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1 Introduction

Interpolation of static visual field sensitivity data offers 
several benefits. By resampling examination data onto a 
single common grid, it can unify disparate perimetry pro-
tocols. This facilitates the joint analysis of examinations 
conducted under different studies or with different test 
grid patterns, which otherwise would be difficult to com-
pare. Interpolation is also useful for transforming data from 
irregular or sparse grids into a uniformly sampled format. 
Resampling onto a high-density regular grid produces a 
surface representation of the hill of vision (HOV) which 
offers more flexibility in visualizing examination results 
than conventional display methods that show only discrete 
numerical or coarsely quantized information [15, 26]. Sur-
face renderings of the HOV are helpful to clinicians not 
only in disease monitoring and treatment, but also in pro-
viding a visual model to aid in discussions of examination 
results with patients [13]. Furthermore, densely sampled 
HOV surfaces enable new quantitative analysis techniques 
and new clinical trial end points. For example, topographic 
interpretation of interpolated HOV surfaces supports con-
tour-based and volumetric approaches to visual field analy-
sis [27].

Here, we compare various interpolators to help iden-
tify the best methods for static visual field data. Similar 
interpolator comparisons have been made in other areas of 
study (for example, in mathematics [10], geology [4], and 
climatology [23]). So far, however, only preliminary work 
has been done regarding visual fields [22]. In this study, 
we extend that work to include performance assessments 
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of smoothness in addition to accuracy. Furthermore, the 
interpolators in this study were chosen by their suitabil-
ity for clinical research and development. We limited our 
investigation to scattered data techniques, which can 
accommodate any test grid pattern. Also, each method was 
either strictly nonparametric or, if not, implemented with a 
fixed, standardized parameter value to eliminate complica-
tions associated with parameter estimation. We compared 
their performances with visual field data from a group of 
healthy, normal volunteers and patients with retinitis pig-
mentosa (RP), a family of inherited retinal degenerations 
that is characterized by progressive visual field loss [14]. 
The best-performing interpolators are identified, and their 
relative merits are discussed in relation to the performance 
metrics. As one of the first quantitative interpolation com-
parisons for visual fields, the results from this study will 
be useful to clinicians and researchers looking for validated 
interpolation strategies for visual field data.

2  Methods

2.1  Static perimetry data

Full-field standard automated perimetry was performed on 
10 normal subjects and 10-RP patients with an Octopus 
101 perimeter (Haag-Streit AG, Köniz, Switzerland). The 
testing protocol used a 10 cd/m2 background luminance, 
the GATE-i fast thresholding strategy [20], and a size V 
(64 mm2) stimulus with 200-ms duration. Visual fields 
were tested with a binocularly symmetric, radially ori-
ented, and centrally condensed grid pattern consisting of 
164 test points (Fig. 1). The maximum allowable reliability 
factor (the percentage of catch trials that generated either 

a false-positive or a false-negative response) was 15 % 
for each normal examination and 25 % for each patient 
examination [27]. Replicate testing was performed within 
90 days of the first test to obtain repeated measurements 

Fig. 1  Details of the perimetry test grid pattern. a Sample points 
(black circles), convex hull (red line), and expected location of the 
optic disk and natural blind spot (green line) for the right eye. The 

grid spans 135° horizontally and 125° vertically. b Voronoi diagram 
of the sampling density showing the central condensation of the pat-
tern. c Delaunay triangulation of the grid pattern

Table 1  Summary of visual field data

N normal, P patient, M male, F female, OD right eye, OS left eye
a Based on the time of the first examination

ID Gender Age (years)a Number of examinations 
(OD, OS)

N1 F 31.5 4 (2, 2)

N2 F 22.0 6 (3, 3)

N3 F 18.5 4 (2, 2)

N4 F 34.3 6 (3, 3)

N5 F 51.1 4 (2, 2)

N6 M 34.5 4 (2, 2)

N7 F 30.5 6 (3, 3)

N8 F 34.7 4 (2, 2)

