the
sexually-active community (i.e., pre- and early-adolescents) are vaccinated (see
also Clements et al., 2004 for further discussion). Other studies have investi-
gated different strategies such as vaccinating a proportion of all sexually-active
members of the community (e.g., Kribs-Zaleta and Velasco-Hernández, 2000;
Gumel et al., 2004) or vaccinating a fraction of both newborns and susceptible
individuals (e.g., Arino et al., 2003). The parameter p is a composite measure
(p = ε p̃) of vaccine take (ε) and coverage ( p̃). Susceptible individuals acquire
HIV infection at time-dependent rate λ. Upon effective contact with an infected
individual (so that transmission occurs), a susceptible individual moves into the
Y class of infected individuals. It is assumed that vaccinated people engage in
increased risky behavior at a factor r compared to unvaccinated people, and
that the vaccine-induced immunity acquired by vaccinated individuals wanes,
so that these vaccinated people eventually move to the X class of susceptible
individuals at a rate γ . Once there, these individuals assume the same risky
behavior of susceptibles. Vaccinated individuals can experience break-through
infection (due to the incomplete protection provided by the vaccine) and become
infected at a rate qr λ. Upon becoming infected with HIV, vaccinated individuals
enter the class W of vaccinated-infected people. The relative risk of infectiousness
of individuals in this category compared to those in unvaccinated category Y
is modeled by the parameter s. Infected individuals (whether vaccinated or
not) can progress to full-blown AIDS stage at a rate θσ if vaccinated and σ

if not vaccinated. AIDS patients have an additional disease-induced mortality
rate α. The temporal dynamics of the aforementioned variables can then be
monitored using the following deterministic model (see Fig. 1A for a transfer
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diagram):

dX/dt = (1 − p)� − µX − λX + γ V,

dV/dt = p� − µV − qrλV − γ V,

dY/dt = λX − (µ + σ )Y, (1)

dW/dt = qrλV − (µ + θσ )W,

dA/dt = σY + θσ W − (µ + α)A.

The infection rate, λ, depends on the transmission probability per partnership,
the number of partners of infected individuals (in categories Y and W) and the
proportion of infected individuals in each category. The probability of HIV trans-
mission from a person in category Y to a susceptible person in category X or V is
β whereas that from a person in category W is adjusted by the degrees of infec-
tiousness s and increased risk behavior r . The number of partners is subsumed in
β. Assuming homogeneous mixing, this gives

λ = β
Y
N

+ rsβ
W
N

, (2)

where N is total number of people in the sexually active population at time
t . An imperfect HIV vaccine could have a wide range of properties, includ-
ing the possibility of reducing susceptibility to infection (q < 1), reducing the
transmissibility of the virus (s < 1), and/or reducing the rate of progression of
breakthrough infections to AIDS (θ < 1). In addition, vaccinated individuals may
exhibit increased risky behavior (r ≥ 1) (Chesney et al., 1997; Newman et al.,
2004).

It should be noted, however, that the basic model (1) does not currently in-
corporate a few other useful aspects associated with the dynamics of HIV-1 such
as gender, age, heterogeneity of mixing between different sexual activity groups,
and other modes of HIV transmission (sharing contaminated needles by IV drug
users, mother-to-child transmission, blood transfusion, etc.). The model also as-
sumes that other strategies such as the use of condoms, HIV testing and counsel-
ing, and antiretroviral therapy are not used (this allows us to focus on assessing the
singular role of anti-HIV preventive vaccine on curtailing the spread of HIV in a
given community). A common assumption frequently imposed in models of HIV
epidemiology is that AIDS patients do not acquire new sex partners, requiring
the exclusion of AIDS patients from the sexually active population. In this
case,

N = X + V + Y + W. (3)

Thus, the equation for the rate of change of the population of AIDS patients in (1)
can be discarded (since the model assumes that individuals in the AIDS class do
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not interact with the rest of the population). The implications of including AIDS
patients in the sexually active community will be discussed in Section 3.
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Fig. 1 (A) The basic HIV-1 vaccine model divides the population into five groups according to
their susceptibilities, infectiousness, and differences in rates of progression to AIDS. The proper-
ties of the vaccine include coverage/take (p = ε p̃), degree protection (q), waning immunity (γ ),
induced increases in risk behavior (r), lower infectiousness of vaccinated infected (s), and slower
progression to AIDS (θ). (B) The differential infectivity model stratifies the population into seven
groups according to their susceptibilities, infectiousness, and differences in rates of progression to
AIDS. The vaccine acts through take (p), degree protection (q), waning immunity (γ ), infectious-
ness (si ), slowing progression to AIDS (θ j ), and inducing increases in risk behavior (r). (C) The
staged-progression model stratifies the population into seven groups according to their suscepti-
bilities, infectiousness, and differences in stages of progression to AIDS. The vaccine acts through
take (p), degree protection (q), waning immunity (γ ), infectiousness (si ), slowing progression be-
tween stages (θ j ), and inducing increases in risk behavior (r).
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Fig. 1 Continued.

2.1. Basic properties

All parameters of the model are assumed to be nonnegative. Furthermore, since
the model (1) monitors human populations, it is assumed that all the state variables
are nonnegative at time t = 0. Consider the biologically-feasible region

D = {(X, V, Y, W) ∈ �4
+ : X + V + Y + W ≤ �/µ}.

It can be shown that all solutions of the system starting in D remain in D for all
t ≥ 0. Thus, D is positively-invariant and it is sufficient to consider the dynam-
ics of the flow generated by (1) in this positively-invariant domain D. It can be
shown that unique solutions exist in D for all positive time. Thus, the model is
epidemiologically and mathematically well posed (see Hethcote, 2000 for further
discussion).

2.2. Equilibria, stability, and reproduction numbers

2.2.1. The model without vaccination
We consider, first of all, the model (1) in the absence of vaccination. In this case,
p = γ = V = W = 0, and the model reduces to the following two-dimensional
system:

dX/dt = � − µX − β
Y
N

X, dY/dt = β
Y
N

X − (µ + σ )Y. (4)

The equilibria of this model are obtained by setting the right-hand sides
of (4) to zero. It follows then that (4) has a disease-free equilibrium
e0 = (X∗, Y∗) = (�/µ, 0) which can be shown (via linearization for instance)
to be locally asymptotically stable if R0 = β/(µ + σ ) < 1 and unstable if R0 > 1.
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Furthermore, for R0 > 1, the model has a unique and locally asymptotically stable
endemic equilibrium, given by

e1 = (X∗∗, Y ∗∗) =
(

�Du

R0 − 1 + µDu
,

�(R0 − 1)Du

R0 − 1 + µDu

)
, (5)

where Du = 1/(µ + σ ) denotes the average duration of infectiousness for unvac-
cinated individuals. Using Dulac criterion (see, e.g., Perko, 1996), with a Dulac
function D = 1/Y, it is easy to show that there are no periodic solutions in the
associated feasible region D = {(X, Y) ∈ �2

+ : X + Y ≤ �/µ}. Thus, e0 is globally
asymptotically stable if R0 < 1, and the unique endemic equilibrium is globally
asymptotically stable if R0 > 1. In other words, for the model without vaccination,
HIV will be eliminated if R0 < 1 and will persist if R0 > 1. The threshold quantity
R0 is the basic reproduction number of infection which defines the number of
new HIV infections generated by a single infected individual in a completely
susceptible population (see, e.g., Anderson and May, 1991; Hethcote, 2000).
Mathematically, R0 is defined as the spectral radius (dominant eigenvalue) of the
next generation matrix (see, e.g., Diekmann et al., 1990; van den Driessche and
Watmough, 2002).
Having established the above results, we now return to the vaccination model (1).

2.2.2. Stability of equilibria for vaccination model
The vaccination model (1) has a disease-free equilibrium given by

E0 = (X∗, V ∗, Y∗, W ∗) =
(

[γ + (1 − p)µ]�
µ(µ + γ )

,
p�

µ + γ
, 0, 0

)
. (6)

To find the conditions under which this equilibrium is locally asymptotically stable,
the Jacobian matrix of the system (1) is evaluated at the disease-free equilibrium
E0 to give,

J (E0) =


−µ γ −
(

1 − pµ

γ + µ

)
(µ + σ )R0 −r s

(
1 − pµ

γ + µ

)
(µ + σ )R0

0 −(γ + µ) − p q r µ (µ + σ )R0

γ + µ
− p q r2 s µ (µ + σ )R0

γ + µ

0 0 −(µ + σ )[1−R0(1 − pµ

γ + µ
)] r s (µ + σ )R0(1 − pµ

γ+µ
)

0 0
p q r µ (µ + σ )R0

γ + µ
−(µ + θ σ ) + pq r2 s µ (µ + σ )R0

γ + µ




.

