Skip to main content
Log in

PPARα Signaling in the Hippocampus: Crosstalk Between Fat and Memory

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Major functions of the hippocampus are to generate, organize and store memory. This is a complex process, which is orchestrated by a group of molecules, called plasticity-related molecules. To control these various plasticity-related molecules at the transcriptional level, we have been endowed with cAMP response element-binding protein (CREB), also known as a master regulator of memory. Interestingly, we have seen that this master regulator is regulated at the transcriptional level in the hippocampus by peroxisome proliferator-activated receptor α (PPARα), a nuclear hormone receptor family transcription factor that is known to control the metabolism of fatty acids in the liver, underlying a possible crosstalk between fat and memory. Although liver PPARα does not directly control hippocampal CREB, this opens up an important possibility to improve hippocampal functions and to be resistant to memory loss by PPARα ligands and maintaining normal levels of PPARα in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • (2008) Abdominal fat boosts later dementia risk. Harv Ment Health Lett 25:7

  • Braun L, Mile V, Schaff Z, Csala M, Kardon T, Mandl J, Banhegyi G (1999) Induction and peroxisomal appearance of gulonolactone oxidase upon clofibrate treatment in mouse liver. FEBS Lett 458:359–362

    Article  CAS  PubMed  Google Scholar 

  • Brune S, Kolsch H, Ptok U, Majores M, Schulz A, Schlosser R, Rao ML, Maier W, Heun R (2003) Polymorphism in the peroxisome proliferator-activated receptor alpha gene influences the risk for Alzheimer’s disease. J Neural Transm 110:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Campolongo P, Roozendaal B, Trezza V, Cuomo V, Astarita G, Fu J, McGaugh JL, Piomelli D (2009) Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc Natl Acad Sci U S A 106:8027–8031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cederholm T, Salem N Jr, Palmblad J (2013) omega-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr 4:672–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Debette S, Beiser A, Hoffmann U, Decarli C, O’Donnell CJ, Massaro JM, Au R, Himali JJ, Wolf PA, Fox CS, Seshadri S (2010) Visceral fat is associated with lower brain volume in healthy middle-aged adults. Ann Neurol 68:136–144

    Article  PubMed Central  PubMed  Google Scholar 

  • Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93

    Article  CAS  PubMed  Google Scholar 

  • Gelinas DS, McLaurin J (2005) PPAR-alpha expression inversely correlates with inflammatory cytokines IL-1beta and TNF-alpha in aging rats. Neurochem Res 30:1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Ginty DD, Bading H, Greenberg ME (1994) Calcium regulation of gene expression in neuronal cells. J Neurobiol 25:294–303

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ (1997) Recent update on the PPAR alpha-null mouse. Biochimie 79:139–144

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Peters JM, Cattley RC (1998) Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor alpha. J Natl Cancer Inst 90:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Granholm AC, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K (2008) Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 14:133–145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iemitsu M, Miyauchi T, Maeda S, Tanabe T, Takanashi M, Irukayama-Tomobe Y, Sakai S, Ohmori H, Matsuda M, Yamaguchi I (2002) Aging-induced decrease in the PPAR-alpha level in hearts is improved by exercise training. Am J Physiol Heart Circ Physiol 283:H1750–H1760

    CAS  PubMed  Google Scholar 

  • Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 90:2160–2164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  CAS  PubMed  Google Scholar 

  • Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN, Brash AR, Marnett LJ (2002) 15-Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 277:23278–23286

    Article  CAS  PubMed  Google Scholar 

  • Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP (1993) Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci U S A 90:5723–5727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monory K et al (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy GJ, Holder JC (2000) PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 21:469–474

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Mannaerts GP (1994) Peroxisomal lipid metabolism. Annu Rev Nutr 14:343–370

    Article  CAS  PubMed  Google Scholar 

  • Rivera P, Arrabal S, Vargas A, Blanco E, Serrano A, Pavon FJ, Rodriguez de Fonseca F, Suarez J (2014) Localization of peroxisome proliferator-activated receptor alpha (PPARalpha) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus. Front Neuroanat 8:12

    PubMed Central  PubMed  Google Scholar 

  • Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K (2013) Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor alpha. Cell Rep 4:724–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinn N, Milte CM, Street SJ, Buckley JD, Coates AM, Petkov J, Howe PR (2012) Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr 107:1682–1693

    Article  CAS  PubMed  Google Scholar 

  • Sjolander A, Minthon L, Bogdanovic N, Wallin A, Zetterberg H, Blennow K (2009) The PPAR-alpha gene in Alzheimer’s disease: lack of replication of earlier association. Neurobiol Aging 30:666–668

    Article  PubMed  Google Scholar 

  • Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119:157–167

    Article  CAS  PubMed  Google Scholar 

  • Stevens CF (1994) CREB and memory consolidation. Neuron 13:769–770

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Alexander SP, Kendall DA, Bennett AJ (2006) Cannabinoids and PPARalpha signalling. Biochem Soc Trans 34:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Tugwood JD, Holden PR, James NH, Prince RA, Roberts RA (1998) A peroxisome proliferator-activated receptor-alpha (PPARalpha) cDNA cloned from guinea-pig liver encodes a protein with similar properties to the mouse PPARalpha: implications for species differences in responses to peroxisome proliferators. Arch Toxicol 72:169–177

    Article  CAS  PubMed  Google Scholar 

  • Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448:159–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NIH (AT6681 and NS83054) and Alzheimer’s Association (IIRG-12-241179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalipada Pahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Pahan, K. PPARα Signaling in the Hippocampus: Crosstalk Between Fat and Memory. J Neuroimmune Pharmacol 10, 30–34 (2015). https://doi.org/10.1007/s11481-014-9582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9582-9

Keywords

Navigation