N9 F 57.1 4 (2, 2)

N10 F 56.1 4 (2, 2)

P1 M 37.9 10 (5, 5)

P2 M 33.7 10 (5, 5)

P3 F 66.9 8 (4, 4)

P4 M 33.2 8 (4, 4)

P5 F 39.7 4 (2, 2)

P6 M 46.4 10 (5, 5)

P7 F 43.6 8 (4, 4)

P8 F 28.3 10 (5, 5)

P9 F 37.4 7 (4, 3)

P10 F 62.3 8 (4, 4)

All 10 normals M: 1, F: 9 37.0 ± 13.5 46 (23, 23)

All 10 patients M: 4, F: 6 42.9 ± 12.6 83 (42, 41)
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for each eye. Table 1 presents the mean age in each subject 
group and the distributions of repeated examinations.

Approval adhering to the tenets of the Declaration of 
Helsinki was obtained from the Oregon Health and Sci-
ence University Institutional Review Board, and written 
informed consent was provided by all subjects.

2.2  Interpolation methods

Each perimetry examination produced a 3-D point cloud 
of triplets {(xi, yi, zi)}Ni=1 with N = 164 test points where 
each point was represented by a retinal location (xi, yi) in 
angular coordinates and differential luminance sensitivity 
(zi), which was the light sensitivity in dB measured at that 
location. As seen in Fig. 1, the test points were irregularly 
spaced, necessitating scattered data interpolation methods.

We evaluated the 9 interpolation algorithms listed in 
Table 2. Each algorithm is a pure interpolator in that it 
reproduced the original data exactly, with no modeling, 
fitting, or approximation. Four of the interpolators were 
implemented with the built-in grid data function in MAT-
LAB 8.5 (MathWorks, Natick, MA, USA). The other five 
interpolators, including both radial basis function methods, 
were implemented with custom software in MATLAB.

The grid data-based methods are each related to the 
Delaunay triangulation [9] of the grid pattern (Fig. 1c), 
which produces a piecewise triangular network with nodes 
set to the original data point cloud. From this network, the 
interpolated value can be computed from either: the nearest 
node in the network for nearest neighbor (NN) interpola-
tion, the linear plane containing the three nearest nodes for 
linear (Lin) interpolation, or the bivariate cubic polynomial 
passing through those three nodes for cubic (Cub) interpo-
lation [1]. The fourth method was natural neighbor (NatN) 
interpolation, which is based on the Voronoi tessellation of 
the test points—the geometric dual to the Delaunay trian-
gular network. Of these four methods, only cubic and natu-
ral neighbor interpolations are guaranteed to be continuous 

across the boundaries of the triangular network [1]; conse-
quently, the linear and nearest neighbor interpolators will 
tend to have lower smoothness characteristics.

Two of the methods we analyzed were based on inverse 
distance weighting, also known as Shepard’s method. 
Here, each interpolated value is a weighted combination 
of every examination data point. In the classical formula-
tion (IDW), the weights are inversely proportional to power 
of the distances to the data points [21]. In this study, we 
used the traditional square distance (power = 2) to balance 
the influence of points far away (emphasized with a small 
power) and nearby (emphasized with a large power). We 
also included the modified formulation of this interpolator 
(IDW2), which improves the localization by only includ-
ing data points if they are within a specified distance from 
the interpolation location [11]. For this distance, we used 
the mean separation between all locations in the test grid, 
which was 48.3°.

Two of the methods are radial basis function (RBF) 
interpolators, which form each interpolated value through 
a linear combination of kernel functions. The kernels have 
the form φ(r) and are dependent only on the (radial) dis-
tance between the output location and all examination data 
locations. The linear weights are determined by solving a 
data-dependent system of equations. We considered two 
types of nonparametric kernels: linear, φ(r) = r [7], and 
thin-plate spline, φ(r) = r2 log r [24].