Clearly, two eigenvalues of J (E0) are −µ and −(γ + µ), both negative. It can be
shown that the remaining two eigenvalues (obtained from the 2 × 2 matrix in the
lower corner of J (E0)) have negative real parts if and only if
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R(p) = R0

{
1 − pµ

γ + µ

[
1 − q r2 s (µ + σ )

(µ + θ σ )

]}
< 1. (7)

Furthermore, it can be seen that at least one of these eigenvalues has a positive
real part if R(p) > 1. Thus, we have established the following result.

Lemma 1. The disease-free equilibrium E0 of (1) is locally asymptotically stable if
R(p) < 1 and unstable if R(p) > 1.

The threshold quantity R(p) is known as the vaccinated reproduction number
(see, e.g., Blower et al., 2002). Biologically-speaking, this measures the number
of new secondary infections generated by a single HIV-infected individual in a
community where anti-HIV vaccines are used as a control strategy. Notice that in
the absence of vaccination (p = 0), R(p) = R(0) = R0 = β/(µ + σ ).

Lemma 1 establishes that if the disease-free equilibrium exists, it is locally
asymptotically stable if and only if R(p) < 1. However, the disease-free equi-
librium may not be globally asymptotically stable even if R(p) < 1. There is
the possibility of backward bifurcation (bistability), where a stable endemic
equilibrium co-exist with the disease-free equilibrium when R(p) < 1 (see, e.g.,
Kribs-Zaleta and Velasco-Hernández, 2000; Arino et al., 2003; Corbett et al.,
2003). To investigate this, we substitute the force of infection λ into (1) and
show that (at steady-state) the endemic equilibria of (1) satisfy the following
polynomial:

λ(B1λ
2 + B2λ + B3) = 0, (8)

where

B1 = qr [µ + θσ + p(1 − θ)σ ],

B2 = (γ + µ + pσ )(µ + θ σ ) − pqr2s(µ + σ )2R0

+ qr(µ + σ )[(µ + θσ )(1 − p)(1 − R0) + µp],

B3 = (γ + µ) (µ + σ )(µ + θ σ )[1 − R(p)].

λ = 0 gives the disease-free equilibrium while the quadratic in (8) can be analyzed
for the possibility of multiple equilibria. It should be noted that in the case of a
perfect vaccine (q = 0), B1 = 0, B2 > 0 and the quadratic equation becomes linear
in λ (with λ = −B3/B2). In this case, the vaccination model (1) has a unique en-
demic equilibrium if and only if B3 > 0 (i.e., R(p) > 1), ruling out the possibility
of backward bifurcation in this case. It is worth noting that the coefficient B1 is
always positive when the vaccine is imperfect (since 0 < θ ≤ 1) and B3 is positive
(negative) if R(p) is less than (greater than) unity, respectively. Hence, we have
the following result:

Lemma 2. The vaccination model (1) has

(i) a unique endemic equilibrium if B3 < 0 ⇔ R(p) > 1;
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(ii) a unique endemic equilibrium if B2 < 0, and B3 = 0 or B2
2 − 4B1 B3 = 0;

(iii) two endemic equilibria if B3 > 0, B2 < 0 and B2
2 − 4B1 B3 > 0;

(iv) no endemic equilibrium otherwise.

To find the backward bifurcation point when R(p) < 1, we set the dis-
criminant B2

2 − 4B1 B3 to zero and solve for the critical value of R(p). This
gives

Rc(p) = 1 − B2
2

4 (γ + µ)(µ + σ ) (µ + θ σ ) B1
, (9)

from which it can be shown that backward bifurcation occurs for values of R(p) in
the inequality Rc(p) < R(p) < 1.

To numerically illustrate this fact, the model (1) is simulated using the following
arbitrary set of parameters: � = 1, p = 0.9, µ = 0.02, r = 1, s = 1, θ = 0.5, q =
1, γ = 0.1, σ = 0.4, β = 0.36 so that R0 = 0.857 < 1, R(p) = 0.9740 < 1, and
Rc(p) = 0.9737 < R(p). The simulation results, depicted in Fig. 2A, show that the
model has a disease-free equilibrium (corresponding to λ = 0) and two endemic
equilibria (corresponding to λ = 0.024 and λ = 0.03, respectively). The figure
shows that one of the endemic equilibria (λ = 0.03) is locally stable, the other
endemic equilibrium (λ = 0.024) is unstable (a saddle), and the disease-free equi-
librium is locally stable. This clearly shows the co-existence of two stable equilibria
when R(p) < 1, confirming that (1) undergoes the phenomenon of backward
bifurcation. The epidemiologic implication of this backward bifurcation phe-
nomenon is that a sufficiently large initial number of infected individuals (above
the stable manifold of the saddle endemic equilibrium given by λ = 0.024) will
cause the system to settle at the locally asymptotically stable endemic equilibrium
(corresponding to λ = 0.03 for this example), causing HIV persistence in the com-
munity. It should be noted, however, that since R0 = 0.857 < 1 for this numerical
example, the disease is guaranteed to die out without vaccination because (as
shown in Section 2.2.1) the disease-free equilibrium of the model without vaccina-
tion is globally asymptotically stable for R0 < 1. Clearly, this is an example where
vaccination is detrimental to the community: the disease dies out without a vaccine
(if R0 < 1) but persists with a vaccine (even though R0 < 1). This clearly shows
that, unlike in previous models (e.g., Kribs-Zaleta and Velasco-Hernández, 2000),
the disease-free equilibrium for the vaccination model (1) is not globally asymp-
totically stable for all R0 < 1. Further simulations, using the same parameters
values as above except now p = 0.8, implying R(p) = 0.961 and Rc(p) = 0.987,
are carried out and the results are depicted in Fig. 2B. This figure shows conver-
gence to the unique disease-free equilibrium. The simulations shown in Fig. 2B
also suggest that the disease-free equilibrium is also globally asymptotically stable
since all trajectories with initial conditions in D approach this equilibrium. Figure
2C shows convergence to the unique stable endemic equilibrium (here, β = 0.5,
s = 0.5, p = 0.9, R0 = 1.190, R(p) = 1.182). Further simulations (Fig. 2C–
F) suggest that the endemic equilibrium is globally asymptotically stable for
R(p) > 1.
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Fig. 2 Basic HIV-1 vaccination model: Force of infection λ, prevalence, or number of sexually-
active people, versus time since vaccination for various values of the parameters. Dotted lines
denote prevaccination values. Thick gray line denotes unstable endemic equilibrium. Common
parameters: � = 1, µ = 0.02, r = 1, q = 1, γ = 0.1, σ = 0.4. Other parameters: (A) β = 0.36, s =
1, θ = 0.5, p = 0.9; (B) β = 0.36, s = 1, θ = 0.5, p = 0.8; (C) β = 0.5, s = 0.5, θ = 0.5, p = 0.9;
(D) β = 0.45, s = 0.45, θ = 0.4, p = 0.9; (E) same as (D); (F) β = 0.45, s = 1, θ = 0.9, p = 0.9.

2.2.3. Endemic equilibrium with vaccination
The analysis in the preceding section shows that if R(p), as defined in Eq. (7), is
greater than one, then disease elimination is ruled out and endemic prevalence is
certain. Suppose, for simplicity, R(p) > 1. It follows from Lemma 2 that model (1)
has a unique endemic equilibrium given by E1 = (X∗, V ∗, Y∗, W ∗) where

X ∗ = [γ + (1 − p)(q r λ∗ + µ) ]�
(λ∗ + µ) (γ + q r λ∗ + µ)

, V ∗ = p�

γ + q r λ∗ + µ
,

Y∗ = [γ + (1 − p)(q r λ∗ + µ)]λ∗ �Du

(λ∗ + µ) (γ + q r λ∗ + µ)
, W ∗ = p q r λ∗ �Dv

γ + q r λ∗ + µ
,
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with λ∗ = (−B2 +
√

B2
2 − 4B1 B3)/(2B1), where Dv = 1/(µ + θ σ ) denotes the av-

erage incubation period from HIV infection to AIDS for the vaccinated
persons.

2.2.4. Vaccine impact
Following Blower et al. (2002), we now consider model (1) such that the population
consists entirely of vaccinated individuals. In this case, it can be shown that the
associated basic reproduction number is given by

R0v = qr2sβ
µ + θσ

, (10)

where the quantity R0v is average number of secondary infections that one vac-
cinated individual who becomes infected can produce during his/her sexually ac-
tive life if introduced into a wholly vaccinated population. Using this definition,
and that for R0, allows us to rewrite the vaccinated reproduction number R(p)
as

R(p) = R0

[
1 − p

µ

µ + γ

(
1 − R0v

R0

)]
. (11)

It will be shown that the vaccine reproduction number for each of the models
considered in this paper can be written in the form (11).

