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Abstract One of the central goals of mathematical epidemiology is to predict dis-
ease transmission patterns in populations. Two models are commonly used to pre-
dict spatial spread of a disease. The first is the distributed-contacts model, often
described by a contact distribution among stationary individuals. The second is
the distributed-infectives model, often described by the diffusion of infected indi-
viduals. However, neither approach is ideal when individuals move within home
ranges. This paper presents a unified modeling hypothesis, called the restricted-
movement model. We use this model to predict spatial spread in settings where
infected individuals move within overlapping home ranges. Using mathematical
and computational approaches, we show that our restricted-movement model has
three limits: the distributed-contacts model, the distributed-infectives model, and a
third, less studied advective distributed-infectives limit. We also calculate approx-
imate upper bounds for the rates of an epidemic’s spatial spread. Guidelines are
suggested for determining which limit is most appropriate for a specific disease.

Keywords Epidemics · Invasions · Distributed-contacts ·
Distributed-infectives

1. Introduction

A fundamental challenge in mathematical epidemiology is determining how the
structure of a population influences disease transmission. One important aspect is
the spatial structure. For instance, the SARS epidemic spread through 12 coun-
tries within a few weeks. Projections of the spatial spread of an epidemic and the
interactions of human movement at multiple levels with a response protocol will
facilitate the assessment of policy alternatives. Spatially-explicit models are neces-
sary to evaluate the efficacy of movement controls (Riley et al., 2003; Eubank et al.,
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2004). Models that ignore spatial structure can lead to inaccuracy in the prediction
of population dynamics (Durrett and Levin, 1994).

A wide variety of methods have been used for the study of spatially struc-
tured epidemics. Some examples include cellular automata (Doran and Laffan,
2005; Fuks and Lawniczak, 2001), networks (Bauch and Galvani, 2003; Newman,
2002), metapopulations (Lloyd and Jansen, 2004; Arino and van den Driessche,
2003; Keeling and Gilligan, 2000), individual-based models (Bian, 2004), moment-
closure approximations (Thomson and Ellner, 2003; Filipe and Maule, 2003),
interacting particle systems (Durrett, 1999; Schinazi, 1996), diffusion equations
(Caraco et al., 2002; Méndez, 1998), integro-differential equations (Medlock and
Kot, 2003), and integrodifference equations (Allen and Ernest, 2002). Two partic-
ularly useful approaches for describing a disease’s rate of spatial spread are the
distributed-contacts and distributed-infectives models.

Kendall (1965) and Mollison (1972) developed the theory of asymptotic spread
rates in distributed-contacts models. Their family of integral-equation models as-
sumed that each individual is stationary and has a distribution of contacts over
space (Mollison, 1972). Distributed-contacts models are particularly appropriate
for the study of plant diseases (van den Bosch et al., 1988; Metz and van den Bosch,
1995; van den Bosch et al., 1999), but researchers are also using the closely related
framework of contact networks to study disease transmission in human popula-
tions (Newman, 2002; Meyers et al., 2005; Read and Keeling, 2003).

Shortly after Mollison’s first work, Noble (1974) formulated the closely related
theory of asymptotic spread rates under the distributed-infectives model. Building
on earlier work tracing back to Fisher and Kolmogorov, Noble applied diffusion
theory to the spread of bubonic plague in Europe (Noble, 1974). Noble’s model
relies on the assumptions that disease is transmitted through interactions between
dispersing individuals, and that infected individuals move in uncorrelated random
walks. Medlock and Kot (2003) recently developed a distributed-infectives frame-
work that uses a flexible kernel-based approach similar to that employed in earlier
distributed-contact models. They found that inappropriate application of either
the distributed-contact or distributed-infectives approaches can generate inaccu-
rate projections of epidemic spread.