In ordinary Kriging (Krig) or Gaussian process regres-
sion, each interpolated value is a weighted combination 
where the weights are derived from spatial covariances 
[17]. This stochastic approach treats the data as a random 
field consisting of mean and residual values at each loca-
tion. This method is natively parametric, but the parameters 
can be estimated automatically through optimization to fit a 
covariance function that models the residuals in each exam-
ination. Here, we considered an exponential model, which 
is appropriate for data with an exponentially decaying spa-
tial autocorrelation [25].

There are many other scattered data interpolation meth-
ods available. These 9 methods were chosen for this analy-
sis because they are commonly used and frequently appear 
in other comparison studies [4, 8, 10, 23]. They are likely 
to be more easily available to researchers in the field than 
other esoteric methods, and they run relatively quickly on 
modern computers.

2.3  Performance evaluation

We evaluated the interpolators in terms of accuracy and the 
smoothness of the high-density interpolated HOV surfaces. 
Greater smoothness indicates a lower prevalence of unde-
sired behaviors such as surface discontinuities and peaki-
ness. To assess accuracy, we generated a “truth” data set 

Table 2  Interpolation algorithms

a Based on Delaunay triangulation

Interpolator Abbreviation References

Nearest neighbora NN [1]

Lineara Lin [1]

Cubica Cub [1]

Natural neighbora NatN [1]

Inverse distance weighting IDW [17]

Improved inverse distance weighting IDW2 [9]

Linear radial basis function RBFlin [6]

Thin-plate spline radial basis function RBFtps [20]

Ordinary Kriging Krig [13]



120 Med Biol Eng Comput (2017) 55:117–126

1 3

{(xi, yi, z̃i)}
N
i=1 for each eye by averaging the sensitivity val-

ues across all examinations for that eye. Here,

where zij is the measurement at the ith location from the jth 
examination of an eye, and Ne is the total number of exami-
nations for the eye.

We estimated interpolation accuracy with leave-one-
out cross-validation (LOOCV). In LOOCV, a set of resid-
ual errors is produced at each grid location. Traditionally, 
the error at the kth location is ek = ẑk − zk where ẑk is 
the result of interpolating the kth location from the N − 1 
points in {(xi, yi, zi)}Ni=1,i �=k, the examination data subset 
after removal of the kth point [24]. However, we are more 
interested in the interpolator’s ability to recover the true 
value from the set of measurements because this is a bet-
ter indicator of accuracy between the grid locations where 
new values are being synthesized. Thus, in this study, the 
residual error was ek = ẑk − z̃k. For each examination, we 
computed the LOOCV residual error at all N locations.

We summarized the LOOCV errors with three standard 
metrics: the mean absolute error (MAE), the root-mean-
square error (RMSE), and Willmott’s modified index of 
agreement (d1) [28], which are given by

and

Each metric was evaluated with the Nb points, remain-
ing after automatic detection and removal of data points in 
the blind spot [2, 27], which would otherwise dominate the 
results. Here,

is the mean truth value for the examination. The RMSE is 
based on squared differences and is more sensitive to outli-
ers than MAE or d1, which are based on the absolute val-
ues of differences. RMSE and MAE are unbounded metrics 
and have units matching those of the data values (dB). In 

(1)z̃i =
1

Ne

Ne
∑

j=0

zij

(2)MAE =
1

Nb

Nb
∑

k=0

|ek|,

(3)RMSE =

√

1

Nb

∑Nb

k=0
e2k ,

(4)d1 = 1−

∑N
k=0 |ek|

∑Nb

k=0

[∣

∣

∣
z̃k − ¯̃z

∣

∣

∣
+

∣

∣

∣
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comparison, d1 is dimensionless and takes values between 
0 and 1, with 1 indicating perfect agreement between the 
interpolated values and the truth.

