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Abstract This paper analyses data arising from a SARS epidemic in Shanxi
province of China involving a total of 354 people infected with SARS-CoV be-
tween late February and late May 2003. Using Bayesian inference, we have es-
timated critical epidemiological determinants. The estimated mean incubation
period was 5.3 days (95% CI 4.2-6.8 days), mean time to hospitalisation was
3.5 days (95% CI 2.8-3.6 days), mean time from symptom onset to recovery
was 26 days (95% CI 25-27 days) and mean time from symptom onset to death
was 21 days (95% CI 16-26 days). The reproduction ratio was estimated to be
4.8 (95% CI 2.2-8.8) in the early part of the epidemic (February and March
2003) reducing to 0.75 (95% CI 0.65-0.85) in the later part of the epidemic
(April and May 2003). The infectivity of symptomatic SARS cases in hospi-
tal and in the community was estimated. Community SARS cases caused trans-
mission to others at an estimated rate of 0.4 per infective per day during the
early part of the epidemic, reducing to 0.2 in the later part of the epidemic.
For hospitalised patients, the daily infectivity was approximately 0.15 early in
the epidemic, but fell to 0.0006 in the later part of the epidemic. Despite the
lower daily infectivity level for hospitalised patients, the long duration of the
hospitalisation led to a greater number of transmissions within hospitals com-
pared with the community in the early part of the epidemic, as estimated by
this study. This study investigated the individual infectivity profile during the
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symptomatic period, with an estimated peak infectivity on the ninth symptomatic
day.

Keywords SARS - Bayesian - Modelling - Infectious disease - Viral transmission
1. Introduction

Severe acute respiratory syndrome (SARS) caused a perplexing epidemic with
propensity for hospital transmission, rapid worldwide spread and markedly dif-
ferent epidemic curves in different countries (Wallinga and Teunis, 2004). Begin-
ning in November 2002 in the Guangdong province of China, the SARS epidemic
spread to Hong Kong, Viet Nam and Singapore by March 2003 and eventually to
29 countries around the world (Poon et al., 2004). The World Health Organisation
(WHO) issued a global alert on 12 March 2003 regarding a cluster of cases of se-
vere atypical pneumonia and 3 days later gave a case definition and name to the
condition (WHO, 2003c). A novel coronavirus, named SARS-CoV, was identified
as the infectious agent responsible for SARS in April 2003 (Drosten et al., 2003;
Ksiazek et al., 2003; Peiris et al., 2003b). In total, 8098 SARS infections and 774
deaths were reported in the 2002/2003 epidemic of SARS (Gumel et al., 2004).
The largest outbreaks occurred in mainland China, where 5327 infections and 349
deaths were reported (WHO, 2003a). Despite the initial worldwide spread and
early predictions of high case numbers, the 2003 SARS epidemic was contained
relatively rapidly with no further spread reported after July 2003 (Donnelly et al.,
2004).

SARS-CoV is likely to have an animal reservoir, possibly the palm civet cat,
Paguma lavatas (Guan et al., 2003; Webster, 2004), and further epidemics are an-
ticipated. Laboratory associated infections in Singapore (Lim et al., 2004), Taiwan
(Orellana, 2004) and China (WHO, 2004), the latter involving onward transmis-
sion (Normille, 2004), remind us that further outbreaks of SARS could occur. To
help contain future epidemics of SARS, it is essential to have an understanding of
the infectivity, incubation period and likely course of the illness.

Nosocomial transmission was a prominent feature of SARS epidemiology. Early
in the SARS pandemic, a majority of cases arose from hospital transmission in
many places, including Toronto (Booth et al., 2003), Hong Kong (Riley et al.,
2003; Wong et al., 2004) and Singapore (Gopalakrishna et al., 2004). Later in the
course of the epidemic, hospitals were effective sites of containment of SARS
(Gopalakrishna et al., 2004). Factors believed to be important in reducing noso-
comial transmission of SARS include handwashing and wearing of masks, while
contact with respiratory secretions is highly correlated with SARS transmission
(Teleman et al., 2004). Thorough contact tracing and quarantine of exposed cases
led to reduced transmission in Singapore (Gopalakrishna et al., 2004). In this study,
we compare the estimated infectivity of SARS cases in the community and in hos-
pitals. We also examine how this changes over time.

Mathematical models of the SARS epidemic have the potential to give in-
sights into the disease process, to estimate critical epidemiological determinants
and ultimately to predict outcomes of public health interventions. Models of
SARS transmission published to date have already been useful tools for designing
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control strategies; estimating the incubation period (Donnelly et al., 2003), the
infectivity (Lipsitch et al., 2003; Riley et al., 2003; Wallinga and Teunis, 2004),
and the potential impact of interventions (Riley et al., 2003). Models have
been used to predict the effect of public health measures on the SARS epi-
demic in many countries including Canada (Choi and Pak, 2003; Chowell et al.,
2003), Hong Kong (Chowell et al., 2003; Lee et al., 2003; Riley et al., 2003), Singa-
pore (Chowell et al., 2003; Lipsitch et al., 2003), Taiwan (Hsieh et al., 2004), and
mainland China (Wang and Ruan, 2004).

For transmission models to be realistic and predictive, accurate measures of the
various transition times are required, including the incubation period, and the time
from symptom onset to removal (isolation, recovery or death). Estimates of infec-
tivity, particularly those based on the early behaviour of an epidemic, are sensitive
to the estimate of the incubation period. Models are also sensitive to the full distri-
bution of the transition periods (Lloyd, 2001), such that summary measures (mean,
median) alone are often inadequate in modelling the behaviour of the epidemic.

In order to design effective and safe interventions, public health practitioners
also need an accurate estimate of the incubation period. Decisions regarding quar-
antine time require estimates of the mean incubation period and the probability of
outliers. Therefore, the full probability distributions of the incubation and symp-
tomatic periods are required.