A measure of vaccine impact for model (1) can then be defined as (see McLean
and Blower, 1993; Blower and McLean, 1994)

φ = pµ

γ + µ

[
1 − q r2 s (µ + σ )

(µ + θ σ )

]
= p

µ

µ + γ

(
1 − R0v

R0

)
. (12)

This is a generalization of the concept of vaccine efficacy that captures waning
immunity (γ ), take (p), therapeutic effect (θ), degree of protection (1 − q), effect
on infectiousness (s), and increased risky behavior (r). Thus, other things being
equal, the vaccine impact on HIV transmission (φ) is greater, when the duration
of protection (smaller γ ) is longer, vaccine take (larger p) or degree of protection
(smaller q) are higher, the vaccine effect on infectiousness (smaller s) is larger,
the vaccine therapeutic effect (larger θ) is smaller, and the change in risky be-
havior (smaller r) is smaller. It should be noted that a vaccine with therapeutic
effects (θ < 1) has a lower impact on HIV transmission compared with a vaccine
that does not provide any therapeutic benefits (θ = 1). However, the impact of
the former on life expectancy can be larger than the latter as will be shown be-
low. Note also that R(p) ≤ R0 if and only if φ ≥ 0, and R(p) > R0 if and only
if φ < 0. That is, a vaccine will have a positive impact in terms of reducing HIV
transmission (and, therefore, HIV prevalence) if the reproduction number for a
wholly vaccinated population is less than the corresponding reproduction number
without vaccination. The vaccine will have no impact on HIV prevalence if these
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two numbers are equal. The impact of the vaccine on HIV prevalence is nega-
tive (detrimental) if the reproduction number for a wholly vaccinated population
is greater than the reproduction number without vaccination. However, as will be
shown below, even an imperfect vaccine with negative impacts in terms of higher
prevalence can reduce AIDS-related mortality. A key goal of public health pro-
grams is to reduce premature deaths from diseases (measured in this model by the
size of the population, N). Therefore, a vaccine that helps ensure a larger total
population even if it results in higher prevalence can still be quite useful.

We now state the strategy followed for obtaining the conditions under which
the following outcomes occur as a result of vaccination: (i) lower prevalence and
larger population, (ii) higher prevalence and larger population, and (iii) higher
prevalence and smaller population. We first set the right-hand side of the system
(1) to zero and linearize the resulting system of equations around the endemic
equilibrium with no vaccination e1. This entails totally differentiating the system
with respect to X, V, Y, W, N, and p and evaluating the result at equilibrium e1.
The differentials are then rearranged and used to solve for the expressions for the
partial derivatives of the associated variables with respect to p (e.g., ∂W/∂p). This
will indicate infinitesimal changes from the prevaccination (endemic) equilibrium.
This sensitivity analysis method, of studying how a variable (e.g., W) responds to
changes in its environment (e.g., vaccination p > 0), is also known as compara-
tive statics method in other disciplines such as economics (see, e.g., Varian, 1992;
Takayama, 1993). The method essentially compares the “before” and “after” equi-
librium situations (hence the term comparative). The term “statics” refers to the
fact that the comparison is made after all adjustments have taken place (e.g., pre-
vaccination endemic equilibrium vs. postvaccination endemic equilibrium). The
same results can be obtained by differentiating the components of the endemic
equilibrium E1 with respect to p and evaluating the result at p = 0. Thus,

∂W ∗

∂p
|p=0 = �qr(µ + σ )(R0 − 1)

(µ + θ σ )[(γ + µ) + qr(µ + σ )(R0 − 1)]
> 0 iff R0 > 1.

Therefore, if R0 > 1, the number of infected people who were vaccinated will in-
crease as a result of vaccination. The condition R0 > 1 is needed for the existence
of the prevaccination endemic equilibrium.

For prevalence (Y/N + W/N), similar calculations reveal that:

1
N∗

(
∂Y∗

∂p
+ ∂W ∗

∂p
− Y∗

N∗
∂ N∗

∂p

)∣∣∣∣
p=0

= − �[(µ + θ σ ) − qr2s(µ + σ )]
N∗∗(µ + θ σ )[(γ + µ) + qr(µ + σ )(R0 − 1)]

,

where, N∗∗ = �R0 Du/(R0 − 1 + µDu). Clearly, the sign of the denominator of the
above expression is positive as long as R0 > 1. Thus, a necessary and sufficient
condition for prevalence to decrease following vaccination is
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1 − q r2 s (µ + σ )
(µ + θ σ )

= 1 − R0v

R0
> 0. (13)

This result is summarized below:

Lemma 3. For the vaccination model (1), an imperfect vaccine will reduce steady-
state HIV prevalence if and only if R0v < R0.

It is worth mentioning that, based on further analysis, adding AIDS patients
in the computation of prevalence (i.e., prevalence = Y/N + W/N + A/N) does
not change the above result. Condition (13) is likely to be satisfied for smaller
values of q, s, r , and σ and larger values of µ and θ . That is, the vaccine is
likely to reduce HIV transmission if the degree of protection it offers is high
(smaller q), vaccinated individuals (with “breakthrough” infections) are less in-
fectious (smaller s) and progress faster to AIDS (larger θ), the risky behavior
induced by vaccination is small (smaller r), the duration in the sexually active
population is short (larger µ), and progression of infected unvaccinated persons
to AIDS is slow (smaller σ ). It should be noted that, in this paper, risk behavior is
modeled exogenously using the parameter r . This result indicates that the vaccine
impact is lower if the expected increase in risk behavior among vaccinees is high.
Figure 2C illustrates the situation where introducing a vaccine with the charac-
teristics p = 0.9, r = 1, s = 0.5, θ = 0.5, q = 1, γ = 0.1 , and σ = 0.4 and assuming
β = 0.5 can lead to a reduction in prevalence. Choosing a vaccine with the charac-
teristic p = 0.9, r = 1, s = 0.45, θ = 0.4, q = 1, γ = 0.10, and σ = 0.4, and assum-
ing β = 0.45 so that R0v = 1.125 > R0 = 1.071 and φ = −0.0075, leads to a higher
postvaccine prevalence in comparison to prevaccination prevalence (Fig. 2D).

To assess the effect of vaccination on the size of the sexually active population
N, we investigate the sign of the derivative of N∗ with respect to p evaluated at
p = 0. This is given by

∂ N∗

∂p

∣∣∣∣
p=0

= R0�σ [(µ + θ σ ) + qr(1 − θ)(R0 − 1)(µ + σ ) − qr2s(µ + σ )]
[R0(µ + σ ) − σ ](µ + θ σ )[(γ + µ) + qr(R0 − 1)(µ + σ )]

.

The sign of the above expression depends on the sign of the numerator. It follows
that the sign of the above derivative is positive if and only if

(µ + θ σ ) + qr(1 − θ)(R0 − 1)(µ + σ ) − qr2s(µ + σ ) > 0. (14)

Thus, the total population (N) increases as a result of vaccination if the above
condition is true. It can be shown that the effect of vaccination on steady-state
mortality (as measured by 1/N, 1/(N + A), or (α + µ)A) also depends on condi-
tion (14). Clearly, condition (14) is likely to be satisfied for smaller values of s. That
is, the less infectious vaccinated infected individuals are, the more likely the vac-
cine will succeed in reducing AIDS-related mortality. Intuitively, condition (14) is
likely to be satisfied for smaller values of q, θ , and r . That is, a vaccine that can
reduce transmission, provide therapeutic benefits, and does not induce increased
risky behavior is expected to reduce AIDS-related mortality. However, intuition
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may fail in this case because some of these vaccine properties have contradictory
effects. For example, a vaccine with therapeutic effects is likely to slow the pro-
gression of vaccinated infected individuals to AIDS and make them live longer,
and presumably continue to infect others. Consequently, by extending the life ex-
pectancy of these infected individuals, the vaccine also increases their contribution
to HIV transmission. Thus, the overall result will depend on which of these effects
is dominant.

In the forthcoming extended models, condition (14) will be expressed in the
following convenient format:

1 + qr(R0 − 1)
(Dv/Du − 1)
(1 − Du/L)

− R0v

R0
> 0, (15)

where L = 1/µ is average duration in the sexually active population. It should be
noted that condition (15) is automatically satisfied if condition (13) is met. If both
conditions are violated, then vaccination will be detrimental to the community
since, in this case, both prevalence and mortality will be higher compared to pre-
vaccination levels. This result is summarized below:

Lemma 4. For the vaccination model (1), an imperfect vaccine will reduce steady-
state mortality if and only if condition (15) holds.

Numerical simulations, depicted in Fig. 2D and E, show that a vaccine with cer-
tain characteristics can lead to lower mortality even in the presence of a higher
postvaccination prevalence. In Fig. 2F, where p = 0.9, r = 1, s = 1, θ = 0.9, q =
1, γ = 0.1, σ = 0.4, and β = 0.45 (so that φ = −0.0158), it is clear that using such
a vaccine is detrimental to the community since it resulted in higher postvaccina-
tion prevalence and lower size of the sexually active population (in comparison to
prevaccination case).