In many epidemiological contexts, the transmission process involves compo-
nents of both distributed contacts and distributed infectives. Hybrid models have
been proposed for this situation. For instance, the equation of Bailey (1975),

∂n
∂t

= r
(
n + DDC∇2n

) + DDI∇2n − µn, (1)

allows for both diffusive contacts and diffusive movement. An analogous spatially
non-local model,

∂n
∂t

= r
(∫

�

kDC(x, y)n(y, t)dy
)

+
∫

�

kDI(x, y) [n(y, t) − n(x, t)] dy − µn, (2)

incorporates both a movement kernel kDI and a contact kernel kDC. Busenberg and
Travis (1983) study a related model with diffusive movement of individuals and
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distributed contacts. Recent study of a model where individuals transition between
stationary and motile states (Hadeler, 2003) demonstrates that both distributed-
infectives and distributed-contacts models can appear as limiting cases of a single
model.

Spatially structured epidemic models are useful tools in the study of geographic
epidemic spread. In particular, spatial models can be used to estimate the speed of
geographic spread. Estimates of rapidity of disease dissemination can, in turn, be
used to guide policy decisions. For many linear models, such as the one discussed
in this paper, researchers have shown that there is a minimum speed c∗ for trav-
eling wave solutions and that in many biologically realistic settings, solutions tend
to approach advancing fronts that travel no faster than c∗. The speed of advancing
fronts in non-linear deterministic and linear stochastic models has been shown in
a number of instances to be given by the minimum speed c∗ from a corresponding
linear model (Mollison, 1991; Kot et al., 2004). The connection between speeds
of non-linear models with their corresponding linear models holding more gener-
ally is the subject of the “linear conjecture” (van den Bosch et al., 1990; Mollison,
1991). Moreover, the minimum speed from a linear model often provides a good
upper bound for the speeds observed in non-linear stochastic models (Mollison,
1972; McKean, 1975; Mollison, 1977; Lewis, 2000; Lewis and Pacala, 2000; Clark
et al., 2001; Snyder, 2003).

Here we consider a scenario that does not neatly conform to the assumptions
of either the distributed-contacts or distributed-infectives hypotheses: the case
of individuals moving within overlapping home ranges. Many animal species live
within a “home range” and periodically return to their “home.” We develop a
restricted-movement model that describes movement relative to a “home” loca-
tion, and study the rate of spatial spread of disease using mathematical analysis and
stochastic simulations. We show that the restricted-movement model possesses
limits corresponding to the distributed-contact and distributed-infective models,
but also possesses a third limit, which we call the advective distributed-infectives
model. Approximations to the rate of spread are provided in all three limits. These
approximations agree with the speeds observed in individual-based Monte Carlo
simulations in all but the advective distributed-infectives limit.

2. Restricted-movement model

Consider a large population distributed uniformly over a one-dimensional world.
Every individual has a spatial position, denoted by x, and a “home” location,
denoted by xh. An individual’s home remains constant, but the individual’s posi-
tion changes according to a biased random walk over time. Specifically, we assume
that an individual is attracted to its home with a force proportional to its current
displacement from that home, x − xh. Given an initial position y, the probability
density p(x|y, xh, t) for the individual’s position at time t satisfies the partial dif-
ferential equation

∂p
∂t

= D
∂2 p
∂x2

+ α
∂

∂x
[(x − xh)p] , (3)
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with delta-function initial condition

p(x|y, xh, 0) = δ(x − y), (4)

where D is the rate of diffusion, and α is the strength of attraction of the individuals
towards their homes. Eqs. (3) and (4) have solution

p(x|y, xh, t) = 1√
2π(1 − e−2αt )D/α

exp

{
−α [(x − xh) − (y − xh) e−αt ]2

2D(1 − e−2αt )

}
. (5)

As time passes, the probability distribution of the individual’s position approaches
the stationary Gauss distribution

p(x|y, xh, t = ∞) = 1√
2π D/α

exp
[−α(x − xh)2

2D

]
. (6)

Every individual is restricted to a neighborhood with variance D/α. This general
description of the random motion of an elastically confined particle is given by an
Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein, 1930; Goel and Richter-
Dyn, 1974).

