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Abstract Mononuclear phagocytes (monocytes, macro-
phages, and microglia) play an important role in innate
immunity against pathogens including HIV. These cells are
also important viral reservoirs in the central nervous system
and secrete inflammatory mediators and toxins that affect
the tissue environment and function of surrounding cells. In
the era of antiretroviral therapy, there are fewer of these
inflammatory mediators. Proteomic approaches including
surface enhancement laser desorption ionization, one- and
two-dimensional difference in gel electrophoresis, and
liquid chromatography tandem mass spectrometry have
been used to uncover the proteins produced by in vitro
HIV-infected monocytes, macrophages, and microglia.
These approaches have advanced the understanding of
novel mechanisms for HIV replication and neuronal
damage. They have also been used in tissue macrophages
that restrict HIV replication to understand the mechanisms
of restriction for future therapies. In this review, we
summarize the proteomic studies on HIV-infected mono-
nuclear phagocytes and discuss other recent proteomic
approaches that are starting to be applied to this field. As
proteomic instruments and methods evolve to become more
sensitive and quantitative, future studies are likely to
identify more proteins that can be targeted for diagnosis
or therapy and to uncover novel disease mechanisms.
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CNS Central nervous system
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HAND HIV-associated neurological
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HBMEC Human brain microvascular
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HIV ADA A macrophage tropic R5 virus
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LC/MS/MS Liquid chromatography/mass
spectrometry/mass spectrometry

LTQ-FT Linear ion trap Fourier transform
instrument

M-tropic Macrophage tropic
M-tropism Macrophage-tropism
MALDI-MS Matrix assisted laser desorption/

ionization-mass spectrometry
MALDI-TOF Matrix-assisted laser desorption

ionization/time of flight
MCMD Minor cognitive motor disorder
MDM Monocyte derived macrophage
MS Mass spectrometry
NC Normal cognition
PM Placental macrophages
PTMs Post-translational modifications
PY Tyrosine phosphorylation
Q-TOF Quadrupole time-of-flight
SDS PAGE Sodium dodecyl sulfate

polyacrylamide gel electrophoresis
SELDI Surface enhancement laser

desorption/ionization
SELDI-TOF Surface-enhanced laser desorption/

ionization time-of-flight
SILAC Stable isotope labeling of cells

in culture
SIV Simian immunodeficiency virus
SOD Superoxide dismutase
STAT-1 Signal transducer and activator of

transcription-1
THP-1 A monocyte cell line
TNF Tumor necrosis factor
VSV Vesicular stomatitis virus

Macrophages and HIV infection: early evidence

When HIV infection was first discovered in 1981, multiple
studies pointed to CD4+ Tcells as the only targets of infection
(Maddon et al. 1986). A few years later, new evidence
revealed that different HIV isolates could productively infect
other CD4+ cells including monocytes and macrophages
(Cheng-Mayer et al. 1988; Gendelman et al. 1988; Collman
et al. 1989). Macrophages are mononuclear phagocytes
involved in both innate and adaptive immune responses.
These cells act as sentinels of the immune system because of
their phagocytic and inflammatory functions. Those HIV
isolates that preferentially infect macrophages are termed
macrophage tropic (M-tropic) or non-syncytia inducing,
whereas those that productively infect CD4+ T cells are
termed T cell tropic or syncytia-inducing based on the
phenotype developed after infection. HIV uses the CCR5

(R5), and the CXCR4 (X4), as co-receptors for entry
(Alkhatib et al. 1996; Deng et al. 1996). In addition, several
groups have provided evidence of the dual usage of
chemokine co-receptors by some viral isolates (Doranz et
al. 1996). A classification system was developed wherein
viral isolates were designated as R5, X4, or R5X4 viruses,
depending on co-receptor usage (Berger et al. 1998). Shortly
after identification of co-receptors for HIV entry, it was
demonstrated that co-receptor use cannot be assumed to be a
surrogate for tropism, owing to the presence of dual-tropic
viral strains that are X4 but not R5 or vice versa (Goodenow
and Collman 2006). CD4(+) T cells and macrophages can be
infected by R5-using viruses, as they both bear R5 co-
receptors (Duenas-Decamp et al. 2010; Hladik et al. 1999),
but R5-using viruses vary in their capacity to infect macro-
phages (Duenas-Decamp et al. 2010; Tuttle et al. 2002). The
presence of X4 viruses correlates with risk of disease
progression (Raymond et al. 2010; Tuttle et al. 2002). But
highly macrophage-tropic R5 viruses have been related to
neurological complications (Peters et al. 2007). HIV-1
disease progression is also associated with an increased
capacity of the virus to replicate in macrophages, indicating
that M-tropism of HIV-1 is an important determinant
(Gendelman et al. 1990; Li et al. 1999; Tuttle et al. 2002;
as reviewed by Gorry et al. 2005). During initial viral
transmission in vivo, preferential infection is via M-tropic,
R5 viruses (Bieniasz and Cullen 1998; Bachis et al. 2010;
Raymond et al. 2010). X4 viruses in primary infections are
not usual (Raymond et al. 2010). Macrophages are to be
among the first cells infected with HIV-1 following sexual
transmission (Zhu et al. 1993) although cervical mucosa
CD4(+) T cells can also be infected as they possess CXCR4
and CCR5 co-receptors (Hladik et al. 1999), and R5 viruses
from a few patients have been shown to replicate in T cells
and not in macrophages (Li et al. 2010).