We also measured the smoothness of HOV surfaces 
created by interpolation of each examination onto a high-
density uniform grid. These surfaces are plausible products 
that might be created for HOV visualization, generated 
as intermediates for further analysis and clinical trial end 
point computation, or for adaptive perimetric grid location 
strategies [5]. The high-density Nx × Ny grid spanned ±90° 
with Nx = Ny = 501 points. Prior to interpolation, we 

Fig. 2  Interpolator accuracy: leave-one-out cross-validation perfor-
mance as assessed by a mean absolute error (MAE), b root-mean-
square error (RMSE), and c Willmott’s modified index of agreement 
(d1). In each boxplot, the interpolators are ordered left to right from 
best to worst performance. The linear and thin-plate spline RBF inter-
polators had the best performance according to all three accuracy 
metrics
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inserted boundary points to the examination data: 72 points 
with z = 0 around a circle with radius 120° to represent the 
lack of visual sensitivity beyond the peripheral field. Sur-
face smoothness was assessed with first-order (TV1, intro-
duced in [19]) and second-order isotropic total variation 
(TV2, derived from [18]). Denoting hi,j as the interpolated 

surface and Ω as the set of points (i, j) within the convex 
hull of the test grid,

(6)TV1(h) =

√

√

√

√

1

|Ω|

∑

i,j∈Ω

(

∣

∣∇xhi,j
∣

∣

2
+

∣

∣∇yhi,j
∣

∣

2
)

Table 3  Mean performance 
values for each interpolator

MAE, RMSE, and d1 are accuracy metrics. TV1 and TV2 are smoothness metrics. A lower value indicates 
better performance for each metric except d1, for which a larger value is better
a Best result
b Second-best result
c Third-best result

Metric Group RBFlin RBFtps NatN Krig Lin Cub IDW2 IDW NN

MAE Overall 2.01a 2.08b 2.10c 2.12 2.25 2.26 2.78 3.80 3.33

Normal 2.22a 2.34 2.28c 2.27b 2.37 2.48 2.39 2.71 3.27

Patient 1.90a 1.93b 2.00c 2.09 2.18 2.13 3.02 4.41 3.36

RMSE Overall 3.20a 3.28b 3.28c 3.42 3.59 3.64 4.29 5.09 5.81

Normal 3.45a 3.57 3.51c 3.49b 3.66 3.86 4.32 4.68 5.42

Patient 3.06a 3.12b 3.15c 3.37 3.56 3.52 4.28 5.31 6.02

d1 Overall 0.79a 0.79b 0.79c 0.78 0.78 0.78 0.69 0.56 0.68

Normal 0.75a 0.74c 0.75b 0.74 0.74 0.73 0.64 0.62 0.59

Patient 0.82b 0.82a 0.81c 0.80 0.79 0.80 0.69 0.53 0.72

TV1 Overall 0.31c 0.33 0.34 0.41 0.41 0.38 0.30b 0.29a 1.58

Normal 0.25b 0.29 0.27c 0.28 0.30 0.33 0.28 0.25a 1.22

Patient 0.34c 0.36 0.38 0.48 0.47 0.41 0.31b 0.31a 1.77

TV2 Overall 0.036b 0.032a 0.048c 0.058 0.084 0.059 0.056 0.075 1.12

Normal 0.023c 0.020a 0.029 0.021b 0.051 0.042 0.034 0.047 0.87

Patient 0.044b 0.038a 0.059c 0.079 0.10 0.068 0.068 0.091 1.26

Table 4  p values from 
comparisons of RBFlin with the 
other interpolators

Because one-tailed testing was performed, p values are only shown for the pairs in which RBFlin had the 
better mean performance metric

* RBFlin was not significantly better at a Bonferroni-corrected significance level of 0.0055

Metric Group RBFlin RBFtps NatN Krig Lin Cub IDW2 IDW NN

MAE Overall – <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001

Normal – <0.001 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Patient – 0.04* <0.001 0.07* <0.001 <0.001 <0.001 <0.001 <0.001

RMSE Overall – <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Normal – <0.001 0.04* 0.04* <0.001 <0.001 <0.001 <0.001 <0.001

