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1 Introduction

Magnetic resonance imaging (MRI) is gaining increased 
acceptance for the diagnosis of breast cancer and the 
differential diagnosis of enhancing lesions [24], with 
enhancement information that reflects vascularity and per-
meability of breast tissues. When compared to X-ray mam-
mography for screening women with a family history of 
breast cancer, breast MRI provides superior detection and 
classification of invasive cancer [23, 25, 26, 44]. Moreo-
ver, breast MRI offers the potential for accurate meas-
urement of fibroglandular tissue volume to assess breast 
density, which is a strong risk factor associated with the 
development of breast cancer [44, 3, 19, 38]. To improve 
interpretation, accuracy and reproducibility further, there 
is considerable potential for computer assistance to pro-
cess the large volume of image data produced during an 
MR investigation, which often has high spatial and tempo-
ral resolution [2].

For breast density assessment or lesion localization, 
computer-assisted MR image evaluation requires accurate 
separation of breast volume from other tissues and regions 
of the body. The breast–air boundary is identified easily by 
searching for a sharp increase in the image intensity from 
the air side provided that the background noise is low [9, 
13, 22]. However, detection of the breast–chest wall bound-
ary is a complicated problem, due to coil-related intensity 
inhomogeneity artefacts and partial volume issues, espe-
cially in the presence of dense breast tissue connected to 
the chest wall muscles and liver tissue beneath chest wall 
muscles [47].
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The approaches published to date can be divided into 
three broad categories, although there is often considerable 
overlap.

1.1  Methods based on image processing filters, 
morphological operations and geometric 
considerations

These techniques have the advantage that they do not 
require prior information concerning breast anatomy.

Twellmann et al. [39] reported a simple technique that 
consists of median filtering, grey-level histogram thresh-
olding using Otsu’s method [32], and morphological clos-
ing. Better results are obtained when Otsu’s method is 
replaced with k-means clustering, as described by Ertas 
et al. [10]. Hayton et al. [16] used iterative morphological 
erosion followed by dilation and a “graph search” algo-
rithm to detect the breast–air boundary and to find the 
approximate location of the chest wall. For certain patients, 
the algorithm generates satisfactory results, but it requires 
a long processing time and fails if the patient’s chest wall 
is not flat. Li et al. [27] used a simple three-class clustering 
method (air, parenchyma, fat) to obtain a basic segmenta-
tion, which was then refined using a gradient-based trac-
ing algorithm, based on a set of seed points. Although there 
is little discussion, the method would likely fail if the seed 
points were incorrect. Koenig [22] employed histogram 
quantiles for grey-level thresholding and intensity gradients 
to detect breast tissue boundaries. This requires the exact 
location of the nipples and is able to segment the chest wall 
boundary only very roughly. Yao [47] refined this type of 
approach by fitting a spline curve and then using an active 
contour to improve the quality of the boundaries; they 
reported a system that was completely automatic. Giannini 
et al. [13] also described an automated system, but it seems 
that in both of these cases, the methods would fail for cases 
where parenchymal breast tissue lies in close proximity to 
the chest wall. Lu et al. [29] developed a method based on 
mathematical morphology and region growing to locate the 
breast–air boundary and an active contour model to locate 
the breast–chest wall boundary. The performance of the 
algorithm depends on appropriate selection of the field-
of-view and makes several assumptions such as the loca-
tions of the axilla, midsternum and nipples. It fails for those 
patients with large breasts where the left and right sides are 
compressed together.

Wang et al. [42] demonstrated excellent segmentation for 
both large and very asymmetrical breasts, using a method 
based on Hessian “sheetness” filters. After detection of 
boundaries, breast segmentation was refined by employ-
ing an intensity-based region-growing algorithm. Wu et al. 
[46, 45] presented a completely automated method using 
a variety of edge filters. Recently, two additional methods 

have been published using variants of the “dynamic pro-
gramming” approach. Jiang et al. [17] demonstrated a 
method using fat-suppressed T1-weighted images and polar 
transformation of curved sections of the breast wall, while 
Rosado-Toro et al. [35] require separate “water” and “fat” 
images, with an additional saturation band.

1.2  Methods incorporating annotated atlases

Atlas-based segmentation methods, already in wide-
spread use for the brain, have been applied to this prob-
lem. Gubern-Mérida et al. [15, 14] proposed an atlas that 
provides as a priori information the probabilities for each 
voxel to belong to pectoral muscle, heart, lungs, thorax and 
breast. After preprocessing (bias-field correction, normali-
zation and registration), the breast–chest wall boundary is 
determined by segmenting these body structures using an 
atlas-based voxel classification algorithm [15]. Anatomi-
cal variations on the breast–chest wall area are captured by 
the atlas, but to segment the breast–air boundary, additional 
processing with a region-growing algorithm is employed, 
together with a morphological dilation filter that works 
slice by slice. Although the method performs well, there 
is a very high “startup cost” in terms of the skilled input 
required to set up the atlas. As the authors point out, “each 
volume takes approximately 45 min in a dedicated breast 
MRI annotation environment.”

