Skip to main content
Log in

Identification of driver mutations in lung cancer: first step in personalized cancer

  • Cancer Concepts
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) has recently been associated with interesting molecular characteristics that have important implications in carcinogenesis and response to targeted therapies. Targeted therapies, if given to a patient subpopulation enriched by the presence of relevant molecular targets, can often abrogate cell signaling that perpetuates cancer progression. For instance, several molecular alterations have been defined as “driver mutations,” such as mutations in EGFR and EML4-ALK fusion gene. Other key signaling pathways have also been identified as novel targets for lung cancer treatment. These first steps towards personalized medicine represent a shift in the management of NSCLC. Indeed, NSCLC should no longer be viewed as one common generic tumor but rather as a collection of more rare diseases with different biological behaviors and different sensitivities to targeted treatments. We are now clearly entering an era of personalized medicine for NSCLC cancers, and the development of molecular profiling technologies to assess DNA provides the potential to tailored medical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26(21):3543–3551

    Article  PubMed  CAS  Google Scholar 

  2. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550

    Article  PubMed  CAS  Google Scholar 

  3. Pao W, Girard N (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12(2):175–180

    Article  PubMed  CAS  Google Scholar 

  4. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  PubMed  CAS  Google Scholar 

  5. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  PubMed  CAS  Google Scholar 

  6. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13(10):1011–1019

    Article  PubMed  CAS  Google Scholar 

  7. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417

    Article  PubMed  CAS  Google Scholar 

  8. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181

    Article  PubMed  CAS  Google Scholar 

  9. Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S et al (1993) Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53(10 Suppl):2379–2385

    PubMed  CAS  Google Scholar 

  10. Hirsch FR, Dziadziuszko R, Thatcher N, Mann H, Watkins C, Parums DV et al (2008) Epidermal growth factor receptor immunohistochemistry: comparison of antibodies and cutoff points to predict benefit from gefitinib in a phase 3 placebo-controlled study in advanced nonsmall-cell lung cancer. Cancer 112(5):1114–1121

    Article  PubMed  CAS  Google Scholar 

  11. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101(36):13306–13311

    Article  PubMed  CAS  Google Scholar 

  12. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97(5):339–346

    Article  PubMed  CAS  Google Scholar 

  13. Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK et al (2006) Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 12(5):1647–1653

    Article  PubMed  CAS  Google Scholar 

  14. Cheng L, Alexander RE, Maclennan GT, Cummings OW, Montironi R, Lopez-Beltran A et al (2012) Molecular pathology of lung cancer: key to personalized medicine. Mod Pathol 25(3):347–369

    Article  PubMed  CAS  Google Scholar 

  15. Pedersen MW, Meltorn M, Damstrup L, Poulsen HS (2001) The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 12(6):745–760

    Article  PubMed  CAS  Google Scholar 

  16. Pao W, Miller VA (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23(11):2556–2568

    Article  PubMed  CAS  Google Scholar 

  17. Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S et al (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23(11):2513–2520

    Article  PubMed  CAS  Google Scholar 

  18. Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U et al (2005) Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 23(28):6829–6837

    Article  PubMed  CAS  Google Scholar 

  19. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V et al (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 29(21):2866–2874

    Article  PubMed  CAS  Google Scholar 

  20. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361(10):958–967

    Article  PubMed  CAS  Google Scholar 

  21. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Article  PubMed  CAS  Google Scholar 

  22. Lee JS, Park K, Kim SW, Lee DH, Kim HT, Ham JY (2009) A randomized phase III study of gefitinib (IRESSATM) versus standard chemotherapy (gemcitabine plus cisplatin) as a first-line treatment for never-smokers with advanced or metastatic adenocarcinoma of the lung. J Thorac Oncol 4(9 suppl1):S283–S284, Abstract PRS.4

    Google Scholar 

  23. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388

    Article  PubMed  CAS  Google Scholar 

  24. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11(2):121–128

    Article  PubMed  CAS  Google Scholar 

  25. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12(8):735–742

    Article  PubMed  CAS  Google Scholar 

  26. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13(3):239–246

    Article  PubMed  CAS  Google Scholar 

  27. Yang J-C, Schuler M-H, Yamamoto N, O'Byrne K-J, Hirsh V, Mok T et al. (2012) LUX-Lung 3: a randomized, open-label, phase III study of afatinib versus pemetrexed and cisplatin as first-line treatment for patients with advanced adenocarcinoma of the lung harboring EGFR-activating mutations. J Clin Oncol 30 (suppl; abstr LBA7500)