Patient – 0.02* 0.003 0.003 <0.001 <0.001 <0.001 <0.001 <0.001

d1 Overall – 0.01* <0.001 0.02* <0.001 <0.001 <0.001 <0.001 <0.001

Normal – <0.001 0.3* <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Patient – – <0.001 0.02* <0.001 <0.001 <0.001 <0.001 <0.001

TV1 Overall – <0.001 <0.001 <0.001 <0.001 <0.001 – – <0.001

Normal – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – <0.001

Patient – <0.001 <0.001 <0.001 <0.001 <0.001 – – <0.001

TV2 Overall – – <0.001 0.9* <0.001 <0.001 <0.001 <0.001 <0.001

Normal – – <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001

Patient – – <0.001 0.08* <0.001 <0.001 <0.001 <0.001 <0.001
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and

The first-order finite difference operators are given by

and

The second-order operator along x is
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hNx ,j − 2hi,j + hi+1,j i = 1, 1 ≤ j ≤ Ny

hi−1,j − 2hi,j + hi+1,j 1 < i < Nx , 1 ≤ j ≤ Ny

hi−1,j − 2hi,j + h1,j i = Nx , 1 ≤ j ≤ Ny

with a similar structure for y. For both TV1 and TV2, 
smaller values indicate a smoother surface. While both 
metrics are sensitive to edges, slopes, and transitions in 
the surface, TV2 is more indicative for undesired peakiness 
because the first derivative is zero at local apexes.

Statistical testing was performed in MATLAB. Due to 
the small sample size and lack of certainty about the data 
distributions, nonparametric hypothesis tests were used 
instead of standard t tests. First, one-tailed Wilcoxon 
signed-rank tests [12] determined whether the LOOCV per-
formance for one interpolator was significantly better than 
the others, and whether the smoothness results were better 
than others. To account for the comparison among multiple 
interpolators, the significant level was decreased from 0.05 
to 0.0055 (a factor of 9) via Bonferroni correction [6]. Sec-
ond, two-tailed Wilcoxon rank-sum tests [12] determined 
whether the LOOCV performance for one interpolator was 
significantly different between the normal and patient sub-
ject groups. For these tests, a significance level of 0.05 was 
used.

3  Results

Boxplots with basic statistical summary measures for the 
LOOCV-based accuracy metrics (MAE, RMSE, and d1) are 
presented in Fig. 2 for the normal and patient groups. For 
each metric, the interpolators are ordered by mean perfor-
mance across all subjects. For all three accuracy metrics, 
the RBFlin, RBFtps, and NatN interpolators were the top 
three performers.

Table 3 shows the mean values of each metric for all 
interpolators. Values are shown for three groups: all sub-
jects, normal only, and patients only. In terms of the three 
accuracy metrics, the RBFlin consistently had the best 
result for all groups, with the only exception being d1 per-
formance in patients, where RBFlin has the second-best 
result. In general, the second- and third-most accurate 
interpolators were RBFtps and NatN respectively. Table 4 
shows the results from determining whether the perfor-
mance of RBFlin was significantly better than the other 
interpolators. It can be seen that RBFlin was significantly 
better in nearly all cases, with a few exceptions for com-
parisons with RBFtps, NatN, and Krig.

Boxplots of the smoothness metrics are shown in Fig. 3, 
where again the interpolators are ordered by mean perfor-
mance across all subjects. Both IDW interpolators yielded 
the smallest TV1 scores, but did not do nearly as well in 
terms of TV2. For the TV2 metric, RBFtps yielded the 
smoothest surfaces overall. Considering both TV1 and TV2, 
the RBFtps and RBFlin interpolators were the smoothest.