3. Extension (I): HIV transmission by AIDS patients

The assumptions described when discussing the basic model (1) pose several addi-
tional questions. These include: are AIDS patients infectious? Are AIDS patients
capable of mixing with the rest of the community? If so, what are the epidemio-
logic implications of HIV transmission by AIDS patients? The answer to the first
question is in the affirmative. Numerous epidemiologic and biological data sug-
gest that a diagnosis of AIDS is a strong predictor of infectiousness. It is generally
accepted that there is a strong association between host infectiousness and the
concentration of virus in the blood or genital tract. Several studies reported higher
viral loads in blood and semen of AIDS patients (Royce et al., 1997). Epidemio-
logic evidence also supports the hypothesis that AIDS patients are capable of, and
do engage in, risky sexual behavior defined in terms of inconsistent condom use or
having multiple sex partners (Lansky et al., 2000). For example, in a study of HIV-
1-infected transfusion male recipients and their female sex partners, O’Brien et al.
(1994) show that advanced AIDS patients are more likely to infect their partners
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(odd ratio 7.9) compared to recipient with no advanced immunodeficiency. Simi-
lar findings, reported in the cross-sectional study of HIV-infected females and their
male sex partners (Nicolosi et al., 1994), show that out of 242 couples, only 18 (their
disease status is not stated) reported to have not been sexually active for at least
1 year, 51% of the remaining couples reported to have never used a condom. An-
other 18% of the study participants reported to have used condoms “sometimes,”
and among men who were aware of the seropositivity of their female partners,
18% never used condoms. Compared to asymptomatic HIV-infected women, the
adjusted odd ratio of a symptomatic woman HIV transmission to her male partner
is 2.4.

In this section, the basic model (1) is extended to incorporate the transmission
of HIV by infected individuals in the AIDS stage. The model equations are the
same as those given in (1) except, now,

λ = β1
Y
N

+ rsβ1
W
N

+ βA
A
N

, and N = X + V + Y + W + A, (16)

where the parameters β1 and βA are the probabilities of HIV transmission from an
asymptomatic (unvaccinated) and AIDS patient to a susceptible partner, respec-
tively. Hence, βA/β1 measures the infectiousness of an AIDS patient relative to
an asymptomatic, unvaccinated, HIV-infected person (see Fig. 1A for a schematic
description of this model). Consider the biologically-feasible region

D1 = {
(X, V, Y, W, A) ∈ �5

+ : X + V + Y + W + A≤ �/µ
}
.

Since individuals in the AIDS category are also infectious, the quantities 1/(µ + σ )
and 1/(µ + θσ ) no longer measure the average durations of infectiousness. In-
stead, they only measure the average waiting times in the HIV state for unvacci-
nated and vaccinated individuals, respectively. The average duration of infectious-
ness should be redefined to take into account the time spent in the AIDS stage,
1/(α + µ), and the probability of an HIV-infected individual developing AIDS,
σ . Thus, the respective average durations of infectiousness for unvaccinated and
vaccinated individuals are given by

Du1 = 1
µ + σ

+ σ

(µ + σ )(α + µ)
, Dv1 = 1

µ + θσ
+ θσ

(µ + θσ )(α + µ)
. (17)

3.1. Equilibria, stability, and reproduction numbers

3.1.1. The model without vaccination
In the absence of vaccination, the disease-free equilibrium is locally asymptotically
stable if and only if

R01 = β1

(µ + σ )
+ σβA

(µ + σ )(α + µ)
< 1, (18)

where R01 is the basic reproduction number of the second model ((1) with (16))
in the absence of vaccination. If R01 > 1, the model has a unique and locally
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asymptotically stable endemic equilibrium, given by

ẽ1 = (X ∗, Y∗, A∗) =
(

�Du1

R01 − 1 + µDu1
,

�(R01 − 1)
(µ + σ )(R01 − 1 + µDu1)

,

�(R01 − 1)(µDu1 − 1)
α(R01 − 1 + µDu1)

)
. (19)

3.1.2. Disease-free equilibrium with vaccination
With vaccination, the model ((1) with (16)) has a disease-free equilibrium given by

E01 = (X ∗, V ∗, Y∗, W ∗, A∗) =
(

�[γ + (1 − p)µ]
µ(µ + γ )

,
p�

µ + γ
, 0, 0, 0

)
,

N∗ = �

µ
, (20)

which is locally-asymptotically stable if and only if

R1(p) = R01

{
1 − pµ

γ + µ

[
1 − (µ + σ )

(µ + θ σ )
q r2 s(α + µ)β1 + qrθσβA

(α + µ)β1 + σβA

]}
< 1.

As in model (1), R1(p) can be rewritten as

R1(p) = R01

[
1 − p

µ

µ + γ

(
1 − R0v1

R01

)]
, (21)

where

R0v1 = q r2 s
β1

µ + θ σ
+ qr

θσβA

(α + µ)(µ + θ σ )
, (22)

is the basic reproduction number when the entire population consists of vaccinated
individuals. Again, a measure of vaccine impact can be derived as

φ1 = p
µ

µ + γ

(
1 − R0v1

R01

)
. (23)

Compared to the original model (1), it can be shown (using the sensitivity analysis
detailed earlier on φ1 around βA = 0) that the impact of the vaccine on this revised
model depends on whether θ is greater or less than rs. If θ < rs (that is, the positive
effect on delaying the onset of AIDS is dominated by the net effect of reducing
infectiousness and increasing risky behavior), then the impact of the vaccine will
be higher (φ1 > φ) if the contribution of AIDS transmission is taken into account.
It should be noted that the revised model with AIDS patients contributing to HIV
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transmission has longer durations of infectiousness (Du1 > Du, Dv1 > Dv), higher
reproduction numbers (R01 > R0, R0v1 > R0v), and higher prevalence.

As in model (1), there may exist a pair of endemic equilibria that compete with
the disease-free equilibrium E01 if R1

c(p) < R1(p) < 1, where R1
c(p) denotes some

critical value of R1(p) below unity (i.e., the revised model is susceptible to under-
going backward bifurcation).

3.1.3. Endemic prevalence with vaccination
Using the same methods used for analyzing model (1), it can be shown that disease
prevalence, defined by Y/N + W/N + A/N, for the revised model will be lower in
the postvaccination equilibrium if and only if the following expression is positive:

1 − 1
R01

[
q r2 sβ1

µ + θ σ
+ qrθσβA

(α + µ)(µ + θ σ )

]
. (24)

This can be rewritten in the following, familiar, alternative format:

1 − R0v1

R01
. (25)

Consequently, prevalence falls (rises) if R0v1 is smaller (larger) than R01. Further-
more, the size of the population will be larger or smaller in the postvaccination
equilibrium depending on the sign of the following expression:

1 + qr(1 − θ)(µ + σ )(α + µ)(R01 − 1)
(α + µ + σ )(µ + θσ )

− 1
R01

[
q r2 sβ1

µ + θ σ
+ qrθσβA

(α + µ)(µ + θ σ )

]
.

This can be rewritten in this alternative format:

1 + qr(R01 − 1)
(Dv1/Du1 − 1)
(1 − Du1/L)

− R0v1

R01
. (26)

These expressions differ from those in the previous model by the new terms in
the expressions for Du1, Dv1, R01, and R0v1. Note that if α approaches infinity, all
previous results for model (1) hold. Also, if θ is less than rs (the positive effect
on delaying the onset of AIDS is dominated by the net effect of reducing infec-
tiousness and increasing risky behavior), then the vaccine will more likely increase
the size of the population and reduce HIV prevalence if the contribution of AIDS
transmission is taken into account.

4. Extension (II): Differential infectivity (DI) and progression to AIDS

Studies of HIV RNA in infected individuals show that viral levels vary widely be-
tween individuals, where individuals with higher viral loads during the chronic
phase tend to develop AIDS more rapidly (Mellors et al., 1997). Because stud-
ies have shown that RNA levels are correlated with infectiousness (Quinn et al.,
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2000; Gray et al., 2001), HIV vaccine models need to incorporate the variations in
infectiousness and the increase in the average time from primary HIV infection to
AIDS stage that goes along with a decreased viral load during the chronic phase
of infection (Hyman et al., 1999).