  28. Cappuzzo F, Ciuleanu T, Stelmakh L, Cicenas S, Szczesna A, Juhasz E et al (2010) Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol 11(6):521–529

    Article  PubMed  CAS  Google Scholar 

  29. Mok T, Spigel D, Park K, Socinski M, Tung S, Kim D-W et al. (2010) Efficacy and safety of PF299804 as first-line treatment of patients with advanced NSCLC selected for activating mutation of epidermal growth factor receptor (EGFR). Annals Oncol 21 ((suppl. 8): [abstract LBA18].)

  30. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792

    Article  PubMed  CAS  Google Scholar 

  31. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73

    Article  PubMed  Google Scholar 

  32. Yang C, Shih J, Su W, Hsia T, Tsai C, Ou SI et al (2010) A phase II study of BIBW 2992 in patients with adenocarcinoma of the lung and activating EGFR mutations (LUX-Lung 2). J Clin Oncol 28:15s (suppl; abstr 7521)

    Google Scholar 

  33. Janjigian Y, smit EF, Horn L, Groen JJM, Camidge DR, Gettinger S (2012) Activity of afatinib/cetuximab in patients (pts) with EGFR mutant non-small cell lung cancer (NSCLC) and acquired resistance (AR) to EGFR inhibitors. ESMO, abst 12270

  34. Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J et al (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66(16):7854–7858

    Article  PubMed  CAS  Google Scholar 

  35. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377

    Article  PubMed  CAS  Google Scholar 

  36. Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S et al (2008) Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 118(7):2609–2619

    PubMed  CAS  Google Scholar 

  37. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 104(52):20932–20937

    Article  PubMed  CAS  Google Scholar 

  38. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  PubMed  CAS  Google Scholar 

  39. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 75:75ra26

    Article  Google Scholar 

  40. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N et al (2008) PIK3CA mutations and copy number gains in human lung cancers. Cancer Res 68(17):6913–6921

    Article  PubMed  CAS  Google Scholar 

  41. Hirsch FR, Varella-Garcia M, Franklin WA, Veve R, Chen L, Helfrich B et al (2002) Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br J Cancer 86(9):1449–1456

    Article  PubMed  CAS  Google Scholar 

  42. De Greve J, Teugels E, Geers C, Decoster L, Galdermans D, De Mey J et al (2012) Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer 76(1):123–127

    Article  PubMed  Google Scholar 

  43. Cappuzzo F, Bemis L, Varella-Garcia M (2006) HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med 354(24):2619–2621

    Article  PubMed  CAS  Google Scholar 

  44. Kelly RJ, Carter C, Giaccone G (2010) Personalizing therapy in an epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small-cell lung cancer using PF-00299804 and trastuzumab. J Clin Oncol 28(28):e507–e510

    Article  PubMed  CAS  Google Scholar 

  45. Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T et al (1997) Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14(4):439–449

    Article  PubMed  CAS  Google Scholar 

  46. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263(5151):1281–1284

    Article  PubMed  CAS  Google Scholar 

  47. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  PubMed  CAS  Google Scholar 

  48. Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S et al (2008) Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res 68(13):4971–4976

    Article  PubMed  CAS  Google Scholar 

  49. Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M et al (2008) EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 3(1):13–17

    Article  PubMed  Google Scholar 

  50. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27(26):4247–4253

    Article  PubMed  CAS  Google Scholar 

  51. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  PubMed  CAS  Google Scholar 

  52. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ et al (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482

    Article  PubMed  CAS  Google Scholar 

  53. Horn L, Pao W (2009) EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol 27(26):4232–4235

    Article  PubMed  CAS  Google Scholar 

  54. Kim D-W, Ahn M-J, Shi Y, De Pas T-M, Yang P-C, Riely G-J et al. (2012) Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol 30 (suppl; abstr 7533)