Now consider the introduction and transmission of an infectious disease. Let
n(x, xh, t) be the density of infected individuals at position x with home xh at time t .
Individuals may behave differently depending on whether they are infected or sus-
ceptible. Therefore, let Di and αi describe the diffusion and attraction of infected
individuals, and let Ds and αs describe the diffusion and attraction of susceptible
individuals. Let transmission of infection occur only among individuals occupying
the same position x. If susceptible individuals have been dispersing for a long time
(� 1/αs) prior to the introduction of infection, the density of susceptible individu-
als with homes xh, as given by Eq. (6), is

e−αs(x−xh)2/2Ds√
2π Ds/αs

. (7)

It follows that the rate at which newly infected individuals with home xh appear at
position x at time t is

r
e−αs(x−xh)2/2Ds√

2π Ds/αs

∫ ∞

−∞
n(x, xh, t) dxh, (8)

where r is the rate of transmission per infection. This is an approximation
valid for the earliest phase of an epidemic when the number of suscepti-
bles is not significantly reduced by infection. Infected individuals are removed
from the disease dynamics by death, recovery, vaccination or quarantine at a
rate µn.
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The rate of change in the density n(x, xh, t) is the sum of movement under the
Ornstein–Uhlenbeck process and new transmissions minus removal,

∂n
∂t

= Di
∂2n
∂x2

+ αi
∂

∂x
[(x − xh)n] + r

e−αs(x−xh)2/2Ds√
2π Ds/αs

∫ ∞

−∞
n dxh − µn. (9)

The restricted-movement model for epidemic spread is posed explicitly by
Eq. (9).

Alternatively, the transmission pattern of the restricted-movement model can
be posed as a convolution over the density of newly infected individuals b(y, t).
Equation (5) provides the probability that an infected individual will be located
at position x, conditioned on the location at the time of infection, home location,
and time. The conditional dependence on home location can be removed using the
definition of conditional probability,

p(x|y, t) =
∫ ∞

−∞
p(x|y, xh, t)p(xh|y) dxh. (10)

From Eq.(7), we obtain the conditioned distribution of home locations

p(xh|y) = e−αs(y−xh)2/2Ds√
2π Ds/αs

. (11)

Thus, Eq. (10) is a convolution of Gauss distributions. After integration, we find
p(x|y, t) = A(x − y, t), where A(x, t) is also a Gauss distribution in x with mean 0
and time-dependent variance given by

(1 − e−2αi t )
Di

αi
+ (1 − e−αi t )2 Ds

αs
. (12)

The density of newly infected individuals can now be constructed by generalizing
the Lotka integral equation (Kot, 2001) to include space. The rate at which all
individuals infected at location y′ at time t − τ produce new infections at location
y at time t is proportional to the fraction of individuals occupying location y and
remaining infected at time t . Integrating over all locations of infection and past
times, the density of individuals b(y, t) newly infected at location y at time t will be

b(y, t) = r
∫ t

0

∫ ∞

−∞
A(y − y′, τ )b(y′, t − τ ) e−µτ dy′ dτ + G(y, t), (13)

where G(y, t) is an inhomogeneity corresponding to initial conditions.

3. Analysis

Although the restricted-movement model is linear, spatially-dependent coeffi-
cients and non-local terms make Eq. (9) difficult to analyze. Fortunately, the
convolution form of Eq. (13) is amenable to analysis using standard transform
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methods (Metz et al., 1999). The minimum speed c∗ of solutions to the restricted-
movement model must satisfy the system

b̂(c∗, ω∗) = 1, (14)

∂b̂
∂ω

(c∗, ω∗) = 0, (15)

where

b̂(c, ω) =
∫ ∞

0

∫ ∞

−∞
e−ω(y+ct)b(y, t) dy dt

= r
αi

∫ 1

0
u

cω+µ

αi
−1e

1
2 ω2

[
Ds
αs

(1−u)2+ Di
αi

(1−u2)
]

du (16)

after converting the infinite-domain integral into a finite-domain integral for nu-
merical computation. Heuristically, this approach is equivalent to assuming trav-
elling wave solutions of the form b(y, t) = exp[−ω(y + ct)], deriving a dispersion
relation c(ω), and then using comparison theory (Fife, 1979) to argue that solu-
tions originating from compact initial conditions will travel with asymptotic speed
c∗ = minω c(ω).