The general aims of this study are to estimate accurately the full distribution
of the transition times; the incubation period, time from symptom onset to hospi-
talisation, recovery and death, to determine the infectivity of SARS including the
relative infectivity of symptomatic SARS cases in and out of hospital and early
and late in the epidemic, and to estimate the individual infectivity profile over the
course of SARS infection.

This study makes some unique contributions to the study of SARS transmission.
Firstly, it uses a Bayesian framework to infer transmission times and calculate the
incubation period. In doing so, it investigates three different models of viral trans-
mission. Secondly, it compares the infectiousness of SARS cases in the commu-
nity and in hospital and during different times of the epidemic. Thirdly, this study
considers three different models for individual infectivity profiles over time, using
model selection criteria to determine the optimal model. The current study inves-
tigates a database from mainland China which has not been published previously.

2. Susceptible-exposed-infectious-removed (SEIR) model

The model used in this study is an extension of the stochastic version of the com-
partmental Susceptible-Exposed-Infectious-Removed (SEIR) model (see Fig. 1)
used extensively in infectious disease modelling literature (see, for example,
Kermack and McKendrick, 1927). In the SEIR model, individuals in a population
begin as susceptible (§) and move to the exposed ( E) state following transmission
of a contagion. This occurs at a rate that is proportional to the number of infectious
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Fig.1 The schematic of the SEIR model.
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(1) and the proportion of susceptible people in the community, S/N (the mass ac-
tion effect) so that in a small time interval, d¢, the probability of a transmission
occurring is given by

Pr(S(t+dt) =i —1, E(t +dt) = j+1|S(t) =i, E(t) = j)

BS(t) I(t)dt
EECE W

where B is a constant. In the simplest version of the SEIR model, transition be-
tween subsequent model compartments occurs at a constant rate, becoming in-
fectious as they move into the I compartment and being neither infectious nor
susceptible after being Removed (see Fig. 1). This leads to

Pr(E(t+dt)=j—1, It +dt) =k+1|EQ¢)=j, I(t) =k) =8 E(t)dt (2)
Pr({(t+dt) =k—=1|1(t) =k) =y I(t)dt, 3)

where § and y are constants.

The assumption of a constant transition rate in the basic SEIR model, adopted
for ease of calculation, leads to an exponential distribution of the probability den-
sity function for the time to transition. In the case of SARS, the incubation period,
time to hospitalisation and time from hospital admission to discharge have been
shown not to be exponentially distributed (Donnelly et al., 2003). Assuming an ex-
ponentially distributed incubation period, with a mode of zero (when, in fact, the
mode of the incubation period is considerably greater than zero), leads to under-
estimation of infectivity inferred from the early epidemic growth curve.

In the current study, we implemented an alternative parameterisation of the
transition times. Following Donnelly et al. (2003), the Gamuma distribution was
used. Other distributions could also be utilised to approximate the incubation
period, such as the Weibull distribution, used by Lipsitch et al. (2003). In this
study, we use I'(a, 8) notation, where « is the shape parameter and 8 is the
reciprocal of the scale parameter, such that

aya—1,—Bx
p(x)=ﬂxFT(;(x>0,a>0,ﬁ>0) 4)
and
I(a) = / " le ! dt. ®)
0

The current study extends the SEIR model by considering two infectious groups
and two removed groups. As shown in Fig. 2, in this model the patients can either
be infectious and in the community, /, or infectious and hospitalised H. Removal
can represent either recovery, R, or death, D. This model, similar to that used by
Riley et al. (2003) and Lipsitch et al. (2003), will be referred to as the SEIHRD
model.

In addition to dividing the infectious compartments into two groups, community
and hospitalised, the study also examines infectivity early and late in the epidemic.
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Fig. 2 The schematic of the extended SEIHRD model used in this study. The heavy arrows
represent the transitions that were observed or inferred in the current study. The thin arrows
represent events that probably occur, but with a low frequency relative to other transitions and
therefore are not considered in the current study.

Hence, there are four infectious groups to consider (a) early community, (b) early
hospitalised, (c) late community and (d) late hospitalised.

In this study, three different models of individual infectivity profiles are consid-
ered:

Uniform transmission model: Constant infectivity within each of the four groups
of patients (a)—(d), but different between groups.

Model with transmission proportional to viral load: Infectivity is modelled as a
triangular distribution, with zero infectivity on day 0 and 20 and a peak at day
10, following the viral load as described by Peiris et al. (2003aba). This is also
influenced by the group (a)—(d) into which the patient falls.

Model with transmission given by a Gamma distribution: Infectivity takes on values
given by the Gamma distribution, the shape and scale parameters of which are
inferred. Again this is modified by the co-efficient of infectivity based on the
group into which the patient falls (a)—(d).

This study assumes that the proportion of the population that is susceptible,
S/N, remains at unity throughout the epidemic. The authors justify this by the
large number of people in the region investigated in this study, with the largest
city in Shanxi Province having a population of around 3 million, compared with
the small number (354) of SARS cases observed in the epidemic in the re-
gion. The full description of the database used in this paper is given in the next
section.

Other assumptions implicit in the current model are that there is homogeneous
mixing of the population and that SARS cases were only infectious during the
symptomatic period. Early contact tracing studies suggest that infectivity is indeed
low during the incubation period (Poutanen et al., 2003). The current study also
assumes that sub-clinical SARS cases (not recorded in the database) did not con-
tribute significantly to the epidemic. This assumption is supported by the finding of
a very low seropositivity (0.2%) of SARS antibodies in people who did not have
symptomatic SARS but who had close contact with SARS cases (Leung et al.,
2004).

3. Severe acute respiratory syndrome data from Shanxi province

The data used in this study come from Shanxi province in China. On 23 April,
the WHO travel warning to China was extended to include Beijing and Shanxi
province (WHO, 2003d). The travel warning was removed on 13 June 2003, after
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Fig.3 Histogram of daily admissions to hospital.

it was concluded that no further chains of transmission were occurring (WHO,
2003b). The Shanxi province epidemic began when a person returned to the
province while incubating SARS after visiting Beijing in February 2003. There
were 354 reported cases of SARS during the epidemic, which began in late
February 2003 and ended late May 2003.