Gallego-Ortiz and Martel [11] demonstrated an alter-
native atlas-based approach, incorporating entropy-based 
groupwise registration, maximal phase-congruency and 
Laplacian mapping. They applied their work to a large 
image cohort scanned with a Dixon MR imaging sequence. 
Although the computation for the results was short, the 
authors noted that errors were relatively high for locating 
the pectoral muscle boundary and there were some failed 
cases. The methods were refined by Khalvati et al. [18] and 
included the ability to obtain segmentations using two dif-
ferent forms of MR contrast (T1w and Dixon).

1.3  Methods based on fuzzy c‑means and machine 
learning

Nie et al. [30] proposed an initial segmentation based on 
body landmarks, followed by simple fuzzy c-means clus-
tering [7], which incorporates a correction for intensity 
inhomogeneities. B-spline fitting is used to locate the chest 
wall; and dynamic searching removes the breast skin edge. 
The algorithm was well tested, but there are limitations. 
Appropriate selection of the field-of-view, and user interac-
tion to determine the position of the spine, are needed. A 
potential issue for some breast coils is that the locations of 
the spinous process of the thoracic spine or the lateral mar-
gin of the bilateral pectoral muscles might be undetectable 
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because of low signal intensity or coronal image acqui-
sition. The authors also note that manual correction is 
required when contrast between the breast and chest wall 
is insufficient. Some of these disadvantages were mitigated 
in the work of Lin et al. [28]. Their method still requires 
input from a radiologist to identify manually the upper and 
lower slices containing breast tissue and manual selection 
of three landmarks, but the fuzzy clustering algorithm is 
supplemented by the creation of a thorax model to better 
estimate the shape of the breast–chest wall boundary. The 
disadvantage here is that a much larger field-of-view must 
be used, thus reducing the available resolution for imaging 
the breasts themselves.

Other literature variants of the fuzzy c-means are more 
difficult to assess. Klifa et al. [21, 20] provide relatively 
little information about the exact algorithm used, and 
their segmentation method is not fully automatic. Several 
authors combine fuzzy classification with other machine 
learning methods, such as support vector machines [36, 43, 
41], but none of these publications presents a convincing 
demonstration of the segmentation of the breast from the 
chest wall.

Ertas et al. [9] proposed a four-element cascaded cellu-
lar neural network that performs grey-level thresholding, 
detection of the largest region and morphological erosion 
followed by reconstruction using morphological dilation.

1.4  Novel features of this work

A number of important problems need to be addressed by 
any breast segmentation algorithm, including noise, partial 
volume effects, and bias fields related to the breast RF coil. 
Scan-time constraints may lead to higher levels of back-
ground noise than desirable, and this argues against any 
segmentation method relying purely on thresholding. Par-
tial volume artefacts lead to ambiguities in structural defi-
nitions in the data, blurring intensities across boundaries 
where different tissues contribute to a single voxel or where 
breast tissue accounts for only a fraction of the voxel, with 
the rest being air. This requires careful consideration by 
the final consumer of the segmentation results: Is binary 
segmentation an appropriate output? Bias-field artefacts 
show up as anatomically irrelevant intensity variations in 
the image mainly induced by the physical properties of the 
receiver and transmitter coils or by variations in the local 
magnetic field. Since these effects are due to complex elec-
tromagnetic interactions between the imaged tissue and the 
acquisition system, they cannot be reduced by simple cali-
brations before scanning.

All of the methods mentioned above succeed to different 
extents in tackling these issues and are able to generate sat-
isfactory results for certain patients. A common feature of 
the majority of these publications is that they describe work 

performed using a single MR scanner, or a small number, 
with none being used in the context of a large multi-centre 
trial.

In this paper, we describe our implementation of bias-
corrected fuzzy c-means clustering (BCFCM), which 
minimizes the impact of the artefacts described above. The 
novel features of this work compared with what has gone 
before are as follows:

•	 Continuity in the selected breast region is encouraged 
by new additions to previous BCFCM algorithms as 
used in [30, 28]: (a) the BCFCM algorithm presented 
includes a regulariser function, operating on a 3D regu-
lariser window; (b) after the BCFCM classification, we 
add a number of morphological steps to refine the seg-
mented volume.