Numerical solutions of Eqs. (14) and (15) can describe the rate of spread under
different parameter regimes. For instance, Fig. 1 shows that the qualitative effect
of removal on the speed of epidemic spread is independent of α. When µ � r , the
decrease in the asymptotic speed of spread is proportional to µ, and as removal
rate µ approaches the transmission rate r , the speed vanishes with c∗ ∝ √

1 − µ/r .
This relation can be derived analytically by using a two-term Taylor approximation
for the exponential in the integrand of Eq. (16) when ω is small. This yields

c∗
EX ≈ 2r

√√√√√
(
1 − µ

r

) (
Ds
αs

+ Di
αi

+ r Di

α2
i

)
(

1 + r
αi

) (
2 + r

αi

) . (17)

To better understand the mechanisms involved, we will study the rate of spread in
the remaining three limiting cases depicted in Fig. 2. The heuristic arguments we
provide can also be made in a more formal manner by the careful study of Eq. (13).

3.1. Distributed-contacts limit

When the homeward attraction is much larger than the transmission rate (r � αi ),
the position of each infected individual is reasonably approximated by the time-
independent solution of the Ornstein–Uhlenbeck equation. Using a separation-of-
variables ansatz, we let

n(x, xh, t) = e−αi (x−xh)2/2Di√
2π Di/αi

ñ (xh, t) . (18)
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Fig. 1 Proportional decreases in the spread rate c∗ depending on the removal rate µ compared
to cases of no removal (µ = 0), as calculated from Eqs. (14) and (15). Faster removal rates µ

of infected individuals slow the spread of infection in a similar fashion for different values of α.
Parameters: r = 1, Ds/αs = Di /αi = 1, αi = αs = α.

Substituting Eq. (18) into Eq. (9) and integrating over all space x, we find ñ is
governed by the integro-differential equation

∂ñ(xh, t)
∂t

= r
[

2π

(
Di

αi
+ Ds

αs

)]−1/2∫ ∞

−∞
e−(xh−u)2

(
2Di
αi

+ 2Ds
αs

)−1

ñ(u, t) du − µñ. (19)

Using the methods described in Daniels (1975) and Medlock and Kot (2003), the
rate of spread c∗

DC given compact initial conditions is

c∗
DC = r

√
θeθ

(
Ds

αs
+ Di

αi

)
, (20)

Fig. 2 Partial orderings describing the parameter relationships of the four asymptotic limits of
the restricted-movement model. Arrows point from larger parameters to smaller parameters. For
instance, if r < µ, the transmission chain dies out, leading to extinction of the disease.
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where θ solves

(1 − θ) eθ/2 = µ

r
. (21)

In the special case of µ = 0,

c∗
DC = r

√
e

(
Ds

αs
+ Di

αi

)
, (22)

where e ≈ 2.7.

3.2. Diffusive distributed-infectives limit

When disease transmission is rapid (r � αi ), transmission often occurs before an
individual’s position has relaxed to equilibrium. If diffusion is much faster than
homeward attraction (Diαs/Ds � αi ), the movement of each individual is approx-
imately independent of its home. If we apply this assumption and integrate over
all homes, we find

∂n
∂t

= Di
∂2n
∂x2

+ (r − µ)n, where n(x, t) =
∫ ∞

−∞
n(x, xh, t) dxh. (23)

This diffusion equation is a common description of the distributed-infectives
model (Medlock and Kot, 2003). The asymptotic speed given compact initial con-
ditions is

c∗
DI = 2

√
Di (r − µ). (24)

3.3. Advective distributed-infectives limit

When disease transmission is rapid (r � αi ) but diffusion effects are weak
(Diαs/Ds � αi ), advection governs dispersal. Because of the dominance of advec-
tion, we refer to this as the advective distributed-infectives model. The calculation
of an asymptotic spread rate c∗

