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The (micro)circulation is a very prominent example for the

interplay of physical factors with molecular and cellular

processes in generating and maintaining crucial structural

and functional features of organs and systems in the body.

In this special issue, various aspects of this interaction are

explored in an attempt to better understand the ‘‘engi-

neering principles of vascular networks’’. An adequate

understanding of these principles and their representation

in quantitative models will allow meaningful predictions of

clinically relevant parameters, as done in the present issue

in the article by Wijngaard et al. [18] on subendocardial

perfusion in the presence of epicardial artery stenosis.

Since the heart is the first functionally active organ of

the embryo, blood flow and to a lesser degree, blood

pressure are established very early during prenatal devel-

opment. Their spatial and temporal (pulsatility) patterns

entail relevant information on the functional behaviour of

the vascular system. Therefore, it is very logical that these

signals are used intensively to control vascular growth and

differentiation in order to establish adequate hemodynamic

conditions [5, 11]. Direct cellular sensors for both blood

flow rate and blood pressure are difficult to envisage and

the related physical quantities which elicit responses of

vessels and vascular cells (Fig. 1) are most likely shear

stress (related to flow rate) and circumferential wall stress

(related to blood pressure).

The importance of shear stress (flow) for the control of

vascular network design is evidenced by the fact that it is

addressed in a larger fraction of the articles in this special

issue [6, 7, 11, 14]. A key feature is the translation of shear

stress into a biological response. Thus, shear stress elicits

the release of molecules such as H2O2 and nitric oxide, that

cause flow-mediated dilation. In this issue, Liu et al. [6]

show that the cytoskeleton of endothelial cells, directly

exposed to the flowing blood, are a critical component

herein. Shear stress is not always steady, as in organs such

as the heart, where blood flow is pulsatile due to the con-

traction of the myocardium. This pulsatile flow modulates

the release of nitric oxide, a labile molecule that can be

detected by a catheter-type sensor [2].

Shear stress also relates to the best known engineering

concept for vascular design, ‘Murray’s law [10]: If the

shear stress is the same in all vessels of a vascular bed, the

overall energy requirement for blood flow and mainte-

nance of the blood and the vessels is minimal. Minimizing

energy consumption, however, is a goal which is second-

ary to the fulfillment of the central biological requirements

of the circulation, e.g., adequate distribution of oxygen,

low capillary pressures and a large regulatory capacity in

the distal arterial tree. Therefore, living circulatory systems

show substantial deviations from Murray’s predictions as

discussed in this special issue by Renemann and Hoeks

[14]. One obvious example is the arterio-venous difference

of average shear stress levels [13]. Also, it was stated by
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Rodbard as early as 1975 [15] and later analyzed theo-

retically by Hacking et al. [3] that an isolated vascular

adaptation to shear stress involves the risk of positive

feedback loops eliminating parallel flow pathways and thus

severely compromising tissue oxygen supply.

Such observations show that in order to better under-

stand the engineering principles of the vascular system

more factors than shear stress alone have to be taken into

account, most notably blood pressure (circumferential

stress) and the metabolic state of the tissue [12]. Also, the

diversity of reactions at the biological level has to be

represented in more detail in functional or engineering

concepts. Examples are the discussion of the importance of

vascular tone in the remodeling response of resistance

arteries to hypertension in the present issue [8] and the

earlier demonstration of the requirement for information

transfer along vessel tress, e.g., by conduction of electrical

signals [12]. The role of vasomotor control and its regu-

lation is addressed by the studies of Duncker et al. [1] and

by Trzeciakowski and Chilian [16] in this issue. Also, van

den Akker et al. [17] dissect the process of vascular

remodeling down to the interaction of smooth muscle cells

with collagen, a stiff component that forms the backbone of

the vessel wall.

Improvements of the available concepts describing the

role of physical factors as determinants of (micro)vascular

structure and function will probably entail a number of

components: (1) A better assessment of the physical forces

and effects under different normal and pathological states.

(2) A better representation of the biological reaction pat-

terns to these forces. (3) Improved computational models

(Fig. 2) which allow interpreting the impact and role of

individual mechanisms (both on the physical and the bio-

logical level) in a quantitative fashion.

Taken together, this volume provides a framework for

understanding the engineering principles which appear to

govern the development and adaption of the highly adap-

tive and dynamic entity, we are interested in, i.e., the

vascular system [4, 9]. Future work will be directed to

coordinating these principles with a view to providing

robust models which can be used for predicting therapies

which may be beneficial in the treatment of vascular

pathology.
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Fig. 2 Scheme for the adaptation of vascular networks. Left column
gives the different levels involved, while in the middle column,

corresponding examples are listed. Right column indicates relevant

characteristics of the different levels. It is of central importance, that

the emergent properties of the system are fully dependent on the

internal reaction patterns. Since there are no locally imposed limits

with respect to the resulting structural or functional network

properties, the biological reactions have to be finely balanced under

physiological conditions. In pathophysiological settings, where either

the reaction patterns are changed or the boundary conditions leave the

suitable range (e.g., hypertension, or arterio-veneous shunts) vascular

reactions may lead to unfavorable properties of vascular beds. The

scheme shown would also represent the basic outline for suitable

computational models of vascular adaptation

Fig. 1 Fundamental physical stresses derived from blood flow which

act on vessels (PT transmural pressure difference, D vessel diameter,

h wall thickness, Q blood flow rate, g blood viscosity, DP pressure

difference along a unit vessel length, l vessel length)
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