Macrophages as HIV reservoirs

HIV persists in the host system despite antiretroviral
treatment. There are essentially two theories of persistent
infection: ongoing replication, which is a consequence of
drug resistance, and latency, which involves the presence of
HIV in reservoir cells such as resting memory CD4+ T
cells, and in mononuclear phagocytes including peripheral
blood monocytes, macrophages, microglia, and dendritic
cells (Le Douce et al. 2010; Embretson et al. 1993; Finzi et al.
1997; Chun et al. 1997; Wong et al. 1997; Bailey et al. 2006;
Keele et al. 2008; Zhu 2002). Mononuclear phagocytes are
important sites of viral persistence (Popovic et al. 1988;
Gendelman et al. 1988; Le Douce et al. 2010). Since
monocytes and tissue macrophages live for a long time,
they can act as reservoirs and vehicles for viral dissemination
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(Crowe et al. 2003). Infectious virus is present not only in
differentiated macrophages but also in circulating monocytes
(Zhu et al. 2002; Lambotte et al. 2000) affecting cellular
receptors (Melendez-Guerrero et al. 1990) and antigen
presentation (Melendez-Guerrero et al. 1991). It has been
shown that the CD16+ subset of monocytes is more
permissive to HIV infection than CD16- cells (Ellery et al.
2007). These CD16+ monocytes are recruited to sites of
infection or inflammation (Crowe et al. 2003; Alexaki and
Wigdahl 2008), and represent an intermediate state of
activation between monocytes and macrophages (Ancuta et
al. 2009). Upon subsequent differentiation, they become
resting cells and viral reservoirs in different tissues including
the brain (Gartner 2000; Fischer-Smith et al. 2001).

Macrophages and HIV-associated neurological
disorders

HIV-associated neurological disorders (HAND) is a repertoire
of several central nervous system (CNS) disease manifes-
tations caused by HIV infection in advanced stages of the
disease that range from mild forgetfulness to frank dementia.
CNS disease results as a consequence of the neuronal death
caused by the secretion of soluble viral and cellular
neurotoxins from activated and/or infected perivascular
macrophages and microglia (Gonzalez-Scarano and
Martin-Garcia 2005; Kaul et al. 2001). These neurotoxins
include the cytokines [tumor necrosis factor-α (TNF-α) or
interleukin-1β (IL-1β)] (Fischer-Smith and Rappaport
2005), excitatory amino acids (Dreyer and Lipton 1995;
Yeh et al. 2000), chemokines that induce cellular inflamma-
tory cascades, and viral proteins (Gonzalez-Scarano and
Baltuch 1999; Kaul et al. 2001). The secretion of these
factors, together with a severe dysregulation of the normal
functions of macrophages, can lead to neuronal dysfunction
and apoptosis (Adle-Biassette et al. 1995; Shi et al. 1998),
resulting in the development of severe dementia commonly
called HIV-1 associated dementia (HAD; Gonzalez-Scarano
and Martin-Garcia 2005; Kaul et al. 2001).

Two theories of viral entry into the CNS currently
prevail: cell-free entrance and the Trojan horse model. HIV
can enter the brain as cell-free virus at an early stage of the
disease (Banks et al. 2001). Once in the brain, HIV
establishes productive infection mostly in the mononuclear
phagocytes of the CNS. These include perivascular macro-
phages derived from blood monocytes, meningeal macro-
phages, macrophages of the choroid plexus, and the
microglia. The perivascular macrophages and the micro-
glia are the major HIV-producing cells in the CNS
(Fischer-Smith et al. 2001; Williams and Hickey 2002;
Kim et al. 2003, 2005, 2006). Mononuclear phagocytes are
less susceptible to the cytopathic effects of HIV infection

compared to lymphocytes (Collman et al. 1989). In contrast to
lymphocytes, viral replication is more persistent in mononu-
clear phagocytes, which leads to a continuous low-level virus
production for the lifespan of the cells.