For simplicity, the unvaccinated infected population is subdivided into two sub-
groups of varying RNA levels namely Y1 and Y2. Upon infection, an individual en-
ters the high HIV RNA subgroup (Y1) with probability ρ1 and the low HIV RNA
subgroup (Y2) with probability ρ2 (ρ2 = 1 − ρ1). It is assumed that people in these
subgroups develop AIDS at rates σ1 and σ2 (σ1 > σ2), respectively. Similarly, the
vaccinated infected population is subdivided into two subgroups of high and low
viral loads (W1 and W2) with respective probabilities π1 and π2 (π2 = 1 − π1). No-
tice the assumption that the vaccine can alter the fraction of people going into
the high HIV RNA group (W1 instead of Y1) if π1 �= ρ1. The respective progres-
sion rates to AIDS for these groups are θ1σ1 and θ2σ2. The relative degrees of
infectiousness of individuals in these subgroups compared with those in subgroups
Y1 and Y2 are given by s1 and s2, respectively. It is assumed that once an in-
fected individual is in any of these subgroups, s/he remains there until developing
AIDS. As in the original model (1), it is assumed here that once a person devel-
ops AIDS, s/he is removed from the sexually active population. This assumption
will be relaxed in Section 4.1.2 below. The model has the following structure (see
Fig. 1B):

dX/dt = (1 − p)� − µX − λX + γ V,

dV/dt = p� − µV − qrλV − γ V,

dY1/dt = ρ1λX − (µ + σ1)Y1,

dY2/dt = ρ2λX − (µ + σ2)Y2,

dW1/dt = π1qrλV − (µ + θ1σ1)W1, (27)

dW2/dt = π2qrλV − (µ + θ2σ2)W2,

dA/dt = σ1Y1 + σ2Y2 + θ1σ1W1 + θ2σ2W2 − (α + µ)A,

λ =
2∑

i=1

(
βi

Yi

N
+ rsiβi

Wi

N

)
, N = X + V +

2∑
i=1

(Yi + Wi ).

A more detailed model with I + J + 1 arbitrary infection stages is given in
Appendix A.

For the model (27), it can be shown that the following feasible region is
positively-invariant:

D2 =
{

(X, V, Y, W) ∈ �6
+ : X + V +

2∑
i=1

(Yi + Wi ) ≤ �/µ

}
,

where Y = (Y1, Y2) ∈ �2
+, W = (W1, W2) ∈ �2

+.
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4.1. Equilibria, stability, and reproduction numbers

4.1.1. Disease-free equilibrium with vaccination
For model (27), it is straightforward to show that the corresponding disease-free
equilibrium is locally asymptotically stable if and only if

R2(p) = R02

[
1 − p

µ

γ + µ

(
1 − R0v2

R02

)]
< 1, (28)

where

R02 = ρ1β1

µ + σ1
+ ρ2β2

µ + σ2
, and R0v2 = q r2

(
π1s1β1

µ + θ1σ1
+ π2s2β2

µ + θ2σ2

)
. (29)

Here, R02 is the basic reproduction number of the model (27) in the absence of
vaccination and R0v2 denotes the basic reproduction number of the model (27) if
the entire population consists of vaccinated individuals. As in the preceding mod-
els, a measure of vaccine efficacy can be derived as

φ2 = p
µ

µ + γ

(
1 − R0v2

R02

)
, (30)

and the possibility of the existence of multiple equilibria that compete with the
disease-free equilibrium when R2(p) < 1 cannot be ruled out (i.e., the differential
infectivity model (27) may also exhibit backward bifurcation).

4.1.2. Endemic prevalence with vaccination
Prevalence, (Y1 + Y2 + W1 + W2)/N, will be lower in the postvaccination equilib-
rium if and only if the sign of the following quantity is positive:

1 − q r2

R02

(
π1s1β1

µ + θ1σ1
+ π2s2β2

µ + θ2σ2

)
= 1 − R0v2

R02
. (31)

The size of the population will be larger in the postvaccination equilibrium if and
only if the sign of the following expression is positive:

1 + qr(R02 − 1)
(Dv2/Du2 − 1)
(1 − Du2/L)

− R0v2

R02
. (32)

The definition and interpretation of each of these quantities (e.g., Du2) change
from that for a single group as in model (1) to a mean of all subgroups. Thus, Du2

and Dv2 are now defined as

Du2 = ρ1

µ + σ1
+ ρ2

µ + σ2
, Dv2 = π1

µ + θ1σ1
+ π2

µ + θ2σ2
, (33)
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and interpreted as the mean duration of infectiousness for infected unvaccinated
and vaccinated individuals, respectively.

If the contribution of AIDS cases to HIV transmission is taken into account, the
following expressions for basic and vaccinated reproduction numbers are derived
as

R̃02 = ρ1β1

µ + σ1
+ ρ2β2

µ + σ2
+ βA

α + µ

(
ρ1σ1

µ + σ1
+ ρ2σ2

µ + σ2

)
, (34)

R̃2(p) = R̃02

[
1 − p

µ

γ + µ

(
1 − R̃0v2

R̃02

)]
,

where R̃0v2 is now defined as

R̃0v2 = q r2
(

π1s1β1

µ + θ1σ1
+ π2s2β2

µ + θ2σ2

)
+ qrβA

α + µ

(
π1θ1σ1

µ + σ1θ1
+ π2θ2σ2

µ + θ2σ2

)
. (35)

To analyze the importance of various vaccine characteristics, a generalized ver-
sion of model (27), where four unvaccinated differential infectivity subgroups Yi

(i = 1, 2, 3, 4) and four differential breakthrough infectivity subgroups Wi (i =
1, 2, 3, 4) are assumed (See Appendix A), is simulated using the parameters in
Table 1. Following Hyman et al. (1999, 2001), the probability of transmission
per partnership is estimated using the expression βi = 1 − (1 − ζi )h(z), where ζi

is the transmission probability per contact, h(z) = 104z−η + 1 denotes the av-
erage number of contact per partnership. The initial conditions for all simu-
lations of the differential infectivity model are the equilibrium values without
vaccination (see Hyman et al., 2001, for discussion on the importance of initial
conditions).

Figure 3A illustrates the impact of a vaccine with a 10-year duration of effect
(γ = 0.1) and 50% reduction in infectiousness of “breakthrough” cases (si = 0.5)
for various rates of vaccination coverage. This figure shows a marked decrease in
postvaccination steady-state prevalence with increasing coverage rate (thus, the
vaccine has a positive impact). A scenario where breakthrough infections are 90%
less infectious (si = 0.1), in addition to the two vaccine characteristics above, is
depicted in Fig. 3B, where it is evident that such a vaccine offers a far better
reduction in prevalence compared to the vaccine in Fig. 3A (underlying the im-
portance of vaccine-induced reduction of infectiousness). A scenario where the
vaccine reduces breakthrough infectiousness by 50% (si = 0.5) and offers lifelong
effect (γ = 0) is shown in Fig. 3C, from which it can be deduced that such a vaccine
is slightly better than those in Fig. 3A and B.

Further simulations with a vaccine that offers a 25% degree protection (q = θi =
0.75) that lasts for 20 years (γ = 0.05) with breakthrough infections being 90%
(si = 0.1) less infectious are carried out. The results, depicted in Fig. 3D, show
that similar patterns as those observed in Fig. 3A–C. Figure 3D also shows that
HIV can be eliminated from the community with high vaccination coverage rates.
Figures 3E and F illustrate the case where a vaccine that reduce infectiousness and
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Table 1 Data for the differential infectivity (DI) and staged-progression (SP) models

Description Symbol Value Reference
New recruits into population � 0.99µ Assumed
Mean transmission per contact ζ̄ 0.0011 Gray et al. (2001, 2003)
Partner acquisition rate z 5 Hyman et al. (1999)
Sexually active removal rate µ 0.07 Hyman et al. (1999)
DI parameters

Distribution of newly infected ρi (0.05, 0.33, 0.5, 0.12) O’Brien et al. (1996)
Progression rates σi (0.19, 0.096, 0.058, 0.028) O’Brien et al. (1996)
Relative per contact transmission ζi (23, 14, 13, 1) Gray et al. (2001, 2003)

SP parameters
Progression rates σi (13., 0.2355, 0.2355, 0.47) Hyman et al. (1999)
Relative per contact transmission ζi (23, 1, 1, 14) × 4.8 × 10−4 Gray et al. (2001, 2003)

progression rates by 25% (θi = si = 0.75), provides 25% degree protection (q =
0.75) lasting for 10 years (γ = 0.1), and increases risk behavior by 25% (r = 1.25)
can result in higher postvaccination HIV prevalence and higher postvaccination to-
tal population size, respectively. Note that even though the postvaccination preva-
lence rate is higher (Fig. 3E), the size of the population is larger compared with
prevaccination level (Fig. 3F). Furthermore, the prevalence ratio is below unity
(i.e., prevalence is falling) for the first 20 years before rising and exceeding unity
after about 70 years.