Appendix A gives the full Gantt chart of the epidemic in Shanxi province.
Figure 3 shows the daily number of hospital admissions of SARS cases in Shanxi
province. It can be seen that the peak incidence of SARS cases admitted to hospi-
tal in Shanxi province was in mid- to late April 2003.

Data recording the duration of exposure to another person with SARS were
available in 85 cases. Exposure time, recorded by calendar day, ranged from zero
to a maximum of 26 days as shown in Fig. 4. The mean time from the day of first
known exposure to the day of symptom onset (inclusive) was 8.5 days using the
discrete data set. The time from the end of exposure to the symptomatic period
had a mean of 2.9 days. This places an upper and lower limit on estimates of the
mean incubation period.

The time from symptom onset to hospitalisation was recorded in 351 of the 354
cases. In two cases, the recorded hospital admission day preceded the recorded
time of symptom onset. This was due to quarantining of exposed individuals during
the incubation period. These patients were excluded from the analysis of time from
symptom onset to hospitalisation, leaving 349 available patient records. Figure 5
shows a histogram of the time from symptom onset to hospitalisation. It is an
approximately exponential distribution and the majority of SARS cases reached
hospital within 4 days. It is widely dispersed, however, with some people taking
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Fig. 4 Histogram of time from first exposure to another SARS case to symptom onset.

more than 10 days to reach hospital. There is a clear outlier among these data
with one SARS case reporting 44 days of symptoms prior to hospitalisation. This
is also evident on the Gantt chart, shown in Fig. A.1. It seems most likely that the
date of onset of symptoms is erroneous and this case has been excluded from the
remainder of the analysis.
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Fig. 5 Recorded time interval from symptom onset to hospitalisation.
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Fig. 6 Recorded time interval from symptom onset to recovery.

Of the 354 cases in the epidemic, 344 had a recorded outcome (recovery or
death), of whom 20 died and the remainder were discharged from hospital fol-
lowing recovery. The time from symptom onset to recovery was available in all
324 cases and the time from symptom onset to death was available in 18 of the
20 cases. The distributions of symptom onset to recovery and symptom onset to
death are shown in Figs. 6 and 7, respectively.

Number of cases

0 20 40 60 80
Time from symptom onset to death (days)

Fig.7 Recorded time interval from symptom onset to death.
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4. Challenges and specific aims of the study

A major challenge of the study was to estimate the distribution of the incubation
period of SARS. The time of transmission of SARS is unobservable, such that esti-
mates of the incubation period are necessarily based on inference. A Bayesian in-
ference framework was used in this study as described in Section 5. Only a limited
number of cases have recorded known symptomatic SARS contacts and these are
used to infer transmission times and thereby estimate the incubation period. The
cases with the shortest contact periods are most informative. Section 6 describes
the methodology used to parameterise the distributions of time to hospitalisation,
recovery and death. This is more straightforward, as the times are observed and
recorded.

In Section 7 we estimate the infectivity of the two compartments assumed to
be infectious, the symptomatic patients in community and in hospital. This re-
quires inference regarding missing data and transmission times. Extending the
SEIR model to include the two infectious compartments allows us to estimate the
relative impact of hospitalised and community SARS cases on the epidemiology.
Additionally, we can compare how infectivity changed over time in each group,
reflecting the effects of interventions. In this section, we also estimate the change
point; the date that marked the transition from high to relatively low infectivity.
Finally, this study explores individual infectivity profiles over the course of SARS
illness, see Section 8.

5. Estimation of time to transmission and incubation period

The incubation period was estimated only from those cases that had known contact
with another SARS case, and when there was a single contact of known duration.
In the Shanxi database, this included 85 cases. It was assumed that transmission
occurred from the known contact during the contact period and that the rate of
transmission, given the contact was independent of the state of the epidemic. The
required times of exposure for transmission to occur for the 85 cases under con-
sideration was assumed to be a set of independent random variables. Incubation
periods of the SARS cases are also assumed to be independent.

The model assumes that during periods of exposure to symptomatic SARS cases,
susceptible individuals acquire the disease at a fixed daily hazard rate, A. This con-
stant hazard model is compared with two other models, a model assuming imme-
diate transmission and a model in which the probability of transmission is uniform
across the contact period. Following transmission, there is an incubation period
that occurs before patients become symptomatic. This period is assumed to be
drawn from a I'(«, B1) distribution.

5.1. Bayesian approach to estimating incubation period
A Bayesian approach was used to estimate the incubation period:

(A, ar, Br;data) o« w(A, ar, Br)L(data; 1, oy, BL), (6)



898 Bulletin of Mathematical Biology (2006) 68: 889-917

where 7 (A, oy, BL) is the prior probability of the parameters, L(data;x, «y, 1)
the likelihood of the data given the parameters, and 7 (%, oy, B1;data) the poste-
rior probability distribution of the parameters. Explanation of the choice of prior
probability distributions for the parameters, use of augmented data and determi-
nation of likelihood of the data are given in this section. Details of computations
are given in Appendix B.

5.1.1. Choice of prior probability distributions

Gamma priors were chosen for the three parameters. Vague prior distributions,
'(0.001, 0.001), were chosen for A, @y, and B, because little is known about the
transmission rate.

5.1.2. Likelihood of the data given the parameters

The data used for the estimation of incubation period are the durations of expo-
sure to another SARS case, denoted by v; for each individual i, and the time from
the first exposure to the onset of symptoms, denoted by s; for each individual i. If
N is the total number of cases, the vector of the N exposure times is denoted by v
and the vector of N times to symptom onset is denoted by s.

The time that each individual in the data set acquired SARS-CoV is not known.
It is assumed to be during the period of exposure to another symptomatic SARS
case. The time to transmission, denoted by u;, was estimated and included in the
model as an auxiliary variable. The remaining time to onset of symptoms (s; — u;)
is the incubation period.