Fig. 3  Interpolator smoothness: HOV surfaces as assessed by a first-
order total variation (TV1) and b second-order total variation (TV2). 
Smaller values indicate more smoothness. In each boxplot, the inter-
polators are ordered left to right from most smooth to least. The thin-
plate spline RBF interpolator had the best performance according to 
the TV2 metric, which is a more robust smoothness measure than TV1
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Visualizing the interpolated HOV surfaces helps assess 
the relative merit of the two smoothness metrics. Exam-
ple HOV surfaces from several interpolators are shown in 
Fig. 4 for two RP patients. This figure illustrates the dif-
ferences in smoothness characteristics that are summa-
rized in Fig. 3. Nearest neighbor interpolation produces 
piecewise constant surfaces that yield large total variation 
scores. With IDW, significant dimpling with local peaks 
and valleys is apparent around the test grid locations, espe-
cially near the center where the test grid pattern is denser. 
The dimpling and peakiness also occurs with IDW2 (not 
shown). Surface TV2 smoothness from Kriging was highly 

variable among patients; the Kriging surface is smooth and 
almost indistinguishable from RBFtps for subject A, yet for 
subject B, Kriging exhibited peakiness similar to IDW2—
albeit at the periphery instead of the center. The two RBF 
methods produced very similar surfaces, with differences 
only apparent around ridges and isolated rises.

Figure 4 demonstrates the importance of TV2 as the bet-
ter metric for differentiating smoothness performance. The 
dimpled and peaky features of the IDW surfaces are not 
reflected in the TV1 scores. The visually smoothest surfaces 
are created by the RBFtps and RBFlin interpolators, and 
these interpolators have the best TV2 scores.

Fig. 4  Example high-density 
interpolated HOV surfaces for 
two patients. Higher surface 
height indicates more retinal 
sensitivity. In each column, all 
surfaces share the color scale 
shown at the bottom and all iso-
sensitivity contour lines are at 
the same heights. Arrows indi-
cate where RBFtps is smoother 
than RBFlin
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As seen in Table 3, RBFtps had the best TV2 scores for 
all groups. Table 5 shows the results of statistical testing of 
RBFtps against the other interpolators for each group. In all 
cases, RBFtps had significantly better TV2 smoothness.

Table 6 presents the significance levels from comparing 
the performance metrics between the normal and patient 
groups. For the accuracy metrics, there were significant dif-
ferences between groups in most cases. For the smoothness 
metrics, values were significantly different between groups 
for every interpolator.

4  Discussion

The results of this analysis are consistent with those from 
other reviews of interpolators for different fields of study. 
For example, in a study of numerous interpolators on 
closed-form analytic functions, Franke found that the thin-
plate spline have the best scores for accuracy and visual 
representation [10]. Comparing RBF, IDW, and Krig-
ing interpolators for digital terrain modeling applications, 

Erdogan found that the thin-plate spline RBF was the over-
all best performer, while IDW showed the largest errors.

Accuracy assessments with LOOCV require careful 
interpretation. The residual error reflects how well one data 
point can be recovered from its neighbors, and thus, it is 
proportional not only to the fidelity of the interpolator, but 
also to the spatial autocorrelation of the data. To isolate 
only the effect of the interpolator, we have focused on how 
the algorithms compare with one another instead of abso-
lute error performance.

There is no practical method to obtain reliable ground 
truth for a visual field examination, especially in patients 
with progressive disease and unstable eye fixation. We 
constructed “truth” data by averaging data from replicate 
examinations under the assumption that the measurement 
errors are zero mean. However, this is only an estimate of 
the true sensitivity, which itself can change depending on 
patient fatigue and anxiety levels, and on the time of day 
[3]. True accuracy can only be gauged after the develop-
ment of a realistic, full-scale visual field simulator.

Table 5  p values from 
comparisons of RBFtps with the 
other interpolators

Because one-tailed testing was performed, p values are only shown for the pairs in which RBFtps had the 
better mean performance metric

* RBFtps was not significantly better at a Bonferroni-corrected significance level of 0.0055