ADI is more challenging in the advective distributed-
infectives case than in the previously studied cases. Dimensional analysis in the
case of Di = 0 shows

c∗
ADI = αi

√
Ds

αs
f
(

r
αi

,
µ

αi

)
, (25)

where f is an unknown function. One ad hoc solution method that seems to give
reasonable estimates in the absence of removal (µ = 0) is to solve Eq. (14) us-
ing the ansatz ω∗ = 4c∗. This ansatz is the asymptotic condition for there to be a
single-critical point of the integrand of Eq. (16) within the interval (0, 1), and is an
approximate condition for minimization of Eq. (16) when ω is large. This leads to
the solution

c∗
ADI = 1

2

√
rαi

Ds

αs
. (26)
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Fig. 3 Speeds c∗ in the advective distributed-infectives limit (Di = 0) and in the absence of
removal (µ = 0) compared to speeds observed in simulations. The open circles represent sim-
ulation speeds, calculated from 1000 runs, each up to 2 million infected individuals. For small
transmission rates, speeds observed in individual-based simulations agree with predicted speed c∗
and the distributed-contacts approximation. For large transmission rates, the speed of spread ob-
served in individual-based simulations is dramatically slower than the minimum speed c∗, possibly
due to the slow convergence of the simulations. Also, the minimum speed was slightly slower than
the advective distributed-infectives approximation, Eq. (26). Parameters: Ds = αs = αi = 1.

However, Fig. 3 suggests that this approximation is strictly greater than c∗ in the
limit of rapid transmission (r � αi ). The difficulty in computing the speed of the
advective distributed-infectives limit may be because the non-local term appears
to make non-vanishing contributions to b̂(c, ω) in regions of solution of Eqs. (14)
and (15).

4. Individual-based simulation

Here we compare the results of our mathematical analysis to individual-based sim-
ulations of the transmission process. The simulation methods are described in the
Appendix.

The median spatial position of the epidemic at a given time was approximated
using the empirical distribution of the furthest-forward observed individual from
an ensemble of 1000 simulation runs. The speed is calculated by least-squares in-
terpolation through the median epidemic positions (see Fig. 4). The simluation
code is available on request.

Observations of spatial spread by individual-based simulation experiments gen-
erally coincided with the minimum speeds calculated from Eqs. (14) and (15) (see
Figs. 5 and 6). Observed speeds were around 90% of the minimum speeds c∗ by
the time the infected population reached 2 million individuals. This prediction
agrees with the previous simulation results of Snyder (2003) and Kot et al. (2004).
Approaches based on Eqs. (14) and (15) are far more computationally efficient
than individual-based simulations, and can obtain solutions in a matter of seconds
rather than hours.
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Fig. 4 An example of the numerical calculation of the median asymptotic speed from individual-
based simulations. (A) Empirical distributions of the furthest-forward observed individuals, every
1.3 time units, accumulated from 1000 simulation runs, and (B) the median positions. The speed
is approximated by least-squares interpolation of the linear portion of the median position curve.
Parameters: Di = Ds = αi = αs = r = 1 , µ = 0.

There is a significant discrepancy between the mathematical and simulation
methods in the advective distributed-infectives limit. Simulation experiments
demonstrated that speeds could be orders of magnitude slower than asymptotic
prediction of the minimum wave speed c∗ (see Fig. 3). Observed speeds decayed
at a rate proportional to αi . This did not accord with the the square-root depen-
dence predicted by Eq. (26), which was derived using an ad hoc ansatz. Careful
inspection of simulation results, however, suggests that epidemics were still accel-
erating at the end of simulation runs. It was likely that fronts had not reached their
asymptotic spread rates before time and memory constraints stopped simulations
at 2 million infected individuals. Nonetheless, if the spread is still accelerating after
more than 2 million individuals have been infected, the asymptotic speed is prob-
ably not a practical upper bound in any realistic epidemiological scenario. Further
research with particular emphasis on accelerating fronts is needed. When an ad-
vective distributed-infectives limit is considered most appropriate, we currently
recommend that individual-based models be used, at least until a more efficient
alternative is developed.