In the data set available, all patients developed SARS, so we are considering
the probability density of u; conditional on transmission having occurred (there-
fore u; < v;). Assuming a constant hazard of transmission throughout the contact
period, the conditional probability density of u; is a truncated exponential distri-
bution given by

A e—ku;
filui ) = 1

ﬂ(0<”i<vi)' (7)

The likelihood of u is also dependent on the probability density of the incuba-
tion period, s; — u;. The distribution, g, of the incubation period, given by u;, is
determined by the I'(«y, B1) distribution, so that

g((s; —up);ar, Br) ~ I'(ar, BL). 3)

Assuming the observations are independent, the likelihood of the augmented data
(observations plus auxiliary variables, u) is given by

N
L(u,s;h, ap, Br) = 1_[ JiCuis 2)g((s; — u;)sor, BL)- ©)

i=1

The likelihood of the full set of N observations is given by

N
Lsx o ) =] /0 Filus )g((s; — up)ar, Br) dus. (10)
i=1
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Because integral (10) is not straightforward to compute, a Markov chain Monte
Carlo (MCMC) algorithm, given in Appendix 9, was used to determine the poste-
rior probability distributions of the parameters.

5.2. Results: Time to transmission and incubation period

The posterior distribution of the hazard of transmission, A, had a maximum density
close to zero and a mean of 0.18 per day, see Fig. 8. The inferred mean time from
exposure to transmission was 2.5 days (95% CI 0.19-4.4). The estimated incuba-
tion period is shown in Fig. 9. It follows a I'(1.4, 0.26) distribution. The standard
deviation for the incubation period was 4.5 days (95% CI 3.4-5.9 days) and mean
was 5.3 days (95% CI 4.2-6.8 days). The median is 4.2 days, shorter than that re-
ported by Lee et al. (2003), 6 days, but similar to that reported by Donnelly et al.
(2003), 3.8 and Meltzer (2004), 4 days.

Appendix C.1 compares the sensitivity of the results for the incubation period
to the value of A and to model choice, showing that the conclusions regarding the
incubation period are robust to these.

5.3. Discussion: Time to transmission and incubation period

Estimation of the incubation period for SARS-CoV has proven to be a consider-
able challenge. Numerous studies have attempted to make estimates (see Donnelly
et al., 2004 for a review). Papers in which interval censoring methodology is out-
lined, a common strategy to deal with censored data is to assume a uniform prob-
ability of transmission across the exposure period (see, for example Donnelly

Posterior probability density

0 0.2 0.4 0.6 0.8 1

A

Fig. 8 Posterior distribution for the hazard of transmission, A.
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Fig. 9 Estimated distribution of the incubation period based on maximum posterior probability
density estimates for the shape and scale parameters of the Gamma distribution.

et al., 2003; Meltzer, 2004). An alternative is to assume immediate transmission
upon exposure to a known symptomatic SARS case (see, for example Lee et al.,
2003).

The methodology used to estimate the incubation period in the current study
was to assume a constant hazard of transmission within the contact period. The
estimated incubation period, for a given data set, using this model would be ex-
pected to be longer than the estimations using the uniform probability model, but
shorter than the estimates based on the assumption of immediate transmission.

The constant hazard model has the advantage that it has a biologically plau-
sible basis. However, because the estimated value of the hazard of transmission,
A, had a large probability mass near zero in this study, it would be reasonable to
use a uniform probability density function for time to transmission as an approx-
imation. Figure C.2 illustrates the estimated incubation period based on the two
different models. There is little difference between the result of the incubation
period assuming a constant hazard and that assuming a uniform probability of in-
fection during the exposure period, and the subsequent conclusions of the model
are robust to the estimates of A. Figure C.2 also gives the expected value of the in-
cubation period assuming instantaneous transmission at the time of contact, which
is considerably longer than the estimated incubation period in the constant hazard
or uniform transmission models.

Determining the incubation period following point exposure avoids the assump-
tions required to infer transmission times. Olsen et al. (2003) investigated cases
following a 3 h in-flight exposure to a symptomatic SARS case and found an in-
cubation period of 4 (2-8) days. The numbers in that study were small (22 cases),
and the rapid transmission may reflect a large inoculum which could impact on
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incubation period. Studies using larger data sets of fully observed exposure times
would be useful.

A deficiency in this study is that there is only weak information on hazard of
transmission, A, since only those known to be infected with SARS-CoV are in-
cluded in the data set. This leads to the posterior probability density for A taking
on values similar to the prior probability. In future studies, more informative es-
timates of A could be obtained by incorporating knowledge about those who had
exposure to a SARS case but did not become infected. Alternatively, the number
of contacts per infectious patient per day could be incorporated into the model.
This would provide a direct relationship between the daily hazard of transmission
for a single contact and the infectivity per patient per day, which is estimated from
the large-scale behaviour of the epidemic (see Section 7).

6. Estimation of other transition periods

A Bayesian framework was also used to estimate the other transition periods
in the SEIHRD model: time from symptom onset to hospitalisation, time from
hospital admission to recovery, and time from hospital admission to death. The
transition periods were assumed to be drawn from I'(«, 8) distributions. The pa-
rameters of the Gamma distributions were given vague prior probability densities
(7 (a, B) ~ T(0.001,0.001)). All observations for transition periods were assumed
to be independent. The posterior probability densities of the Gamma distribution
parameters (o, 8) were determined for each of the transition periods using

n(a, B;2) o (e, B) L(z; x, B), (11)

where z is the vector of observations for each of the transition period and L(z;«, 8)
the likelihood given by

N
L(z:o. B) = [ | g(zize. B). (12)

i=1

where N is the number of observations.
The calculations were performed using Metropolis—Hastings steps in a manner
similar to that described in Appendix B.