5. Extension (III): Staged progression

The staged progression model accounts for the variation of infectiousness in a
given individual over time. It has been widely observed that an HIV-infected per-
son passes through infectious stages, being highly infectious during the preanti-
body phase, maintaining low infectivity during the asymptomatic phase, and be-
coming highly infectious as s/he progresses toward AIDS (Longini et al., 1989;
Hethcote and Ark, 1992; Hyman et al., 1999; McCluskey, 2003). We assume three
progression stages, where Y1 and W1 now represent the classes of unvaccinated
and vaccinated infected individuals in the primary infection stage, respectively.
Similarly, Y2 and W2 represent the populations of unvaccinated and vaccinated in-
fecteds at the secondary infection stage. Unvaccinated and vaccinated individuals
in the last infection stage (AIDS) are lumped in the A compartment (Appendix
B includes a generalized staged-progression model, with I and J stages of infec-
tion for the unvaccinated and vaccinated individuals, respectively). Compared to
the model (27) (taking HIV transmission by AIDS patients into account), only the
following equations are changed (see Fig. 1C):

dY1/dt = λX − (µ + σ1)Y1,

dY2/dt = σ1Y1 − (µ + σ2)Y2,

dW1/dt = qrλV − (µ + θ1σ1)W1, (36)
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Fig. 3 Differential infectivity (DI) HIV-1 vaccination model: Prevalence or number of sexually-
active people, versus time since vaccination for various values of the parameters. Common pa-
rameters: Table 1 and πi = ρi . Other parameters: (A) θi = 1, γ = 0.1, si = 0.5, q = 1, r = 1; (B)
same as in (A) except si = 0.1; (C) same as in (A), except γ = 0; (D) θi = q = 0.75, si = 0.1, γ =
0.05, r = 1; (E) θi = si = q = 0.75, γ = 0.1, r = 1.25; (F) same as (E).

dW2/dt = θ1σ1W1 − (µ + θ2σ2)W2,

dA/dt = σ2Y2 + θ2σ2W2 − (α + µ)A.

Note that 1/σi (and 1/θiσi for the vaccinated and infected persons) now measures
average waiting time in stage i . A suitable domain is
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D3 =
{

(X, V, Y, W, A) ∈ �7
+ : X + V +

2∑
i=1

(Yi + Wi ) + A≤ �/µ

}
,

where Y = (Y1, Y2) ∈ �2
+, W = (W1, W2) ∈ �2

+.
For this model, it can be shown that the disease-free equilibrium is locally

asymptotically stable if and only if

R3(p) = R03

[
1 − p

µ

γ + µ

(
1 − R0v3

R03

)]
< 1, (37)

where

R03 = β1

µ + σ1
+ σ1β2

(µ + σ1)(µ + σ2)
+ βAσ1σ2

(α + µ)(µ + σ1)(µ + σ2)
, (38)

and

R0v3 = q r2
[

s1β1

µ + θ1σ1
+ θ1σ1s2β2

(µ + θ1σ1)(µ + θ2σ2)

]

+ qrβAθ1σ1θ2σ2

(α + µ)(µ + θ1σ1)(µ + θ2σ2)
. (39)

In this case, prevalence would fall (rise) after vaccination if R0v3 is less (greater)
than R03. The size of the population will be larger (smaller) in the postvaccination
equilibrium if and only if

1 + qr(R03 − 1)
(Dv3/Du3 − 1)
(1 − Du3/L)

− R0v3

R03
(40)

is positive (negative), where

Du3 = 1
µ + σ1

+ σ1

(µ + σ1)(µ + σ2)
+ σ1σ2

(α + µ)(µ + σ1)(µ + σ2)
, (41)

Dv3 = 1
µ + θ1σ1

+ θ1σ1

(µ + θ1σ1)(µ + θ2σ2)
+ θ1σ1θ2σ2

(α + µ)(µ + θ1σ1)(µ + θ2σ2)
.

To analyze the importance of various vaccine characteristics, a generalized ver-
sion of model (36) is simulated using the parameters in Table 1. We assume that
there are four stages of progression (i = 1, 2, . . . , 4) (See Appendix B).

Figure 4A illustrates the impact of a vaccine with a 10-year duration of effect
(γ = 0.1), and 50% reduction in infectiousness and rates of progression of “break-
through” cases (θi = si = 0.5), no increase in risky behavior (r = 1), and no reduc-
tion of susceptibility to infection (q = 1) for various rates of vaccination coverage.
This figure shows a reduction in postvaccination prevalence as a function of vac-
cine coverage. In Fig. 4B, same parameters as in Fig. 4A were used except now
breakthrough infections are assumed to be 75% less infectious and progress slower
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Fig. 4 Staged-Progression (SP) HIV-1 vaccination model: Prevalence, ratio of postvaccination
and prevaccination prevalence, number of sexually-active people, or ratio of postvaccination and
prevaccination number of sexually-active people, versus time since vaccination for various values
of the parameters. Common parameters: Table 1 and πi = ρi . Other parameters: (A) θi = si =
0.5, γ = 0.1, q = 1, r = 1; (B) same as in (A), except θi = si = 0.25; (C) same as in (A) except
γ = 0; (D) θi = si = 0.25, q = 0.75, γ = 0.05, r = 1; (E) si = 1, θi = q = 0.75, γ = 0.1, r = 1.25;
(F) same as (E).

to the next stage (θi = si = 0.25), giving similar (but reduced) prevalence profile
as in Fig. 4A.

In Fig. 4C, we simulate the same vaccine as in Fig. 4A with the additional char-
acteristic of offering lifelong effect (γ = 0). The reduction in prevalence, in com-
parison to the scenario in Fig. 4A, is quite dramatic, underlying the importance
of lifelong vaccine effect (γ = 0). Figure 4D depicts the case of a vaccine that
provides a 25% degree protection (q = 0.75) that lasts for 20 years (γ = 0.05)
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with breakthrough infections being 75% less infectious and slower in progression
(θi = si = 0.25). This gives results that are marginally better than those in Fig. 4C.
In Fig. 4E and F, we illustrate the case where a vaccine that reduces progression
rates by 25% (θi = 0.75), provides 25% degree protection (q = 0.75) lasting for
10 years (γ = 0.1), and increases risk behavior by 25% (r = 1.25) can have detri-
mental effects. This is because, in this case, the postvaccination prevalence rate
is higher and the size of the sexually-active population is smaller compared with
prevaccination levels.

6. Summary and concluding remarks

In this paper, we have presented and analyzed four mathematical models for as-
sessing the impact of an imperfect HIV-1 vaccine in curtailing the spread of HIV in
a given community. We started by analyzing a simple deterministic, compartmen-
tal, mathematical model for monitoring the temporal dynamics of the susceptible,
vaccinated, and infected individuals (excluding those in the AIDS class) in the
presence of an imperfect vaccine. This basic model is then progressively refined
to incorporate key issues pertaining to HIV epidemiology and vaccine character-
istics. First, the contribution of AIDS cases in HIV transmission is included in the
basic model, thereby relaxing the widely-used assumption that AIDS patients do
not partake in the transmission of HIV. Second, the impact of an imperfect HIV-1
vaccine is studied by extending the basic model to incorporate the variations in in-
fectiousness and the increase in the average time from infection to AIDS that goes
along with a decreased viral load during the chronic phase of infection. Finally, the
variation of infectiousness in a given individual over time is incorporated resulting
in a staged progression model, which also monitors the effects of vaccination on
HIV transmission as infected individuals pass through different stages of infection.
The resulting models are then qualitatively analyzed for the existence and stability
of their associated equilibria. In addition to allowing the determination of various
epidemiologic thresholds (such as the reproduction numbers), the analysis also
enables us to gain deeper insights into the stability and bifurcations of the vari-
ous models (notably the possibility of backward bifurcations was established). We
show, via numerical simulations using a reasonable set of parameters, that two
endemic equilibria and a disease-free equilibrium can coexist, and have separate
basins of attraction, for some values of the vaccinated reproduction number, R(p),
less than unity.

The analysis of the basic model shows that the introduction of an imperfect vac-
cine will result in a reduction in HIV prevalence and AIDS-related mortality if the
basic reproduction number in the absence of vaccination, R0, exceeds the basic
reproduction number when the entire population is vaccinated, R0v. Furthermore,
this study shows that even if this condition is violated, and prevalence is higher in
the postvaccination era, the introduction of an imperfect vaccine can still succeed
in reducing AIDS-induced mortality provided R0v is not “too” high relative to R0

and other parameters.
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Our analysis on the effect of HIV transmission by infected individuals in the
AIDS stage of infection shows that vaccine impact depends on whether the
positive therapeutic effect of delaying the onset of AIDS (θ) is less or more dom-
inant than the net effect of reducing infectiousness and increasing risky behavior
(rs). The former shows that the impact of the vaccine will be higher if the contribu-
tion of AIDS transmission is taken into account. Furthermore, HIV transmission
by AIDS patients resulted in longer durations of infectiousness (Du1 > Du, Dv1 >

Dv), higher reproduction numbers (R01 > R0, R0v1 > R0v), and higher prevalence
in comparison to the basic model (where HIV transmission by individuals with
AIDS is not taken into account).

This study shows that the results obtained from the basic model extend to the
more general models, provided the quantities R0, R0v, and durations of infectious-
ness are defined appropriately. These quantities include the main characteristics
of an imperfect HIV-1 vaccine that need to be measured for the impact of vacci-
nation to be assessed. We have shown that these expressions turn out to be more
complicated for the more realistic (extended) models.

The models considered in this study do not incorporate other important fea-
tures of HIV transmission such as heterogeneities in susceptibility to infection,
variations in sexual behavior, gender, and age. A natural extension of this work is
to include some of these features. Investigating the global dynamics of the models
is another area of interest (and a subject of a separate study).