•	 When using fuzzy c-means clustering, selection of 
initial class centroids is important and can have a big 
impact on the results. In our study, we explain a very 
easy but beneficial way to do this.

•	 We investigate the generalizability of our breast seg-
mentation on images acquired using different brands 
of MR scanners in a number of clinics. In the context 
of multi-centre clinical trials, it is paramount that any 
methodology developed should be applicable to data 
acquired from a variety of sources, be robust against 
unavoidable differences in acquisition protocols and 
setup practice in different scanning centres, as well as 
catering for patients with a variety of different shapes 
and sizes of breast. These aspects have not previously 
been well studied.

•	 This algorithm is tested on a much larger patient cohort 
than for previous BCFCM methods and the statistics 
presented are more comprehensive.

•	 We demonstrate the consistency of results, using a train-
ing and test cohort.

2  Materials and methods

2.1  MR imaging protocol and patient cohort

At our institution, we have set up a case database that con-
tains images from approximately 500 women who were 
scanned in the UK multi-centre study of MRI screening 
for breast cancer (MARIBS) [26]. T1-weighted images 
were acquired in the coronal plane using a predeter-
mined 3D SPGR pulse sequence with flip angle = 35°, 
matrix size = 256 × 256, slice thickness = 2.5 mm and 
FOV = 340 mm, with typically around 85 slices per vol-
ume in the analysed breast region. Subjects were positioned 
prone with the breast imaged in gentle compression within 
dedicated breast coils [5]. All of the study participants 
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gave consent to their anonymized images being used for 
research purposes. Sixteen-bit greyscale image sets were 
transferred from the MR scanner in DICOM format for fur-
ther analysis.

Eighty-two women from the MARIBS cohort, selected 
to provide a range of breast fat content, were entered into 
this study. As summarized in Table 1, the cohort included 
29 fatty, 30 fibroglandular (or “heterogeneously dense”) 
and 23 dense breasts in a range of sizes. T1-weighted 
breast MR images without fat suppression were acquired, 
and this subset contained data from six different models of 
1.5 and 1.0 T scanners from three different manufactures 
(GE Medical Systems, Slough, UK; Philips Medical Sys-
tems, Reigate, UK; Siemens Medical Solutions, Bracknell, 
UK) and situated in 15 clinics. From these data, a training 
dataset, composed of 20 fatty, 16 heterogeneously dense 
and 14 dense breasts was used; the remaining cases formed 
the test dataset.

2.2  Fuzzy c‑means algorithm for breast MR image 
segmentation

We chose to examine the fuzzy c-means (FCM) algorithm 
because of its potential in overcoming partial volume 
effects (something that is particularly important in later 
stages of the breast density calculation, after the initial 
whole-breast segmentation described here). FCM is one 
of a class of algorithms based on membership functions, 
which can be used for “soft” segmentations of overlapped 
tissue classes [34]. Among these approaches, FCM has the 
advantage that it can be modified to carry out a simultane-
ous intensity inhomogeneity compensation (bias correc-
tion) that is computationally less expensive than any prefil-
tering operation [33].

In the literature, FCM-based techniques with intensity 
inhomogeneity minimization have been primarily devel-
oped for segmentation of brain MR images. Pham and 
Prince [33] introduced an adaptive FCM clustering that 
incorporates regularization terms in the objective function. 
It is sensitive to noise and converges slowly. Ahmed et al. 
[1] developed BCFCM clustering that employs a neigh-
bourhood regularizer in the objective function to allow 

labelling of a voxel to be influenced by the labels in its 
immediate neighbourhood in 2D. It converges faster and 
is insensitive to salt-and-pepper noise. BCFCM cluster-
ing assumes that the observed image intensity is a product 
of the intrinsic tissue signal and a spatially varying coil 
response factor, thus representing intensity variation arte-
facts as an additive bias field in the logarithmic domain. 
In this study, we extend the conventional 2D BCFCM to 
include a 3D regulariser and also include the new step of 
setting up the clustering parameters to generalize breast 
segmentation on images acquired using different MR scan-
ners in different clinics.

Although the BCFCM algorithm does not itself require 
a formal training dataset, we used such an additional set 
(consisting of 50 cases; see Table 1) in order to gain experi-
ence on the effect of altering the different parameters and 
to implement refinements to the segmentation, such as 
post-BCFCM morphological operations. Given the large 
number of adjustable parameters below (p, α, W(r), R, ε, 
initial values of β(r) and class centroid offsets, together 
with the morphological structuring element) and the a pri-
ori unknown extent of the search space, no formal optimi-
zation procedure was employed for this work.