5. Discussion

In this paper we have formulated the restricted-movement model to describe spa-
tial patterns of disease transmission. The restricted-movement model differs from
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Fig. 5 The observed speed in individual-based simulations as a function of attraction strength
α = αi = αs. The relaxation time for individual movement is proportional to 1/αi . For long relax-
ation times, the dispersal process is dominated by the distributed-infectives component. For short
relaxation times, speeds agree with the distributed-contacts model’s prediction, Eq. (20). The sim-
ulation results are close to the minimum speed c∗ over the range of α. Parameters: Di = Ds = 1,
r = 1, µ = 0.

existing models by describing individual movement relative to a “home” location
to which individuals return sporadically. The restricted-movement model also uni-
fies the distributed-infectives and distributed-contacts models in a common frame-
work and further illuminates their relationships. When infected individuals re-
turn home rapidly, speeds in the restricted-movement model coincide with those
of the distributed-contacts model. Conversely, when infected individuals return
home very slowly relative to both diffusion and transmission, rates of spread in
the restricted-movement model coincide with those of the diffusive distributed-
infectives model. In the distributed-contacts and diffusive distributed-infectives
limits, the asymptotic rates of spread can be calculated from the simple expres-
sions we have formulated.

An imprecise approximation in the advective distributed-infectives limit is also
given, but this limit requires further study. In the advective limit, the dispersal

Fig. 6 The speeds observed in individual-based simulations as a function of removal rate µ, com-
pared with minimum speeds c∗. By the completion of simulations, median simulation speeds have
reached roughly 90% of the predicted speeds. Parameters: Ds = Di = 1, αs = αi = 1, r = 1.
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process is closely related to the “velocity jump process” of Othmer et al. (1988).
The velocity jump process is motivated by the “run and tumble movement” of
flagellated bacteria such as E. coli. This process describes the movement of an or-
ganism that alternately “runs” at a constant velocity and then “tumbles” to a new
velocity. Alt (1980) derives a special case of the velocity jump process from bio-
logical assumptions and studies a diffusion approximation. Othmer et al. (1988)
derives the velocity jump process from a generalization of the telegrapher’s equa-
tion and then analyzes some special cases. Schwetlick (2000) shows the existence
of traveling-wave solutions for the velocity jump process when the velocities of
individuals are bounded and gives an expression for the minimum wave speed.
Hillen and Othmer (2000) and Othmer and Hillen (2002) give a detailed study of
diffusion approximations for the velocity jump process.

Individual-based models of social networks (Eubank et al., 2004) contain both
static components, such as family contacts, and transient components, such as peo-
ple sharing a crowded subway car. Under the restricted-movement model, tran-
sient components will govern the rate of spatial epidemic spread when trans-
mission frequently occurs before the movement of an individual has relaxed to
its equilibrium distributions. When many transmissions occur during relaxation,
distributed-infectives models are most appropriate for describing spread. If trans-
missions seldom occur before relaxation, the distributed-contacts approach is the
most appropriate. The boundary between these two limits can be approximated
by equating Eqs. (24) and (20). In the specific case where removal is slow (µ ≈ 0),
infection does not alter individual behavior (Dsαi = Diαs), and individuals return
home every night (αi = 1), the distributed-infectives model must be considered
when there are more than 0.7 transmissions per day per individual. For example,
smallpox and measles are transmitted more than once a day on average, and are
likely to require distributed-infectives models, while scarlet fever is transmitted
less than 0.5 times a day, suggesting a distributed-contacts model may be adequate
(Anderson and May, 1991; Fenner et al., 1988).

Our results for the restricted-movement model are robust to a greater or lesser
extent when the underlying assumptions are relaxed. For instance, the general-
ization from 1 to 2 spatial dimensions may prolong the transient dynamics, but is
not expected to effect our asymptotic results. The mean-field description of dis-
ease transmission implicitly assumes a large, dense population. Disease spread is
likely to be slower in a sparse population with fewer contacts between suscepti-
ble and infected individuals. The accumulation of immune individuals may further
slow the spread of disease. We have also assumed that transmission can only oc-
cur through close contact between individuals. We have not explored scenarios
where transmission is facilitated exogenously by vectors or other environmental
factors.

The Ornstein–Uhlenbeck process is a convenient assumption which is reason-
able for many animal species. Our qualitative results should also hold for other
empirically derived movement models. Consider alternative cases where infected
individuals advect away from their point of infection for a fixed time, after which
they are stationary for the duration of infection. In such cases, we can expect epi-
demic spread to correspond to an advective distributed-infectives model for fast
transmission, but a distributed-contacts model for slow transmission.
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Fig. 7 Changes in epidemic speed depending on the attraction intensity αi . With strong attrac-
tion (αi � 1), the distributed-contacts model provides a good approximation, while the diffusive
distributed-infectives model provides the best approximations for weak attraction. Disease spread
is slowest between distributed-contacts and distrubuted-infectives limits for αi ≈ 0.2. Parameters:
Di = 0.2, µ = 0, r = 2, Ds/αs = 1.