6.1. Results: Estimation of other transition periods

Figure 10 gives the parameterised posterior probability distribution of the time
interval from symptom onset to hospitalisation, with the recorded discrete data in
the background. The distribution is approximately exponential, with a mean of 3.5
days and a median of 2.9 days.

Figure 11 shows the parameterised distribution of the time from symptom onset
to recovery. The mean time from symptom onset to death was 26 days, with a
standard deviation of 11 days. Figure 12 shows the parameterised distribution of
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Fig. 10 Estimated best fit Gamma distribution for time from symptom onset to hospitalisation,
based on maximum posterior probability density estimates for the shape and scale parameters. A
histogram of recorded discrete times is also shown.
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Fig. 11 Estimated best fit Gamma distribution for time from symptom onset to recovery, based
on maximum posterior probability density estimates for the shape and scale parameters. A his-
togram of recorded discrete times is also shown.
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Fig. 12 Estimated best fit Gamma distribution for time from symptom onset to death, based on
maximum posterior probability density estimates for the shape and scale parameters. A histogram
of recorded discrete times is also shown.

the time from symptom onset to death. The distribution is widely dispersed, with
a mean of 21 days and standard deviation of 9.4 days. Table 1 gives the means and
standard deviation for the duration of each of the stages of infection. Appendix
A gives the estimated values of the shape and scale parameters of the inferred
Gamma distributions.

7. Model for estimating coefficients of infectivity

The extended SEIHRD model was used to estimate the infectivity of SARS cases.
Coefficients of infectivity were defined in this study as the expected number of
new transmissions per infectious case per day. The infectious group was divided
into community, I, and hospitalised, H symptomatic SARS cases. The epidemic
was assumed to begin on 28 February 2003 when the first introduced SARS case
became symptomatic. Following the SETHRD model outlined in Section 2, the rate

Table 1 The posterior mean and standard deviation (in days) of the times to hospitalisation,
hospital discharge and death.

Mean 95% CI Standard deviation 95% CI

Symptoms to hospitalisation 35 32-39 32 2.8-3.6
Symptoms to recovery 26 25-27 11 10-12
Symptoms to death 21 15-29 15 9.7-23
Hospitalisation to recovery 23 21-24 11 10-12

Hospitalisation to death 17 11-28 16 6.9-31
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of new transmissions was assumed to be proportional to the number of infectious
patients at that time and their infectivity.

Two different states, community and hospitalised, and two different time peri-
ods, early and late in the epidemic, were investigated. The time of change from
high to low infectivity was also estimated. The change point was considered an
additional parameter, and its posterior probability was investigated.

7.1. Bayesian approach to estimation of the transmission coefficients

The parameters of interest in this part of the model are the coefficients of infec-
tivity of symptomatic community SARS cases (prior to hospitalisation) early and
late in the epidemic, denoted by x; and x;, respectively, and the coefficients of in-
fectivity of hospitalised patients early and late in the epidemic, denoted by y; and
2, respectively. Also of interest is the change point, denoted by C.

7.2. Prior specification

'(0.001, 0.001) was used for the four coefficients of infectivity. A discrete, uniform
U[1, n] distribution was used as the prior for the change point, where 7 is the num-
ber of days of the epidemic.

7.3. Likelihood estimation

Following the SEIHRD model and assuming constant infectivity within each of
the four groups of symptomatic SARS cases, the transmission pressure, p;, on day,
j,1is given by

pj=x1(j)+ yiH(j), (13)

wherei =1(j < C)andi = 2(j > C). I(j) is the number of symptomatic commu-
nity patients and H(j) is the number of symptomatic hospitalised patients.

The likelihood of 7} transmissions occurring on day j is assumed to be drawn
from the Poisson distribution:

k(T;. H;, 1j;x, y) ~ Poisson(p;). (14)

In a small-scale epidemic, if the number of susceptibles were known, the Bino-
mial probability distribution could be used. In this epidemic, in which there are
approximately 3 million susceptibles, the Poisson approximation is reasonable, al-
though it may underestimate the dispersion of the offspring distribution, particu-
larly if there is marked heterogeneity of spreading (for example super-spreaders).

With all data included, it is straightforward to find the full likelihood of the data
given the parameters:

C n
LT HIx,y, C) = [[KT}, Hy, I;xi, p) [ KT Hy, I, ya), (15)
j=1 j=C+1
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where n is the number of days of the epidemic, and T, H and I represent the vectors
of n values of daily transmissions, community case numbers and hospitalised case
numbers, respectively.

Because the times of transmission are unknown, and there are some missing
values in the hospitalisation and recovery and death times, missing data and un-
observed data need to be inferred. The simulated data are drawn from the dis-
tributions of the incubation period, time to hospitalisation and time to recovery
and discharge estimated in the first part of the study. The techniques used for data
augmentation and computation are given in Appendix E.

7.4. Results: Change point estimation

The epidemic was measured from the day of symptom onset of patient 1, which
was 28 February 2003. Figure 13 shows the posterior distribution for the estimated
time of the change in infectivity (change point). The maximum density is taken to
be the end of day 29 of the epidemic, corresponding to the beginning of 29 March
2003. Following this, the estimates of the coefficients of infectivity were performed
assuming a change point at midnight 28/29 March.

Figure 13 demonstrates that there is considerable uncertainty with this estimate,
with the posterior probability also giving some support to an earlier change point
time. The posterior weight rapidly declines for times after 29 March, suggesting
later times are unlikely.

7.5. Results: Coefficients of infectivity

The estimated means of the four coefficients of SARS-CoV transmission, repre-
senting the mean number of new infections per infectious case per day, are given
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Fig. 13 Posterior distribution for change point.
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Table 2 Table of transmission coefficients (mean number of transmissions per infective per
day) x;: symptomatic community cases before 29 March, x,: symptomatic community cases after
29 March y;: symptomatic hospitalised cases before 29 March, y,: symptomatic hospitalised cases
after 29 March.