Metric Group RBFlin RBFtps NatN Krig Lin Cub IDW2 IDW NN

MAE Overall – – 0.09* 0.9* <0.001 <0.001 <0.001 <0.001 <0.001

Normal – – – – 0.1* <0.001 0.1* <0.001 <0.001

Patient – – <0.001 0.7* <0.001 <0.001 <0.001 <0.001 <0.001

RMSE Overall – – 0.2* 0.9* <0.001 <0.001 <0.001 <0.001 <0.001

Normal – – – – 0.02* <0.001 <0.001 <0.001 <0.001

Patient – – 0.04* 0.06* <0.001 <0.001 <0.001 <0.001 <0.001

d1 Overall – – 0.06* 0.9* <0.001 <0.001 <0.001 <0.001 <0.001

Normal – – – <0.001 0.9* 0.02* <0.001 <0.001 <0.001

Patient 0.06* – <0.001 0.09* <0.001 <0.001 <0.001 <0.001 <0.001

TV1 Overall – – 0.9* 0.02* <0.001 <0.001 – – <0.001

Normal – – – – <0.001 <0.001 – – <0.001

Patient – – 0.1* <0.001 <0.001 <0.001 – – <0.001

TV2 Overall <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Normal <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Patient <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 6  P values from 
comparisons of performance 
metrics in normal and patient 
groups

* Differences were not different at a significance level of 0.05

Metric RBFlin RBFtps NatN Krig Lin Cub IDW2 IDW NN

MAE 0.006 0.003 0.02 0.02 0.06* 0.01 <0.001 <0.001 0.8*

RMSE 0.02 0.01 0.02 0.3* 0.7* 0.06* 0.9* 0.002 0.006

d1 <0.001 <0.001 0.001 0.001 0.02 <0.001 0.3* <0.001 <0.001

TV1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.01 <0.001 <0.001

TV2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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In terms of accuracy and smoothness, the linear and 
thin-plate spline RBF interpolators yielded the best results 
with the latter providing slightly smoother HOV surfaces. 
This is reflective of the properties of the RBF kernels: the 
thin-plate spline kernel has a much smaller discontinuity at 
r = 0 and is infinitely differentiable everywhere else. Natu-
ral neighbor interpolation, which is available in many data 
analysis software packages such as MATLAB, was the next 
best performer. Although nominally providing a good bal-
ance between the speed of linear interpolation and the com-
plexity of cubic interpolation, these results show natural 
neighbor interpolation is superior to both in terms of accu-
racy and smoothness.

Among the best-performing interpolators, accuracy 
tended to be better with RP patients than normal subjects. 
However, the variance was often larger in patients, meaning 
the accuracy performance was less consistent. This behav-
ior is likely due to the diversity of visual field patterns in 
this group and the high degree of correlation present in 
the scotomas and low-sensitivity regions. Smoothness was 
significantly better in normals than in patients for every 
interpolator. This result is not surprising given the lack of 
scotomas and other visual field defects among normals that 
would otherwise interfere with the stability and continuity 
of the HOV surface.

Here, we have analyzed only a small set of interpolation 
techniques. We specifically chose these methods because 
they are relatively simple and readily available, and make 
good initial candidates for clinical implementation. How-
ever, we recognize that incorporating rigorous parameter 
estimation could improve both IDW methods and allow 
additional interpolators into the study including paramet-
ric RBF approaches. Also, although we did not include 
techniques based on approximation or regularization, we 
believe that developing appropriate models for these tech-
niques will help mitigate measurement error and variability 
and should be the focus of future research.

There is likely no unconditionally optimal method for 
visual field interpolation, only a best method for a spe-
cific set of circumstances. Machine learning and algorithm 
portfolio optimization techniques [16] could be employed 
to select which interpolator or interpolator combination is 
best suited for a particular instance.

5  Conclusion

Interpolation can be beneficial for both clinical and 
research analysis of static visual field data. Interpolation 
facilitates biomarker and clinical trial end point computa-
tion, multi-modal data alignment, and quantitative analy-
ses that require higher sampling density. In this study of 
nine nonparametric methods, interpolation with linear and 

thin-plate spline radial basis functions yielded the best 
accuracy and smoothness performance. If these methods 
are unavailable or too difficult to implement, natural neigh-
bor interpolation is the next best choice at a cost of reduced 
smoothness of interpolated surfaces.
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