Consider a 3D L × M × N MR image and a voxel 
located at position r = (i, j, k), i = 1, 2, … ,L, j = 1, 2, … , 
M and k = 1, 2, … , N. Let y(r) be the logarithm of the 
observed image intensity at location r and let β(r) be the 
bias field at location r, which is initially unknown and 
obtained as part of the optimization procedure. The objec-
tive function of BCFCM for 3D is given by a summation 
over voxels (index r) and fuzzy classes (index f):

Note that r = r(r), and similarly s = s(s) below, but 
these are suppressed for the purposes of clarity. Here, the 
first term accounts for the bias correction, while the second 
term is a regularizer encouraging smoothness and the cost 
functions are defined as follows:

F is the total number of tissue classes, and f = 1, 2, …  ,  
F. uf (r) is the membership value at voxel location r for 
class f such that 

∑F
f=1

uf (r) = 1 and 0 ≤ uf(r) ≤ 1. cf is 
the centroid of class f. In the regularizer term, W(r) is the 
set of points in a “regularizer window” placed around voxel 
location r, and R is the total number of entities in W(r). 

(1)JBCFCM =

L×M×N
∑

r=1

F
∑

f=1

uf (r)
p
[

Df (r)+ γf (r)
]

(2)Df (r) =
∥

∥y(r)− β(r)− cf
∥

∥

2

(3)γf (r) =
α

R

R
∑

s=1
s(s)∈W(r)

∥

∥y(s)− β(s)− cf
∥

∥

2

Table 1  Datasets categorized by breast type and MRI system manu-
facturer

Siemens Philips GE All

Breast type

 Fatty 14 6 9 29

 Fibroglandular 14 5 11 30

 Dense 11 5 7 23

 All 39 16 27 82
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The weighting factor α and the size of the regularizer win-
dow were chosen empirically based on experience with the 
controls, the effect of the regularizer biasing the solution 
toward piecewise-homogeneous labelling. Fuzzy index p 
determines the amount of fuzziness of the resulting classi-
fication and a high value of p corresponds to higher fuzzi-
ness. The norm operator ||·|| stands for the standard Euclid-
ean distance.

The minima of JBCFCM can be numerically computed 
using an iterative optimization procedure started by assign-
ing initial values to β(r) and cf. The iteration is stopped 
when the absolute change in class centroids is under a user 
chosen threshold ε. During each step, new class centroids, 
bias field and membership values are calculated using

In this study, non fat-suppressed T1-weighted breast 
MR image slices (acquired originally with the “in-plane” 
orientation as coronal) are used to segment breast vol-
umes. The datasets are split into two equally sized volume 
images in the axial plane to localize intensity inhomogene-
ity artefacts, thus improving the success of the extended 
BCFCM clustering. The extended BCFCM clustering is 
applied to each image slice in these volumes with p = 2, 
initial β(r) = 0.01, α = 0.20, R = 7 (a 3D 6-neighbourhood 
window) and ε = 0.01. Given the presence of breast in all 
images, two classes are defined: breast and non-breast (i.e. 
background) and so F = 2. Initial class centroids are set to 
the mean intensity of the processed image slice plus two 
offset values determined for each MR scan. For most of the 
cases used in the present work, the offset values of 20 and 
90 give the best results. Typically, for images with signifi-
cant quantities of low-intensity parenchyma, our experience 
was that both low offset and high offset values should be 
decreased. On the other hand, when the background image 
intensity is high, the low offset value must be increased.

Each BCFCM clustering outputs a binary image that 
may include some misclassified regions outside the breast 
and some holes inside the breast. Refinement 1 is to remove 
the unwanted regions and to fill the holes. 2D hole-filling 
followed by a 4-neighbourhood connectivity search and 

(4)

c∗f =

∑L×M×N
r=1

u
f
(r)p

(

[

y(r)− β(r)
]

+
α
R

∑R
s=1
s(s)∈W(r)

[

y(s)− β(s)
]

)

(1+ α)
∑L×M×N

r=1
u
f
(r)p

(5)β∗(r) = y(r)−

∑F
f=1

uf (r)
pcf

∑F
f=1

uf (r)
p

(6)
u∗f (r) =

1

∑F
h=1

(

Df (r)+γf (r)

Dh(r)+γf (r)

)
1

p−1

object labelling is performed. The object with the biggest 
area is identified as the breast region. Other smaller objects 
are removed from the binary image. The resultant images 
of the slices are stored and then merged to form an approxi-
mate breast volume.