The Trojan horse model establishes that HIV-infected
blood monocytes traffic from the periphery to the brain and
hence are the primary source of virus in the brain (Narayan et
al. 1982; Peluso et al. 1985; Meltzer et al. 1990; Davis et al.
1992; Fischer-Smith et al. 2001; Williams and Blakemore
1990; Kim et al. 2003, 2005, 2006). Monocyte trafficking to
the CNS is part of the normal turnover and is augmented
with inflammation and viral infection (Hickey and Kimura
1988). HIV-infected monocytes have been shown to cross
the blood–brain barrier (BBB) more efficiently than non-
infected monocytes (Persidsky et al. 1999). More impor-
tantly, at late stages of the disease, when the immune system
is highly compromised and the BBB is deteriorated, there is
an increased accumulation of monocyte-derived macro-
phages (MDM) from the circulation in the brain. Most of
macrophages accumulating in the perivascular space appear
to be an activated CD14+/CD16+ blood monocyte subpop-
ulation (Fischer-Smith et al. 2001; Williams et al. 2001),
which is more permissive to HIV infection (Ellery et al.
2007; Jaworski et al. 2007) and is increased in patients with
HAD (Pulliam et al. 1997). The activated CD14+/CD16+
population is elevated in the blood of Hispanic women
taking antiretroviral therapy (unpublished) as well as in their
cerebrospinal fluid (CSF; Agasalda et al. 2010). Altogether,
current data support the influence of the peripheral compart-
ment in the development HIV-induced CNS disease, as
reviewed by Fischer-Smith et al. (2008).

HIV alterations of cellular functions of macrophages:
evidence before the proteomics era

Perivascular macrophages and resident microglia are the
principal targets for HIV in the CNS. As described above,
these cells play an important role in HIV pathogenesis and
persistence in the CNS due to the secretion of toxic factors
that affect neuronal function and survival (Giulian et al.
1990). Understanding how HIV infection modulates the
normal physiology of these cells and contributes to
neuronal injury has been of great interest. A key question
is how specific proteins are modulated during HIV infection
and how such modulation affects neuronal survival. The
initial evidence of modulation of host cellular proteins was
gathered via the study of individual proteins as small
components of the whole cellular system. The most widely
used methods were one dimensional (1D) gel electrophoresis,
high-performance liquid chromatography (HPLC), Western
blot, peptide sequencing by mass spectrometry, enzyme-
linked immunosorbent assay (ELISA), flow cytometry, and
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electron microscopy. For example, in an early study Jiang et
al. (2001) using several time-consuming and complex
methods, which included supernatant fractionation,
HPLC, and immunostaining, showed that glutamate is a
mediator of neurotoxicity. The role of secreted arach-
idonic acid in neuronal injury was demonstrated by using
HPLC, ELISA, and Southern blot (Genis et al. 1992).
The group of Talley (1995) demonstrated the expression
and activity of TNF- α, after fractionation, HPLC, and
immunostaining, that this protein promotes loss of viability
in neurons treated with HIV-infected MDM conditioned
media. Although valuable information was found by the
methods available before the 1990s, investigations had to
rely on known proteins and pathways and thus were limited
in a way that proteomic analysis is not.

Monocytes, macrophages, and microglia
in the proteomics era

Before the proteomics era fully developed, researchers
accumulated vast databases from genome sequences, but it
became clear that sequences were not enough to elucidate
the cell’s proteome or biological functions as their
information is restricted to DNA and RNA. An organism’s
genome is quite stable, whereas its proteome is highly
dynamic. Proteins are very difficult to predict from
genomic data. The existence of an open-reading frame
does not necessarily indicate the presence of a functional
protein; one gene can give rise to more than one functional
protein. Also, protein post-translational modifications
(PTMs) are not marked on the genome, and more
importantly mRNA concentration does not necessarily
correlate with protein concentration (Pandey and Mann
2000). Protein modifications such as PTMs, alternative
RNA splicing, RNA editing, and proteolytic processing
give rise to a very diverse proteome (Link and LaBaer
2009). Generally, most diseases are the consequence of the
absence or dysfunction of a protein. Proteomics is a rapidly
evolving field that gives a comprehensive view of the
characteristics and activity of all cellular proteins expressed
at a given time under specific conditions. By studying the
cell proteome and secretome, we can examine PTMs,
interactions, localization, conformation, stability, and trace
of their functions in the cell (Morrison et al. 2002). These
proteomic-based techniques have replaced in part tradition-
al identification methods that failed to provide answers to
important questions in research.