Parameter Mean 95% credible interval
X1 0.41 0.24-0.59

X 0.21 0.18-0.24

Vi 0.15 0.023-0.34

V2 0.0006 0.000018-0.0022

R, 4.8 2.2-8.8

Ry 0.75 0.65-0.85

in Table 2. The relative infectivity of community compared to hospitalised SARS
cases increases markedly after the change point, with x;/y; = 5.1(95% CI 0.8-17),
and x,/y, = 350(95% CI 95-1400), where x; refers to symptomatic community
SARS cases (prior to hospitalisation) and y; refers to hospitalised patients.

7.6. Results: Reproduction ratio

The basic reproduction ratio, Ry, is defined as the expected number of secondary
cases per primary case in a fully susceptible population (Anderson and May, 1991;
Diekmann and Heesterbeek, 2000). As the epidemic progresses, the reproduction
ratio could be modified both by a decrease in the number of susceptible cases or a
change in infectivity (for example, due to infection control interventions). In this
study, we estimated the effective reproduction ratio before and after the change
point.

The effective reproduction ratio can be deduced from the inferred coefficients
and the known data. The mean time from symptom onset to hospital admission is
3.5 days and the mean time from hospital admission to either recovery or death is
22.2 days. The posterior probability distribution of the effective reproduction ratio
can be calculated using

R, = X17(+ y17, (16)

where R, is the reproduction ratio prior to the change point, X the mean duration
of symptoms prior to hospitalisation, and Y the mean duration of symptoms in hos-
pital. Similarly, Ry, the reproduction ratio after the change point, can be calculated
using

Ry, = X2XI+ yz?. (17)

R, is estimated to be 4.8 (95% CI 2.2-8.8) and R, is estimated to be 0.75 (95% CI
0.65-0.85). The distributions for R, and R, are displayed in Fig. 14. The greatest
impact on the reproduction ratio was the change in infectivity of the hospitalised
group.

During the first part of the epidemic prior to 29 March, the expected number
of transmissions resulting from each symptomatic SARS case is 1.4 during the
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Fig. 14 Posterior distribution for the reproduction ratio prior to (white) and after (black) 29
March 2003.

community period, and 3.4 during the hospitalised period. For the SARS cases
from 29 March onwards, the expected number of transmissions resulting from each
symptomatic SARS case is 0.73 during the community period and 0.013 during the
hospitalised symptomatic period. The ratio of infectivity in the community to in-
fectivity following hospitalisation is 5.1, similar to Riley’s et al. (2003) estimate
of 5. After 29 March, however, this figure was much higher, owing to a markedly
reduced estimated infectivity in hospitalised patients.

8. Individual infectivity profiles

A preliminary analysis compares three models of individual infectivity over the
course of SARS-CoV infection. The first is the uniform transmission model in
which infectiousness within the four groups (community early, hospitalised early,
community late, hospitalised late) is uniform over the course of illness. In the sec-
ond model, transmission is proportional to viral load. In this model, infectivity
takes on a triangular distribution peaking on day 10, following the results for viral
load described by Peiris et al. (2003a). In the third model, in which the transmission
is given by a Gamma distribution, shape and scale parameters were inferred.
Using the Akaike (1974) information criterion (AIC), the model with transmis-
sion given by a Gamma distribution is superior (AIC = 320) to the uniform trans-
mission model (AIC = 328). The model in which transmission is proportional to
viral load performs the worst (AIC = 356). With reference to the model with trans-
mission given by a Gamma distribution, the inferred Gamma distribution of the
infectivity profile is shown in Fig. 15. The peak infectivity is estimated to be on the
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Fig. 15 Infectivity profile versus time since symptom onset.

ninth day following symptom onset in the Gamma model. The infectivity follows
the I"'(3.9, 0.36) distribution.

This finding is based on an initial exploration of the data set, and the analysis can
be extended. In particular, the infectivity profiles could inform the transmission
times. In this study, as a simplification, the unobserved transmission times were
inferred using the uniform transmission model only.

9. Discussion and conclusions

Important conclusions regarding the infectivity of SARS-CoV can be drawn from
this analysis. The estimated daily infectivity of the hospitalised patients was lower
than for community patients. Despite this, it was estimated that early in the epi-
demic, a larger number of secondary cases resulted from hospitalised patients be-
cause people remained in this stage for a longer time (an average of 22.2 days
symptomatic in hospital compared with 3.5 days prior to hospitalisation). Later in
the epidemic, the transmission rate of symptomatic community SARS cases de-
creased to around 50% of previous levels, whereas the decline in the transmission
rate for the SARS patients in hospital reduced more dramatically to around 0.4%
of previous levels.

These results support the conclusion that interventions were effective in control-
ling the SARS epidemic in Shanxi province, particularly the interventions directed
at hospital isolation. However, other possible causes for these results need to be
considered. The relatively high infectivity of the community SARS cases could be
due to their earlier stage in the course of SARS-CoV infection. Much of the time
spent in hospital is associated with the convalescent stages of the illness, and it
could be argued that SARS patients would be less infectious during this period.
On the other hand, Peiris et al. (2003a) showed that viral shedding peaks around
day 10, suggesting that for many people the most infectious stage of the illness
occurs following hospitalisation.

The reduction of infectivity over time could be partly explained by the fact that
the proportion of contacts that is susceptible decreases as an epidemic proceeds.
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While depletion of susceptibles undoubtedly occurs in widespread viral epidemics,
the authors believe that the transmission of SARS-CoV to 354 people in a popu-
lation of over 3 million would not account for a significant drop in the proportion
of contacts who are susceptible, assuming homogeneous population mixing. In the
hospital setting and in families, in which contacts tend to cluster, depletion of sus-
ceptibles may account for some of the change in the reproduction ratio. This could
be further explored using a network or household model.

Another reason for the difference in infectivity before and after 29 March could
be seasonal. It is possible that SARS-CoV, like many other respiratory viruses,
is transmitted more efficiently in winter. However, this would result in a general
decline in infectivity, which does not explain the much greater reduction in infec-
tivity of hospitalised SARS cases compared with community SARS cases, observed
in this study.