Within the approximate breast volume, there may be 
some non-breast tissue segmented for cases in which breast 
tissue is connected to the chest wall; and there may also 
be some unsegmented breast tissue left for cases in which 
dense breast tissue is connected to the chest wall muscles. 
Refinement 2 is to reduce the fraction of these over- and 
under-segmentations, by performing 3D morphological 
image opening, followed by closure using two cylindrical 
structuring elements having the same radius of 3 voxels 
but different heights of 3 voxels and 25 voxels in the axial 

Fig. 1  Simplified flowchart of the breast segmentation algorithm
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plane. (These sizes were determined after several experi-
ments with the training dataset). The simplified flowchart 
showing all the steps explained above is seen in Fig. 1.

2.3  Identification of the left and the right breast

For computer-assisted image evaluation to assess breast 
density or detect lesions, separate processing of the left and 
right breasts is also needed. These can be separated with a 
vertical line passing through the midsternum on the axial 
plane, requiring the localization of midsternum, since the 
use of a breast coil ensures that the sternum is roughly in 
the centre of the image [22, 30]. In this study, the location 
of the midsternum is detected automatically from the axial 
slice where the breast occupies the largest area in the seg-
mentation result. First, the air–breast boundary is extracted 
as follows. The binary segmented volume is examined slice 
by slice in an axial plane. Each column in the AP direc-
tion for the given slice is inspected starting from the air 
side and the first transit from zero to one is recorded. These 
positions are plotted in the form of an air–breast boundary 
curve. Next, the locations of the local maxima and minima 
on this curve are found using the zero points of the first 
derivative of the curve and the sign of the second deriva-
tive. The two local maxima nearest to the curve centre are 
usually the nipple locations. The midsternum location is 
detected as the local minimum nearest to the centre of the 
curve and used to identify left and right breasts.

2.4  Segmentation performance evaluation

Success of the breast segmentation is quantified with sev-
eral metrics. These were computed from the region esti-
mated automatically by the above method and the region 
delineated manually. In prior publications, different 
authors have chosen to deal with the immensity of this 
manual segmentation task in alternative ways. For exam-
ple, in [18], “images were contoured by an expert by man-
ual initialization of an active contour technique”, while in 
[15] “annotations were done every 5–10 slices and linear 
interpolation was applied to obtain the complete label-
ling”. In the study presented here, to minimize the time 
required for manual segmentations, manual corrections 
to computerized segmentations are used. These adjusted 
segmentations are clearly not “blind” to computer seg-
mentations, and hence a comparison of segmentation per-
formance with methods that use “pure” manual segmen-
tation is not entirely fair. However, our prior experience, 
as reported in [9], is that, for the breast-to-air boundary, 
computerized segmentations and pure manual segmenta-
tions are almost the same. This method therefore allows 
us to process a large statistical sample, where the human 
reviewer performing the corrections can focus on the chest 

wall region, which is where automated algorithms face the 
greatest difficulties.

Let Cs be the set of voxels within the breast region esti-
mated by our segmentation method, Cr be the set of voxels 
delineated manually and nℜ be the total number of voxels 
within region ℜ. Relative overlap RO, as a measure of seg-
mentation precision (also named as Jaccard similarity coef-
ficient), is computed as in [37] using

Segmentation accuracy is assessed using the true-posi-
tive volume fraction TPVF and false-positive volume frac-
tion FPVF calculated by [40] 

TPVF is the fraction of the total number of voxels 
delineated by the expert that was included in the volume 
segmented by our method and FPVF is the voxels falsely 
identified by our method as a fraction of the amount of 
the voxels delineated by the expert. RO, TPVF and FPVF 
range from 0 to 1. However, clearly, the greater the RO and 
the TPVF and the smaller the FPVF values are, the better 
will be the segmentation.

3  Results

On a personal computer with a 3 GHz Intel Pentium 4 pro-
cessor and 3 GB RAM, segmentation of the whole breast of 
a single patient takes approximately 2 min using a numeri-
cal implementation in IDL 7.0 (ITT Visual Information 
Solutions, USA). The algorithm runs successfully on data 
from all 15 different centres included in the trial. When 
compared to manual segmentation that takes almost 50 min 
for a patient, the algorithm leads to considerable increase in 
the time efficiency.

Figure 2a summarizes our results for the relative overlap 
(RO) statistic defined above; it provides a measure of the 
success of our BCFCM algorithm in matching the results of 
manual segmentation, as computed over the entire analysis 
cohort. Each position along the horizontal axis represents 
a threshold value ROthresh, and on the vertical axis, we plot 
the number of segmented breasts for which the calculated 
RO value is greater than this threshold, expressed as a per-
centage of the total number of breasts. Thus, for example, 
100 % of the segmentations have an RO > 0.70, while 
only about 48 % of the breast segmentations pass at an RO 
threshold of 0.95.