  55. Shaw AT, Kim D-W, Nakagawa K, Seto TC, L., Ahn M-J, Tassell V et al. (2012) Phase III study of crizotinib versus pemetrexed or docetaxel chemotherapy in patients with advanced ALKpositive non-small cell lung cancer (NSCLC) (PROFILE 1007) ESMO congress abst: LBA1

  56. Yang P, Kulig K, Boland JM, Erickson-Johnson MR, Oliveira AM, Wampfler J et al (2012) Worse disease-free survival in never-smokers with ALK+ lung adenocarcinoma. J Thorac Oncol 7(1):90–97

    Article  PubMed  Google Scholar 

  57. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739

    Article  PubMed  CAS  Google Scholar 

  58. Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W et al (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71(18):6051–6060

    Article  PubMed  CAS  Google Scholar 

  59. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870

    Article  PubMed  CAS  Google Scholar 

  60. Mao C, Qiu LX, Liao RY, Du FB, Ding H, Yang WC et al (2010) KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer 69(3):272–278

    Article  PubMed  Google Scholar 

  61. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA et al (2008) Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 14(18):5731–5734

    Article  PubMed  CAS  Google Scholar 

  62. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972

    Article  PubMed  CAS  Google Scholar 

  63. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2(1):e17

    Article  PubMed  Google Scholar 

  64. O'Byrne KJ, Gatzemeier U, Bondarenko I, Barrios C, Eschbach C, Martens UM et al (2011) Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study. Lancet Oncol 12(8):795–805

    Article  PubMed  Google Scholar 

  65. Brugger W, Triller N, Blasinska-Morawiec M, Curescu S, Sakalauskas R, Manikhas GM et al (2011) Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol 29(31):4113–4120

    Article  PubMed  CAS  Google Scholar 

  66. Zhu CQ, da Cunha SG, Ding K, Sakurada A, Cutz JC, Liu N et al (2008) Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 26(26):4268–4275

    Article  PubMed  CAS  Google Scholar 

  67. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216):1069–1075

    Article  PubMed  CAS  Google Scholar 

  68. Pasi A. Janne, Alice Tsang Shaw, Jose Rodrigues Pereira, Gaelle Jeannin, Johan Vansteenkiste, Carlos H. Barrios et al. (2012) Phase II double-blind, randomized study of selumetinib (SEL) plus docetaxel (DOC) versus DOC plus placebo as second-line treatment for advanced KRAS mutant non-small cell lung cancer (NSCLC). J Clin Oncol suppl; abstr 7503 (30)

  69. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  PubMed  CAS  Google Scholar 

  70. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29(15):2046–2051

    Article  PubMed  Google Scholar 

  71. Kawano O, Sasaki H, Endo K, Suzuki E, Haneda H, Yukiue H et al (2006) PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer 54(2):209–215

    Article  PubMed  Google Scholar 

  72. Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, Chu A et al (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–525

    Article  CAS  Google Scholar 

  73. Kawano O, Sasaki H, Okuda K, Yukiue H, Yokoyama T, Yano M et al (2007) PIK3CA gene amplification in Japanese non-small cell lung cancer. Lung Cancer 58(1):159–160

    Article  PubMed  Google Scholar 

  74. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444

    Article  PubMed  CAS  Google Scholar 

  75. Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S et al (2008) Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 7(5):665–669

    Article  PubMed  CAS  Google Scholar 

  76. Soria JC, Lee HY, Lee JI, Wang L, Issa JP, Kemp BL et al (2002) Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 8(5):1178–1184

    PubMed  CAS  Google Scholar 

  77. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA et al (2005) Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 65(4):1479–1488

    Article  PubMed  CAS  Google Scholar 

  78. Sequist LV, von Pawel J, Garmey EG, Akerley WL, Brugger W, Ferrari D et al (2011) Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 29(24):3307–3315

    Article  PubMed  CAS  Google Scholar 

  79. Spigel DR, Ervin TJ, Ramlau R, Daniel DB, Goldschmidt JH, Blumenschein GR et al. (2011) Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol 29 (suppl; abstr 7505)

  80. Ou SH, Kwak EL, Siwak-Tapp C, Dy J, Bergethon K, Clark JW et al (2011) Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 6(5):942–946

    Article  PubMed  Google Scholar 

  81. Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26(40):5911–5918

    Article  PubMed  CAS  Google Scholar 

  82. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8(11):1439–1452

    Article  PubMed  CAS  Google Scholar 

  83. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM et al (2010) Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2(62):62ra93