Several candidate HIV-1 vaccines are currently in development. This study
provides useful tools for assessing the effectiveness and analyzing the potential
population level impact of vaccines with various properties and taking into ac-
count increases in risk behaviors following widespread vaccination. It is important
that the effectiveness and impact of candidate vaccines be assessed using appro-
priate tools before any vaccination programs are implemented. The study high-
lights important key parameters to be considered in assessing the public health
impact of such vaccines and indicates the possibility that vaccine effectiveness can,
in some scenarios, be undermined or even more than offset. For example, it is
shown that deploying an imperfect vaccine that slows progression to AIDS with-
out reducing susceptibility to infection or infectiousness of vaccinated individuals
may result in a detrimental public health outcome. Overall, the study shows that
the prospect of effective HIV control is promising using an imperfect vaccine with
certain desirable features. In order to maximize the benefit of such vaccines, ef-
fective behavioral interventions may need to be implemented simultaneously with
HIV vaccines.
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Appendix A: Generalized differential infectivity vaccination model

This appendix describes the derivation and analysis of a generalized version of the
differential infectivity model (27) which, additionally, takes into account the trans-
mission of HIV by AIDS patients. The model, which is an extension of the models
of McLean and Blower (1993), Anderson and Garnett (1996), Hyman et al. (1999),
and Blower et al. (2002), assumes a constant in-flow of new sexually-active individ-
uals, assumed susceptible, into the community at a rate �. Furthermore, suscepti-
ble individuals acquire HIV infection at time dependent rate λ. The rate λ depends
on the transmission probability per partner and number of new sex partners (βi ) of
infected individuals in subgroup i , the relative infectiousness (s j ), and increases in
risky behavior (r) of vaccinated infected individuals, the transmission probability
from AIDS patients to their susceptible sex partners (βA) and the proportions of
individuals in these various subgroups, Yi/N, Wj/N, A/N.

Upon acquiring HIV infection, a susceptible enters the class of unvaccinated
infected individuals (Y). This infected unvaccinated population is divided into I
subgroups, Y1, Y2, . . . , YI , representing the different strata of HIV RNA concen-
trations of infected individuals. The probability an infected unvaccinated individ-
ual entering subgroup i is denoted by ρi , and individuals in subgroup i develop
AIDS at rate σi . It is assumed that a fraction p of susceptible individuals are vacci-
nated and placed in the vaccinated class (V). It is further assumed that the vaccine-
induced immunity acquired by vaccinated individuals wanes at a rate γ (so that
vaccinated individuals move to the susceptible class at a rate γ ). Since vaccinated
individuals are not fully protected against infection (owing to the vaccine imperfec-
tion), it is assumed that vaccinated individuals acquire infection at a rate that is q
times lower than that of unvaccinated susceptible individuals. Infected vaccinated
individuals are placed in class W. Another essential aspect of this model is the as-
sumption that the vaccine alters the distribution of people going into the different
HIV RNA groups upon infection. In other words, it is assumed that the vaccinated
infected population is subdivided into J subgroups, W1, W2, . . . , WJ , with respec-
tive probabilities π1, π2, . . . , πJ . The progression rate to AIDS for subgroup j is
θ jσ j (0 < θ j ≤ 1), so that if HIV RNA subgroup n is defined consistently in the
two infection classes Y and W , θn will measure the effectiveness of the vaccine in
slowing progression to AIDS in infected individuals who are supposed to be in the
infected unvaccinated subgroup n but, due to the vaccine, they enter subgroup n of
the vaccinated infected class. The relative degree of infectiousness of individuals in
subgroup Wn compared with those in subgroup Yn is given by sn (0 < sn ≤ 1). AIDS
patients have an additional disease-induced mortality rate α. Thus, the generalized
differential infectivity model is given by

dX/dt = (1 − p)� − µX − λX + γ V,

dV/dt = p� − µV − qrλV − γ V,
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dYi/dt = ρiλX − (µ + σi )Yi , i = 1, 2, . . . , I

dWj/dt = π j qrλV − (µ + θ jσ j )Wj , j = 1, 2, . . . , J (A.1)

dA/dt =
I∑

i=1

σi Yi +
J∑

j=1

θ jσ j Wj − (α + µ)A,

λ =
I∑

i=1

βi
Yi

N
+

J∑
j=1

rs jβ j
Wj

N
+ βAA,

N = X + V +
I∑

i=1

Yi +
J∑

j=1

Wj + A.

A suitable domain for this model is

Da =
{

(X, V, Y, W, A) ∈ �3+I+J
+ : X + V +

I∑
i=1

Yi +
J∑

j=1

Wj + A≤ �/µ

}
,

where Y = (Y1, Y2, ..., YI) ∈ �I
+, W = (W1, W2, ..., WJ ) ∈ �J

+.
We first analyze the disease-free equilibrium in the absence of vaccination. This

equilibrium is given by: e0a = (X ∗, Y∗
i , A∗) = (�/µ, 0, 0) for i = 1, 2, . . . , I. Lin-

earizing the above system (A.1) around the disease-free equilibrium e0a gives the
following Jacobian:

J (e0a) =




−µ −β1 · · · −βi · · · −βI −βA
0 ρ1β1 − µ − σ1 · · · ρ1βi · · · ρ1βI ρ1βA
...

...
...

...
...

...
...

0 ρiβ1 · · · ρiβi − µ − σi · · · ρiβI ρi βA
...

...
...

...
...

...
...

0 ρIβ1 · · · ρIβi · · · ρIβI − µ − σI ρIβA




.

Using the methods described in Hyman et al. (1999), it can be shown that each
eigenvalue of this Jacobian matrix has negative real part (so that the disease-free
equilibrium is locally asymptotically stable) if and only if

R0a =
I∑

i=1

(
ρiβi

µ + σi
+ βA

α + µ

ρiσi

µ + σi

)
< 1. (A.2)

Similarly, the disease-free equilibrium in the presence of vaccination is given by

E0a = (X ∗, V ∗, Y∗
i , W ∗

j , A∗) =
(

�

µ
− p�

(γ + µ)
,

p�

γ + µ
, 0, 0, 0

)
(A.3)
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for i = 1, 2, . . . , I; j = 1, 2, . . . , J . The associated Jacobian is J (E0a) =



−µ γ · · · −βi

(
1 − µp

γ+µ

)
· · · −rs j β j

(
1 − µp

γ+µ

)
· · · −βA

(
1 − µ p

γ+µ

)
0 −µ − γ · · · −βi qr µ p

γ+µ
· · · −rs j β j qr2 µp

γ+µ
· · · −βAqr µ p

γ+µ

...
...

...
...

...
...

...
...

0 0 · · · ρi βi

(
1 − µp

γ+µ

)
− µ − σi · · · ρi β j (1 − µp

γ+µ
) · · · ρi βA

(
1 − µp

γ+µ

)
...

...
...

...
...

...
...

...

0 0 · · · π j βi qr µ p
γ+µ

· · · π j β j s j qr2 µp
γ+µ

− µ − θ j σ j · · · π j βAqr µp
γ+µ

...
...

...
...

...
...

...
...

0 0 · · · σi · · · θ j σ j · · · −α − µ




.

A straightforward calculation reveals that all eigenvalues have negative real parts
if and only if

Ra(p) = R0a

[
1 − p

µ

γ + µ

(
1 − R0va

R0a

)]
< 1, (A.4)

where

R0va =
J∑

j=1

(
q r2 π j s jβ j

µ + θ jσ j
+ qr

βA

α + µ

π jθ jσ j

µ + θ jσ j

)
. (A.5)

Furthermore, the endemic equilibrium in the absence of vaccination is given by
E1a = (X ∗, V ∗, Y∗

i , W ∗
j , A∗), where

X ∗ = �Dua

R0a − 1 + µDua
, V ∗ = 0, Y∗

i = ρi�(R0a − 1)
(µ + σi )(R0a − 1 + µDua)

, (A.6)

W ∗
i = 0, A∗ = �(R0a − 1)

(α + µ)(R0a − 1 + µDua)

I∑
i=1

ρiσi

µ + σi
,

with

Dua =
I∑

i=1

(
ρi

µ + σi
+ 1

α + µ

ρiσi

µ + σi

)
. (A.7)

An infinitesimal change from (a small perturbation of) this equilibrium as a result
of vaccination can be calculated using the equation

Z = J (E1a)−1P,
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where J (E1a) =



−µ − K11 γ + K12 −K13 · · ·
0 −µ − γ − qr K12 0 · · ·

ρ1 K11 −ρ1 K12 rho1 K13 − µ − σ1 · · ·
...

...
...

...

ρI K11 ρI K12 ρI K13 · · ·
0 π1qr K12 0 · · ·
...

...
...

...

0 πJ qr K12 0 · · ·
0 0 σ1 · · ·

−KI3 −K14 · · · −KJ4 −KA

0 0 · · · 0 0

ρ1 KI3 ρ1 K14 · · · ρ1 KJ4 ρ1 KA

...
...