(7)RO =
nCs∩Cr

nCs∪Cr

(8)TPVF =
nCs∩Cr

nCr

(9)FPVF =
nCs−Cs∩Cr

nCr
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Figure 2b, c displays corresponding results for the TPVF 
and FPVF statistics. Note that for a “good” algorithm, 
the first two graphs should remain close to 100 % for as 
far along the horizontal axis as possible, while for FPVF, 

the percentage will ideally drop to low values as early as 
possible.

We can also rate the overall performance of our algo-
rithm by the mean and standard deviation of the three sta-
tistics over the whole cohort. These data are summarized 
in Table 2, together with the results for the different breast 
types.

In order to assess the degree to which the new method 
represents an improvement over an algorithm previously 
demonstrated in the literature, we performed a compari-
son with the cellular neural network (CNN) method [9] 
for all 82 cases. The adjustable parameter b in the thresh-
olding stage of that algorithm was here set to 0.55, which 
gave significantly improved results for the current cohort, 
compared with the value of 0.79 in [9]. The best CNN seg-
mentation performance gave overall statistics RO = 0.88, 
TPVF = 0.94 and FPVF = 0.07 on these data, which is 
somewhat inferior to the results of the new BCFCM method 
(RO = 0.94, TVPF = 0.97, FPVF = 0.04). Inspection of 
Table 2 demonstrates consistent improvement in perfor-
mance across categories by moving to the new algorithm.

The various stages of the segmentation algorithm devel-
oped here are illustrated in Figs. 3 and 4. Row (a) shows 
axial T1-weighted images from a superior slice, the mid-
dle slice in which the breast occupies the largest area, and 
an inferior slice; row (b) shows the initial BCFCM outputs; 
row (c) shows the first stage of refinement, namely 2D 
hole-filling followed by a 4-neighbourhood connectivity 
search, object labelling and small-object removal; row (d) 
is the final segmentation output after the second stage of 
refinement: 3D morphological opening; row (e) shows the 
bounding contours of segmentation in (d), superimposed 
on the original images; while (f) is the human observer’s 
“gold-standard” segmentation.

Our general experience is that large fatty breasts are 
unproblematic to segment, even when they contain “skin 
folds”.

The data chosen for Figs. 3 and 4 illustrate the algorithm 
performance in more challenging cases. We show two 
examples of smaller breasts with fibroglandular tissue con-
nected to the chest wall muscle. These tend to be difficult 
to segment because of weak contrast boundaries. In Fig. 3, 
the images are noisy and corrupted by cardiac motion and 
partial volume artefacts. On the inferior slice, liver tissue 
is adjacent to the chest wall muscles. Offset values of 20 
and 90 are used. Nevertheless, the automated method per-
forms well (on average, RO = 0.93, TPVF = 0.94 and 
FPVF = 0.01).

By contrast, Fig. 4 shows an example of a small breast in 
which the automated algorithm fails to exclude completely 
the pectoral muscle. Fibroglandular tissue is in close prox-
imity to the flat chest wall, and liver tissue is present right 
underneath the chest wall muscles. Aliasing artefacts are a 

Fig. 2  Results for: a relative overlap; b true-positive volume frac-
tion; and c false-positive volume fraction
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significant confound. Despite these issues, using offset val-
ues 20 and 90, segmentation performance for this case is 
still generally good (on average, RO = 0.88, TPVF = 1.00 
and FPVF = 0.13).

For all cases, the air–breast boundary curve is obtained 
for the axial slice where the segmented breast occupies the 
largest area. Figure 5 shows the results of the algorithm for 
automatic detection of nipple and midsternum locations for 
the cases illustrated in Figs. 3 and 4. Volumetric views of 
the identified right breast (grey area) and left breast (light 
grey area) for the same two cases are shown in Fig. 6.

4  Discussion

The use of BCFCM and morphological operations reduces 
the false segmentations due to the artefacts caused by 
noise, intensity inhomogeneity and partial volume. In com-
bination with 2D hole-filling and largest-object detection, 
it also removes the breast skin edge and extensions into the 
liver tissue underneath the chest muscle. 3D image open-
ing reduces the fraction of over-segmented regions and 3D 
image closing reduces the fraction of under-segmentations 
further.