    Article  PubMed  CAS  Google Scholar 

  84. Dziadziuszko R, Merrick DT, Witta SE, Mendoza AD, Szostakiewicz B, Szymanowska A et al (2010) Insulin-like growth factor receptor 1 (IGF1R) gene copy number is associated with survival in operable non-small-cell lung cancer: a comparison between IGF1R fluorescent in situ hybridization, protein expression, and mRNA expression. J Clin Oncol 28(13):2174–2180

    Article  PubMed  Google Scholar 

  85. Karp DD, Paz-Ares LG, Novello S, Haluska P, Garland L, Cardenal F et al (2009) Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer. J Clin Oncol 27(15):2516–2522

    Article  PubMed  CAS  Google Scholar 

  86. Jassem J LC, Karp DD (2010) Randomized, open label, phase III trial of figitumumab in combinations with paclitaxel and carboplatin versus paclitaxel and carboplatin in patients with non-small cell lung cancer (NSCLC). J Clin Oncol 28 (15suppl):abstract 7500

  87. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W et al (2011) Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1(1):78–89

    Article  PubMed  CAS  Google Scholar 

  88. Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembele D et al (2010) SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One 5(1):e8960

    Article  PubMed  Google Scholar 

  89. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG et al (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41(11):1238–1242

    Article  PubMed  CAS  Google Scholar 

  90. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T et al (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18(3):375–377

    Article  PubMed  CAS  Google Scholar 

  91. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C et al (2012) RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 30(35):4352–4359

    Article  PubMed  CAS  Google Scholar 

  92. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G et al (2002) ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62(24):7284–7290

    PubMed  CAS  Google Scholar 

  93. Kim ES, Herbst RS, Wistuba II, Lee JJ, Blumenschein GR Jr, Tsao A et al (2011) The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 1(1):44–53

    Article  PubMed  CAS  Google Scholar 

  94. Kris MG, Johnson BE, DJ K (2011) Identification of driver mutations in tumor specimens from 1000 patients with lung adenocarcinoma: the NCI's Lung Cancer Mutation Consortium (LCMC). J Clin Oncol 29:(Suppl, abstract CRA 7506)

  95. Planchard D, A. Rahal, L. Lacroix, M. Ngocamus, N. Auger, P. Saulnier et al. (2012) Upfront genomic testing for patients with non-small cell lung cancer (NSCLC) receiving first-line platinum-based regimen: preliminary result of the MSN study. ESMO-ELCC Abst: 810

  96. Nowak F, Soria JC, Calvo F (2012) Tumour molecular profiling for deciding therapy-the French initiative. Nat Rev Clin Oncol 9(8):479–486

    Article  PubMed  CAS  Google Scholar 

  97. Perez-Moreno P, Brambilla E, Thomas R, Soria JC (2012) Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res 18(9):2443–2451

    Article  PubMed  CAS  Google Scholar 

  98. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  PubMed  CAS  Google Scholar 

  99. Chen ZY, Zhong WZ, Zhang XC, Su J, Yang XN, Chen ZH et al (2012) EGFR mutation heterogeneity and the mixed response to EGFR tyrosine kinase inhibitors of lung adenocarcinomas. Oncologist 17(7):978–985

    Article  PubMed  Google Scholar 

  100. Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J, Stathopoulos E, Georgoulias V et al (2008) Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer 99(6):923–929

    Article  PubMed  CAS  Google Scholar 

  101. Schmid K, Oehl N, Wrba F, Pirker R, Pirker C, Filipits M (2009) EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin Cancer Res 15(14):4554–4560

    Article  PubMed  CAS  Google Scholar 

  102. Taniguchi K, Okami J, Kodama K, Higashiyama M, Kato K (2008) Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci 99(5):929–935

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author receives lecture fees from Roche, Boehringer Ingelheim, Lilly, and Pfizer. No other potential conflicts of interest are disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Planchard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planchard, D. Identification of driver mutations in lung cancer: first step in personalized cancer. Targ Oncol 8, 3–14 (2013). https://doi.org/10.1007/s11523-013-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-013-0263-z

Keywords

Navigation