Proteomic analyses vary according to the goal of the
experiment and may include methods to enhance solubili-
zation or reduce the complexity of the protein sample
before protein separation. Classical methods of protein
separation prior to identification include the 1D and two-

dimensional (2D) gel electrophoresis analyses (Table 1).
The disadvantages of 1D gel electrophoresis are its poor
sensitivity and specificity for comparison of bands between
experimental and control samples and the alteration in
protein chemistry after denaturation prior to electrophoresis
analysis. 2D gel electrophoresis is an effective starting
point for protein purification because it gives an overview
of the sample proteome. This method separates proteins on
the basis of molecular weight and isoelectric focusing
(O’Farrell 1975). In the past, 2D gel electrophoresis
provided considerable variability between control and
experimental samples due to technical difficulties with the
different gels for comparison. The 2D difference in gel
electrophoresis (2D DIGE) has recently evolved into a
quantitative method because the sample is labeled with
fluorescent dyes, thus enabling separation of up to three
different samples within the same 2D gel, with an
automated analysis program included for statistical analysis
of differential expression (Decyder, GE). It is less time-
consuming than the classical 2D electrophoresis, as fewer
gels are used, and the internal standard consisting of a pool
from all samples, reduces variability (Table 1).

The surface-enhanced laser desorption/ionization time-
of-flight (SELDI-TOF) is a mass spectrometry method that
requires a minimal sample amount for analysis and involves
the use of special chips with different types of surfaces for
discovery and characterization of hydrophobic, cationic, or
anionic proteins from biological samples (Table 1). It has
been used to uncover signature profiles for possible
biomarkers of HIV associated dementia in MDM and
monocytes from HIV seropositive patients (Table 2), and
from in vitro infected MDM and other tissue macrophages
(Table 3). Of great importance in the HIV field, SELDI-
TOF was used in the identification of the antiviral activity
of CD8 T cell-derived anti-HIV factor (Zhang et al. 2002;
Table 3).

Matrix-assisted laser desorption ionization/time of flight
(MALDI-TOF) functions similarly to SELDI-TOF as both
are mass spectrometry based and are used for analysis of
complex peptide mixtures (Table 1). The obtained peptide
mass fingerprint is subsequently compared to virtual
fingerprints of protein sequences in databases, and the
top-scoring proteins are retrieved as possible candidate
proteins (Gevaert and Vandekerckhove 2000). Using
MALDI-TOF and liquid chromatography/mass spectrome-
try/mass spectrometry (LC/MS/MS), Chertova et al. (2006)
characterized proteins in HIV-1 virions produced from MDM
infected with HIV clone NLAD8, an R5 virus (Table 3). Their
findings revealed proteins related to cell signaling, intracel-
lular trafficking, cytoskeleton, and activation of immune
response systems that contributed to understanding the viral
assembly process in macrophages (Chertova et al. 2006).
Other studies integrating MALDI-TOF and 2D electropho-
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resis have shown macrophage dysfunction related to inflam-
matory and infectious diseases (Dupont et al. 2004). These
studies showed the first two-dimensional maps of the human
macrophage and secretome with a tremendous utility for
understanding the biological functions of this immune cell.

LC/MS/MS or tandem mass spectrometry is the most
sensitive technique used to identify proteins present in a
biological sample (Table 1). This method works by ionizing
molecules and sorting and identifying them according to
their mass-to-charge (m/z) ratios (Jemal and Xia 2006). The
importance of protein identification lies in the fact that each
protein has a unique cell function that may be altered when,
for example, an obligate parasite such as HIV-1 interacts
with the cell causing a proteome unbalance that may
correlate with disease pathogenesis.

Current in vitro and ex vivo studies of HIV-infected
macrophages were done mostly with non-quantitative or
semi-quantitative proteomic methods (Tables 2 and 3). One
limitation of the proteomics approaches described in studies
of patient MDM has been the amount of protein required by
gel-based studies (Luo et al. 2003; Wojna et al. 2004; Table 2).
Another limitation has been the challenge in verification of
proteins in finding antibodies that recognize the same epitopes
detected by MS/MS (Kraft-Terry et al. 2010; Table 2).