Greater biological realism can be achieved from the restricted-movement model
by relaxing the assumptions of temporal, spatial, and demographic homogeneity.
Temporal homogeneity can be relaxed to allow for daily and weekly movement
cycles or aperiodic transients. Spatial homogeneity and isotropy can be loosened,
particularly in two dimensions, to allow for spatial variation in population den-
sity and individual movement patterns. The current model captures some demo-
graphic heterogeneity by allowing infected and susceptible individuals to behave
differently, but these classes themselves are assumed to be homogeneous. De-
mographic heterogeneity may be further explored by allowing population age
structure and correlated movement of individuals. Each of these generalizations
greatly increases the amount of biological information that can be incorporated
into the restricted-movement model.

Our methods may also be of use in ecological studies of animal populations
where individuals can exhibit behavioral biases in their movement. Density-
dependence can be included by adding non-linear growth and mortality terms to
Eq. (9). Such models provide an extension of diffusion models and might provide
useful analytic results.

In conclusion, the restricted-movement model provides an improved approach
to spatial epidemic modeling, and elucidates the relationship between popular
distributed-contacts and distributed-infectives approaches. Along with the issues
discussed above, future work may include applications of this theory to specific
epidemic control problems.
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Appendix: Individual-based simulation methods

Before describing the simulation procedure, it useful to lay out some notation,
consistent with Evans et al. (2000). Let E : b represent an exponential distribution
with expectation b, let N : a, b represent a Gauss distribution with mean a and
standard deviation b, and let U : xh, y, t, D, α represent the distribution of the po-
sition at time t of an individual with home xh who started at position y at time 0,
as given by Eq. (5). Also, the notation x ∼ X reads “the random variable x has
distribution X”.

Suppose there are currently C(T) infected individuals enumerated j =
1, 2, . . . , C(T) at time T. For each individual j , we know that individual’s home
xh( j) and position x( j) at some time t( j) ≤ T.

The individual-based simulation is as follows. With uniform probability, ran-
domly choose an individual j . Wait a time t̂ = min(t̂r , t̂µ), where the time until
the next transmission event t̂r ∼ E : 1/rC(T) and the time until the next removal
event t̂µ ∼ E : 1/µC(T). If the next event is a removal, then individual j is re-
moved from the population, and C(T + t̂) = C(T) − 1. If the next event is a trans-
mission, individual j ’s current position x̂ ∼ U : xh( j), x( j), t̂ + T − t( j), Di , αi at
time T + t̂ . The newly infected individual IC(T)+1 has the same position x̂ but his
home x̂h ∼ N : x̂,

√
Ds/αs. The simulation is updated such that

x( j) = x(C(T) + 1) = x̂, (A.1)

t( j) = t(C(T) + 1) = T + t̂, (A.2)

xh(C(T) + 1) = x̂h, (A.3)

C(T + t̂) = C(T) + 1. (A.4)

Having updated the system, we now wait for the next transmission or removal
event. The initial state for all simulations is one infected individual located at its
home at the origin. Simulations stop when C(T) = 0 or C(T) reaches the maxi-
mum allowed number, which, because of computational constraints, we limited to
2 million infected individuals.

C++ and Python code, suitable for use under GNU/Linux, is available on re-
quest.

One drawback of the simulation approach is that we do not have complete infor-
mation about the simulation’s state at any time after the first transmission event.
During simulations, the position of the front P(T) at time T is approximated as
the position of the furthest-forward observed individual,

P(T + t̂) = max
{

x̂, P(T)
}
. (A.5)

This may overestimate the advance of the front, if the furthest-forward observation
has retreated since last observed, or this may underestimate the advance, because
the position of only 2 infected individuals is known precisely at time T. We have
compared our method to simulations where complete snapshots of the population
were calculated at specific time points. The results from both approaches agreed,
but we found the snapshot approach was approximately 1.5 times slower.
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