Table 2  Comparison of the 
segmentation performance for 
each of the density categories 
of the BCFCM-based method 
introduced in this study and the 
CNN-based method previously 
reported in [9]

Breast type ROBCFCM TPVFBCFCM FPVFBCFCM ROCNN TPVFCNN FPVFCNN

Training set (n = 50)

 Fatty 0.95 ± 0.03 0.97 ± 0.03 0.02 ± 0.01 0.90 ± 0.06 0.92 ± 0.07 0.03 ± 0.03

 Fibroglandular 0.93 ± 0.04 0.97 ± 0.03 0.04 ± 0.04 0.87 ± 0.07 0.93 ± 0.06 0.08 ± 0.08

 Dense 0.90 ± 0.06 0.97 ± 0.04 0.08 ± 0.08 0.86 ± 0.05 0.93 ± 0.07 0.08 ± 0.05

 All 0.93 ± 0.05 0.97 ± 0.03 0.04 ± 0.06 0.88 ± 0.06 0.93 ± 0.06 0.06 ± 0.06

Test set (n = 32)

 Fatty 0.97 ± 0.02 0.98 ± 0.02 0.01 ± 0.01 0.93 ± 0.04 0.94 ± 0.04 0.02 ± 0.02

 Fibroglandular 0.96 ± 0.03 0.98 ± 0.01 0.03 ± 0.02 0.90 ± 0.03 0.98 ± 0.01 0.10 ± 0.05

 Dense 0.90 ± 0.08 0.98 ± 0.02 0.11 ± 0.12 0.83 ± 0.11 0.92 ± 0.11 0.12 ± 0.12

 All 0.94 ± 0.05 0.98 ± 0.02 0.05 ± 0.07 0.89 ± 0.07 0.95 ± 0.07 0.08 ± 0.08

 Overall 0.94 ± 0.05 0.97 ± 0.03 0.04 ± 0.06 0.88 ± 0.07 0.94 ± 0.07 0.07 ± 0.07

(a) Original data

(b) BCFCM output

(c) Refinement 1

(d) Refinement 2

(e) Refinement 2 
overlaid on 
original data

(f) Manual 
correc�ons

Superior Central Inferior
Example Case 1

Fig. 3  Medium-sized dense breast: a representative MR slices; b 
BCFCM outputs; c mask after Refinement 1; d mask after Refine-
ment 2; e breast boundary from Refinement 2 superimposed 

onto original images; f manually corrected contours (RO = 0.93, 
TPVF = 0.94 and FPVF = 0.01)
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From the curves in Fig. 2, objective measures of the 
algorithm’s performance can be obtained, permitting qual-
ity criteria for an “acceptable” segmentation to be defined 
on an application-specific basis. The segmentation algo-
rithm performs well with high relative overlap, high true-
positive volume fraction and low false-positive volume 
fraction. All datasets were segmented with RO > 0.77, and 
90 % of all the datasets had an RO of 0.86 or better. The 
cumulative percentage curves are slightly different for the 
training and test datasets, so this last statistic varies from 
88 % of the breasts in the “training” dataset to 94 % in the 

“test” dataset. The graphs in Fig. 2 give valuable insights 
into the distribution of failure.

Calculation of the midsternum location from the axial 
slice in which segmented breast occupies the largest area 
gives accurate estimates, since this slice is usually from the 
midsection of the breast, where the contrast of the chest 
wall muscle is strong and the signal-to-noise ratio is high. 
This location information can be used to define a vertical 
line to separate the breasts. Identified left and right breasts 
will provide additional information to algorithms that per-
form lesion localization or breast density assessment.

(a) Original data

(b) BCFCM output

(c) Refinement 1

(d) Refinement 2

(e) Refinement 2 
overlaid on 
original data

(f) Manual 
correc�ons

Superior Central Inferior
Example Case 2

Fig. 4  Small dense breast: rows as for Fig. 3 (RO = 0.88, TPVF = 1.00 and FPVF = 0.13)

Fig. 5  Air–breast boundary 
curves; computed nipples and 
midsternum locations (dashed 
and dotted lines, respectively) 
for the cases corresponding to 
(a) Fig. 3 and (b) Fig. 4 Air-breast 

boundary curve

Approximate nipple loca�ons
(as found from the zero-points of the first deriva�ve)

Calculated mid-sternum loca�on
(as found from the local minimum of the func�on closest to the curve centre)

Example Case 1

Example Case 2
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A number of scenarios exist in which the algorithm may 
lead to inaccurate segmentation. Chest wall muscles con-
nected to the fibroglandular tissue of small and very dense 
breasts may result in over-segmentation. However, such 
errors would be tolerable without correction for computer-
ized lesion detection, since vascularized tissues in the chest 
wall can be discriminated using morphological features 
such as 3D eccentricity [9].