The estimated date on which the infectivity of SARS declined (the change point)
predated the peak incidence of admission of SARS cases to hospital. Both the in-
cubation period and the delay between symptom onset and hospitalisation con-
tributed to this lag. It is a lesson for future epidemics that even after appropriate
interventions are successful in reducing transmission, we can expect a further in-
crease in infection notifications.

The reproduction ratio late in the Shanxi epidemic is very similar to those es-
timated by Wallinga and Teunis (2004) in Singapore and Hong Kong, both esti-
mated to be 0.7. Wallinga and Teunis (2004) studied four countries (Singapore,
Viet Nam, Hong Kong and Canada) and found that although the epidemic curves
initially were markedly different, following interventions, the estimated reproduc-
tion ratio was very similar in three of the four countries examined in that study.
Although it is reassuring that in most cases (all except Canada), a reproduction
ratio of less than 1 was achieved, it was only following the implementation of strin-
gent control measures. It could be predicted that if complacency occurs in future
epidemics, it may be difficult to achieve a reproduction ratio of less than 1 for
SARS.

Three different models of infectivity profiles over the course of SARS-CoV in-
fection were considered in this study. The model considering a Gamma shape for
infectivity appeared statistically slightly superior to the model assuming uniform
infectivity. Of interest is that the estimated peak infectivity occurs on the ninth day
following symptom onset. This is consistent with specimen positivity in the lower
and upper respiratory tract and gut reported by Cheng et al. (2004). Additionally,
Peiris et al. (2003aba) measured nasopharyngeal aspirate viral loads of 14 SARS
cases on day 5, 10 and 15 following symptom onset and found that day 10 was con-
sistently the highest of these measurements. The concordance between viral load
data and infectivity inferred in this study warrants further investigation. A larger
data set in which contact times are fully observed would be useful in elucidating
infectivity profile.

There are several ways in which the current model can be extended. This
study assumed Gamima distributions for transition times. Other distributions could
be considered including the Weibull and non-parametric approaches. A mixture
model may be particularly useful for estimating susceptibility, infectiousness and
duration of infectivity. The possibility of more than one change point or a gradual
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transition could also be explored. Reversible jump MCMC would be a useful tool
in determining this. SARS models to date, including the current study, have as-
sumed zero infectivity during the incubation period. Infectivity of SARS cases
during the incubation period could be estimated by extending the Bayesian infer-
ence model. While there were no clearly identified super-spreaders in the Shanxi
epidemic, heterogeneity of infectivity was a major feature of the epidemiology of
SARS in Singapore and Hong Kong (Li et al., 2004). This could be further investi-
gated using the current data set; however, a data set containing detailed informa-
tion on transmission trees would be more informative.

A Gantt chart of the Shanxi epidemic

Figure A.1 displays a visual depiction of the epidemic. Each individual is repre-
sented as a horizontal line, with the colour code indicating the stage of SARS-
CoV infection for that individual. It can be seen from Fig. A.1 that in late April,
the daily number of new cases began to decline.

B Computations for time to transmission and incubation period

Computations were performed using a MCMC algorithm.

(1) Initialise the parameters X, oy and B.

350

300

250

200

150

100

5 March 25 March 14 April 4 May 24 May

Fig. A.1 Gantt chart of epidemic. The time of exposure to another SARS case is mid-blue, the
time that a patient is asymptomatic following exposure is light blue, the time of symptoms prior to
hospitalisation is yellow, the time of hospitalisation is orange and the time of discharge or death
is maroon. Patients are ordered according to hospital admission date.
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(2) For each patient i, propose a new u; by drawing «; randomly from the distri-
bution described in expression (7).
(3) Accept u; using the acceptance probability,

g((si —uj)sar, Br) }
Tg((si —wi)sar. Br) )

P,.c = min [1 (B.1)

(4) Propose A’ using a simple random walk step such that A’ = 1 + €, where € is
drawn from the N(0, 100) distribution. In this paper, we follow the Bayesian
notation where N(0, 100) is used for a normal distribution with a precision
of 100 and a variance of 0.01. The precision of the proposal distribution was
chosen as a balance of the need to have rapid mixing and the desire to improve
acceptance probability.

(5) Accept A’ with a probability P, given by

(B.2)

P, = min {1 [T flusa)m () } |

I S ()
(6) Update o, proposing a new value «; using a simple random walk, each step

is drawn from a random normal distribution N(0, 100). Accept o, with prob-
ability P, given by

(B.3)

P,.c = min {1 Hz]\;l 8((sj — up), e, Br)m () } )

T, g((s; — w;), eer, Br)m(ar)

(7) Update B using a Gibbs step. A conjugate prior, w(8.) ~ I'(l, m), is assigned
to 81, making the full conditional posterior for gy,

N
Brl(s — ), o ~ T+ N.m+ Y (s; — u;)), (B.4)
i=1

which enables a Gibbs update of 8, by drawing a value randomly from this
distribution.

The “burn-in” period was 10,000 iterations. The posterior probability distribu-
tions of u, A, oy, B were determined by taking the next 90,000 updates.

C Diagnostics: Convergence and sensitivity analysis

Visual inspection of the trace plots showed that the chains for all parameters ap-
peared to converge within 1000 iterations. A number of different initial values
were considered for the parameters and the results were essentially unchanged.
Figure C.1, for example, shows values of o, plotted against iteration number for
six different initial values. The plots show that the estimates of oy settle down well
before the end of the 10,000 iteration burn-in.



912 Bulletin of Mathematical Biology (2006) 68: 889-917

N
==y

'

0.5

—

=
-

==

e
—

_
=

E 2
—

500 1000 1500 2000 2500 3000
Iterations

Fig. C.1 Output from one of the Markov chains. Six different initial values of the shape param-
eter of the incubation period, «;, all settle down to the same distribution after a few hundred
iterations.