...
...

...

ρI KI3 − µ − µ − σI ρI K14 · · · ρI KJ4 ρI KA

0 −µ − θ1σ1 · · · 0 0

...
...

...
...

...

0 0 · · · −µ − θJ σJ 0

σI θIσI · · · θJ σJ −α − µ




with

K11 = (R0 − 1)2

Du R0
, K12 = R0 − 1

Du R0
, Ki3 = βi Du + 1 − R0

Du R0
,

Ki4 = rsiβi Du + 1 − R0

Du R0
,

KA = βA Du + 1 − R0

Du R0
,

Z =
(

dX
dp

,
dV
dp

,
dY1

dp
,

dY2

dp
, . . . ,

dYI

dp
,

dW1

dp
,

dW2

dp
, . . .

dWJ

dp
,

dA
dp

)T

,

P = (1,−1, 0, 0, . . . , 0, 0, 0, . . . , 0, 0)T,
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and T denoting transpose of a matrix.
It follows that the effect of vaccination on endemic HIV prevalence (

∑I
i=1 Yi +∑J

j=1 Wj + A)/N is given by the sign of the expression

1 − R0va

R0a
. (A.8)

Thus, prevalence falls following vaccination if and only if R0va < R0a . Further-
more, the effect of vaccination on the size of the population depends on the sign
of the following expression:

1 + qr(R0a − 1)
(Dva/Dua − 1)
(1 − Dua/L)

− R0va

R0a
, (A.9)

where the average durations of infectiousness for the vaccinated groups (Dva) and
duration in the sexually-active (excluding AIDS patients) population (L) are given
by

Dva =
J∑

j=1

[
π j

µ + θ jσ j
+ 1

(α + µ)
π jθ jσ j

(µ + θ jσ j )

]
, L = 1

µ
. (A.10)

Appendix B: Generalized staged-progression vaccination model

For the generalized staged-progression model, the unvaccinated infected popu-
lation (Y) is subdivided into I infected subgroups namely Y1, Y2, . . . , YI . Simi-
larly, the vaccinated infected class (breakthrough infections) is subdivided into J
subgroups W1, W2, . . . , WJ . We assume one AIDS category. Suppose 1/σi (1/θiσi )
denotes the average waiting time in the unvaccinated (vaccinated) subgroup i , then
the generalized staged-progression model is given by

dX/dt = (1 − p)� − µX − λX + γ V,

dV/dt = p� − µV − qrλV − γ V,

dY1/dt = λX − (µ + σ1)Y1,

dYi/dt = σi−1Yi−1 − (µ + σi )Yi , i = 2, 3, . . . , I,

dW1/dt = qrλV − (µ + θ1σ1)W1, (B.1)

dWj/dt = θ j−1σ j−1Wj−1 − (µ + θ jσ j )Wj , j = 2, 3, . . . , J,

dA/dt = σIYI + θJ σJ WJ − (α + µ)A,
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λ =
I∑

i=1

βi
Yi

N
+

J∑
j=1

rs jβ j
Wj

N
+ βA

A
N

,

N = X + V +
I∑

i=1

Yi +
J∑

j=1

Wj + A.

A suitable domain for this model is

Db =
{

(X, V, Y, W, A) ∈ �3+I+J
+ : X + V +

I∑
i=1

Yi +
J∑

j=1

Wj + A≤ �/µ

}
.

where Y = (Y1, Y2, ..., YI) ∈ �I
+, W = (W1, W2, ..., WJ ) ∈ �J

+.
The disease-free equilibrium in the absence of vaccination is given by: e0b =

(X ∗, Y∗
i , A∗) = (�/µ, 0, 0) for i = 1, 2, . . . , I. The associated Jacobian matrix

is

J (e0b) =




−µ −β1 −β2 · · · −βi · · · −βI −βA

0 β1 − µ − σ1 β2 · · · βi · · · βI βA

0 σ1 −µ − σ1 · · · 0 · · · 0 0

...
...

...
...

...
...

...

0 0 0 · · · −µ − σi · · · 0 0

...
...

...
...

...
...

...

0 0 0 · · · 0 σI−1 −µ − σI 0

0 0 0 · · · 0 · · · σI −α − µ




,

so that the disease-free equilibrium in the absence of vaccination is locally asymp-
totically stable if and only if

R0b =
I∑

i=1

[
βi

(µ + σi )

i−1∏
j=1

σ j

(µ + σ j )

]
+ βA

(α + µ)

I∏
h=1

σh

(µ + σh)
< 1. (B.2)

The disease-free equilibrium with vaccination is given by

E0b = (X ∗, V ∗, Y∗
i , W ∗

j , A∗) =
(

�

µ
− p�

(γ + µ)
,

p�

γ + µ
, 0, 0, 0

)
(B.3)
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for i = 1, 2, . . . , I and j = 1, 2, . . . , J . The Jacobian matrix evaluated at this equi-
librium is

J (E0b) =


−µ γ · · · −βi

(
1− µp

γ + µ

)
· · · −rs jβ j

(
1− µp

γ + µ

)
· · · −βA

(
1 − µp

γ + µ

)

0 −µ − γ · · · −βi qr
µp

γ + µ
· · · −rs jβ j qr2 µp

γ + µ
· · · −βAqr

µp
γ + µ

0 0 · · · βi

(
1− µp

γ + µ

)
· · · rs jβ j

(
1− µp

γ + µ

)
· · · βA

(
1− µ p

γ + µ

)
...

...
...

...
...

...
...

...
0 0 · · · −µ − σi · · · 0 · · · 0
...

...
...

...
...

...
...

...

0 0 · · · βi qr
µ p

γ + µ
· · · β j s j qr2 µp

γ+µ
· · · βAqr

µp
γ + µ

...
...

...
...

...
...

...
...

0 0 · · · 0 · · · −µ − θ jσ j · · · 0
...

...
...

...
...

...
...

...
0 0 · · · 0 · · · 0 · · · −α − µ




,

from which it follows that this equilibrium is locally asymptotically stable if and
only if

Rb(p) = R0b

[
1 − p

µ

γ + µ

(
1 − R0vb

R0b

) ]
< 1, (B.4)

where

R0vb = qr2
J∑

i=1

[
siβi

(µ + θiσi )

i−1∏
j=1

θ jσ j

(µ + θ jσ j )

]

+ qr
βA

(α + µ)

I∏
h=1

θhσh

(µ + θhσh)
< 1. (B.5)

Furthermore, it can be shown that the endemic equilibrium for the model (B-2) in
the absence of vaccination is given by E1b = (X ∗, V ∗, Y∗

i , W ∗
j , A∗), where

X ∗ = �Dub

R0b − 1 + µDub
,

Y∗
i = ρi�(R0b − 1)

(µ + σi )(R0b − 1 + µDub)

i−1∏
j=1

σ j

(µ + σ j )
, V ∗ = 0, (B.6)
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W ∗
j = 0, A∗ = �(R0b − 1)

(α + µ)(R0b − 1 + µDub)

I∑
j=1

σ j

µ + σ j
,

where

Dub =
I∑

i=1

[
1

(µ + σi )

i−1∏
j=1

σ j

(µ + σ j )

]
+ 1

(α + µ)

I∏
h=1

σh

(µ + σh)
. (B.7)

An infinitesimal change from this equilibrium as a result of vaccination can be
calculated using the equation

Z = J (E1b)−1P,

where J (E1b) =



−µ − K11 γ + K12 −K13 · · · −KI3 −K14 · · · −KJ4 −KA

0 −µ − γ − qr K12 0 · · · 0 0 · · · 0 0

K11 −K12 K13 − µ − σ1 · · · KI3 K14 · · · KJ4 KA

...
...

...
...

...
...

...
...

...

0 0 0 · · · −µ − σI 0 · · · 0 0

0 qr K12 0 · · · 0 −µ − θ1σ1 · · · 0 0

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · −µ − θJ σJ 0

0 0 0 · · · σI 0 · · · θJ σJ −α − µ




,

and Z, P, and Ki j are defined earlier. The effect of vaccination on en-
demic HIV prevalence (

∑I
i=1 Yi + ∑J

j=1 Wj + A)/N is given by the sign of the
expression

1 − R0vb

R0b
. (B.8)

The effect of vaccination on the size of the population depends on the sign of the
following expression:

1 + qr(R0b − 1)
(Dvb/Dub − 1)
(1 − Dub/L)

− R0vb

R0b
, (B.9)

where the average durations of infectiousness for the vaccinated groups (Dvb) and
duration in the sexually active (excluding AIDS patients) population (L) are given
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by

Dvb =
J∑

i=1

[
1

(µ + θiσi )

i−1∏
j=1

θ jσ j

(µ + θ jσ j )

]

+ 1
(α + µ)

I∏
h=1

θhσh

(µ + θhσh)
, L = 1

µ
. (B.10)
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