Segmentation may end inappropriately within the axilla 
at an arbitrary edge for large breasts since image intensi-
ties are reduced further away from the breast coil. How-
ever, identification of the breast volume as the tissue 
lying between the breast–air and the breast–chest wall 
boundaries is ambiguous; there is no precise and generally 
accepted definition of lateral and superior/inferior extent of 
breast tissue, and the choice may also be application spe-
cific. For example, if comparing with digital mammogra-
phy, it may be desirable to select a volume matching the 
region accessible to the X-ray measurement (as compressed 
by the mammography paddles), thus excluding the axillary 
tail of the breast altogether. Some authors have prescribed 
more specific definitions based on anatomic landmarks. For 
example, in [6] the coronal slice located 5 mm dorsal to the 
posterior margin of the midsternum could be considered as 
the end of the breast volume. In [30], the V-tip of spinous 
process of the thoracic spine, the lateral margin of the bilat-
eral pectoral muscles and their connecting lines have been 
also used to define the posterior lateral margin at both sides 
for breast. However, there is considerable variation in body 
habitus which will affect the applicability of any fixed land-
mark system.

A second issue relating to breast-volume definition 
occurs at the breast–air boundary. The breast skin in this 
region has the potential to become thickened in the pres-
ence of benign changes [8]. On MR images, the skin may 
show similar signal intensity to that of fibroglandular tissue 

and, if not removed, is classified as “dense” tissue while 
assessing breast density [31]. This leads to undesirable 
impact on the assessments (i.e. overestimation of the breast 
density). The breast skin should thus be excluded from 
the breast volume defined. The segmentation algorithm 
introduced in this study outputs breast volumes with skin 
excluded.

There are other issues awaiting further exploration and 
development. Manual selection of intensity offset values in 
determination of initial centroids of BCFCM suffers from 
inter- and intra-operator variability although two-class 
clustering reduces the complexity of the initial guess. To 
automate this task, smoothed image histograms that have 
a number of modes equal to the desired number of classes 
have been proposed [34]. However, we have found that this 
is not applicable to breast MR images as image histograms 
can have a monomodal shape. On the other hand, breast 
regions in the outer slices may be over-segmented due to 
very low SNR. In such cases, a higher weighting factor for 
the BCFCM would improve the segmentation accuracy, 
although this would also increase the processing time dra-
matically. Changing the weighting factor adaptively may 
minimize the computational burden.

It should also be noted that a general problem for the 
segmentation community is that the ideal situation of 
T1-weighted images without fat suppression is, at the 
current time, rarely encountered in routine clinical prac-
tice. Fat-suppressed sequences will lead to difficulties for 
many of the algorithms so far presented in the literature, 
as there will be no strong boundary between the fat of the 
breast and the chest wall, with both appearing hypo-intense 
on images. Several of the larger studies [11, 18, 12] used 
research data acquired with a Dixon sequence from a non-
clinical cohort [4] and our own work draws its data from a 
UK’s MARIBS screening trial [26]. An important endpoint 
in both of these trials was the production of breast density 
data, for which accurate segmentation is important. It is 
likely that all such specialist screening applications would 
be conducted using a specially tailored protocol compatible 
with segmentation. However, it is worth highlighting the 
fact that any use of segmentation within the routine clinical 
context might require changes in acquisition protocol that 
could lengthen the standard breast examination.

5  Conclusion

In breast MR imaging, advanced computer-assisted image 
evaluation requires accurate separation of breast tissues 
from other tissues and regions of the body, such as chest 
muscle, superficial body fat, lungs, heart and ribs, that may 
confound analysis for breast density assessment or lesion 
localization. Background noise, bias fields, motion and 

Fig. 6  Identified right and left breasts (grey and light grey areas, 
respectively) for the cases corresponding to (a) Fig. 3 and (b) Fig. 4
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partial volume artefacts all contribute to the potential for 
incorrect segmentation. Since these effects are dependent 
on the tissue imaged, they cannot be removed by simple 
calibrations before scanning. Previously reported breast 
segmentation methods have been demonstrated for images 
acquired using a particular MR scanner and are able to gen-
erate satisfactory results for certain patients and for certain 
degrees of these artefacts.

In this study, we have introduced an algorithm devel-
oped for breast images acquired by a range of MR scan-
ners in multiple centres. It is based on 3D bias-corrected 
fuzzy c-means clustering and morphological operations and 
possesses a number of novel features. The full breast extent 
is determined on non fat-suppressed T1-weighted images 
without requiring any prior information concerning breast 
anatomy. Left and right breasts are identified separately 
using automatic detection of the midsternum location. The 
new segmentation method is fast, and statistical analysis on 
a large dataset shows it performs well on multi-centre and 
multi-instrument data.
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