C.1 Sensitivity of estimate of incubation period to model choice
and hazard of transmission parameter

Sensitivity analysis was performed on the choice of model used to estimate the
incubation period. The current study assumed that during a contact the hazard
of transmission remained constant, leading to an exponential probability density
function for time to transmission. Two alternative approaches would be

(1) to assume that the probability of transmission was constant throughout the
contact period, a uniform probability density for time to transmission, effec-
tively putting A = 0;

(2) to assume transmission coincides with onset of infection challenge, effectively
putting A = oco.

The posterior probability density of the incubation period was estimated using
these models and compared with the estimation in the current study as summarised
in Table C.1 and illustrated in Fig. C.2.

In the model used in the current study (the assumption of constant hazard), the
maximum posterior density for the daily hazard of transmission, A, was close to
zero. Little information was available in the data set regarding X; therefore, A took
on a distribution similar to its prior probability, with a large probability mass near
zero and a long tail. This effectively makes the model in which a constant hazard is
assumed equivalent to the model of uniform probability, the model that suggests
infection is equally likely at any stage during the exposure period. Even at the
extreme values of A, the effects of the estimate of A on incubation period shown
in Figure C.2 are relatively small. Therefore, the conclusions of the subsequent
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Table C.1 The estimated mean and standard deviation (in days) of the incubation period com-
paring the estimates using the assumption of constant hazard, used by the current study, and the
assumptions of uniform probability and immediate transmission.

Incubation period Mean 95% CI Standard deviation 95% CI
Constant hazard 53 42-6.8 4.5 3.4-5.9
Uniform 5.1 4.1-63 44 3.4-5.6
Immediate transmission 7.9 6.9-9.0 4.9 4.1-5.9

components of the model are robust to the choice of model for transmission and
the value of A.

D Estimated values of shape and scale parameters
for the Gamma distributions

Table D.1 gives the estimated values of the parameters of the Gamma distribu-
tions applied in the model. These values can be used along with the coefficients
of infectivity to reconstruct the epidemic and explore the large-scale effect of
interventions, including reduced time to isolation, quarantine, and more effective
isolation.

0.16 T T T T T
= constant hazard
., + + + uniform probability
0.14F - - == jmmediate transmission

0.12-
0.1F
0.08

0.06

Probability density function

0.04

0.02

0 5 10 15 20 25 30
Incubation period (days)

Fig. C.2 Comparison of the incubation period as estimated in the current study using the con-
stant hazard model, the uniform probability model and the immediate transmission model. The
constant hazard model used in this study leads to a similar result to the uniform probability model.



914 Bulletin of Mathematical Biology (2006) 68: 889-917

Table D.1 Estimated values (based on maximum posterior density) for the shape and scale~!
parameters of the Gamma distributions fitted to the data.

Shape parameter Scale~! parameter
Incubation period 1.4 0.26
Symptom onset to hospitalisation 1.3 0.37
Symptom onset to recovery 5.6 0.22
Symptom onset to death 2.1 0.11
Hospital admission to recovery 4.1 0.18
Hospital admission to death 1.2 0.068
Individual infectivity 39 0.36

E Techniques used for data augmentation and computation to determine
coefficients of infectivity and change point

E.1 Augmented data

There were missing values for the time of symptom onset, hospitalisation times
and time to recovery (1, 2 and 10 missing values respectively out of the 354 SARS
cases in the database).

Missing data were simulated using the inferred distributions of transition times.
The likelihood of the data, given the parameters is given by

L(d9) = / 1(d, s16) ds, (E.1)

where d is the known data and s is the simulated data.

Because the aforementioned integral is not straightforward, L(d|0) was inferred
by drawing s using the known times and the parameterised distributions, estimated
in Section 6. For example, where recovery times were missing, these were inferred
from the hospitalisation date and the parameterised time to recovery distribution.

The date of each individual’s acquisition of SARS-CoV also became an auxiliary
variable in the model. The times were inferred from

(1) the known date of onset of symptoms (taken directly from the database),
(2) the parameterised incubation period,

so that acquisition date = date of symptom onset — incubation period, where
the incubation period was drawn randomly from the I'(«, B1) distribution. If the
time of exposure to another SARS case was known, the proposed transmission
time (#;) was drawn from a distribution based on the joint probability of (a) time
to transmission, calculated using expression (7) and (b) the incubation period, with
I'(ar, Br) distribution.

E.2 Computations to determine posterior distributions of the coefficients of
infectivity and the change point

For each iteration of the model, the auxiliary variables were firstly determined
using Gibbs sampling of the parameterised distributions. The likelihood of the



Bulletin of Mathematical Biology (2006) 68: 889-917 915

augmented data was calculated using expression (15). Coefficients of infectivity
were proposed and accepted according to:

C ’ ’ /
P = min | 1, [ 4 Hie L3t 50 prop (5 — 1) (E2)
KT H T yop(a) prop (v — ) | |

where C is the date of the change point and prop(x; — x;) is the proposal proba-
bility of x; from x{. Similarly, xJ is updated by:

) 1_[ (T}, H;, I}, x5, y2) p(x3) prop (x5 — x2)
b k(

P,.c = min
{ Tj. H;, I}, x2. y2) p(x2) prop (x; — x})

}, ©3)

i=C+1

The number of days of the epidemic. Acceptance equations were similarly con-
structed for y; and y;.
The change-point day was updated as follows:

(1) For each iteration a new change-point day was proposed drawn as an integer
from the U[1, n] distribution, where the epidemic begins on day 1 and ends on
day n.

(2) The change-point day was updated using a Metropolis step based on the full
likelihood given by:

(E4)

P { , PO kT xt W Mo k(T,»,xz,m}

" PO [Ty k(T %1, y0) [T (T X2, 32)

The process was iterated 100,000 times and the first 10,000 iterations were used
as a burn-in period. The following 90,000 updates of x1, x2, y;, y» and C were used
to determine the posterior distribution.
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