Recent advances in chromatography, MS, and bioinfor-
matics demonstrate that proteomics studies are becoming

quantitative and more functional as in the case of protein
PTMs assessment. Some of the techniques currently of great
interest are stable isotope labeling of cells in culture (SILAC),
isobaric tag for relative and absolute quantitation (ITRAQ),
isotope coded affinity tags (ICAT), and protein arrays
(Table 4). Gel-free quantitative proteomics have been devel-
oped and offer the advantage of increased sensitivity for
identification of low abundant, hydrophobic, and low molec-
ular weight proteins. In general, these methods require
advanced MS/MS and rely on highly sophisticated computa-
tional analyses programs. They include stable isotope labeling
methods: SILAC, ITRAQ, and ICAT. They offer the
advantages of high throughput proteomics analyses (Table 4).

In the SILAC method, experimental and control cells are
labeled in cultures containing different types of media, one
with a “heavy” arginine and lysine containing carbon (13C)
isotope and nitrogen isotope (15N) and “light” and media
containing L-lysine and L-arginine. Subsequently, cell
extracts are combined and analyzed with a high-resolution
MS/MS or a linear ion trap Fourier transform instrument
(LTQ-FT) or LTQ-Orbitrap, recently developed by Thermo-
Fisher (Table 4). Originally, the SILAC approach was
recommended for dividing cells that can easily incorporate
these amino acids in culture while undergoing several cell
divisions (Mann 2006). However, recent studies have
demonstrated that even primary can incorporate these

Table 1 Proteomics approaches applied to studies of HIV-infected macrophages

Technique Uses, advantages, and disadvantages References

One-dimensional SDS
polyacrylamide gel
electrophoresis (1DE)

Standard mean for molecular weight
determination of entire proteins

Ciborowski et al. 2007

All bands are cut for protein identification
by LC/MS/MS

Luciano-Montalvo et al. 2008

Difficult to correlate protein expression
with identification data

Garcia et al. 2009

Surface-enhanced laser desorption/
ionization (SELDI)

Detect protein profiles and enzymatic
activities. Increased sample throughput
Does not provide protein identification.

Luo et al. 2003; Sun et al. 2004; Wojna et al. 2004;
Carlson et al. 2004; Kadiu et al. 2007;
Toro-Nieves et al. 2009; Wiederin et al. 2009

Matrix-assisted laser desorption/
ionization time of flight
(MALDI-TOF) mass
spectrometry

Vaporization and ionization of both small
and larger molecules, high accuracy,
and sub-picomole sensitivity

Chertova et al. 2006

Electrospray ionization liquid
chromatography tandem mass
spectrometry (ESI LC/MS/MS)

Ionize samples to obtain peptide sequences,
used with LC. Allows protein identification.

Ciborowski et al. 2007; Kraft-Terry et al. 2010;
Wiederin et al. 2009; Ciborowski et al. 2007

Two-dimensional differential
in-gel electrophoresis (2D DIGE)

Enables separating up to three samples with the
same 2D gel according to isoelectric point and
weight. Accurate analysis of differences in protein
concentration between samples. Includes an internal
standard. Difficult to detect membrane proteins and
low molecular weight proteins

Kraft-Terry et al. 2010; Dukelow et al. 2007;
Kadiu et al. 2009
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isotopes in culture (Spellman et al. 2008). Therefore, this
method could potentially be applied to obtain quantitative
protein analysis of HIV-infected MDM in vitro and ex vivo.

Other stable isotope labeling methods that can be
performed after protein digestion include ICAT, 18O, and
ITRAQ (Table 4). ICAT is used to compare proteins that are
labeled with light and heavy tags carrying a biotin moiety.
After cation exchange chromatography, the mixed peptides
are purified using immobilized avidin. Peaks corresponding
to the same peptide are identified as doublets in the mass
spectra due to mass differences in the light and heavy
isotopes. The peaks’ intensities correlate with the relative
abundance of the proteins in experimental and control
samples. The limitation of this method is missed identifi-
cation of proteins with few or no cysteine residues, loss of
information for post-translational modifications, and com-
plicated interpretation of spectra due to the biotin group
(Wu et al. 2006). In the 18O method, the protease catalyzes
the incorporation of two 18O atoms at the carboxy terminal
end of peptides and increases their mass by 4 Da. The
labeled sample is combined with the non-labeled one, and
both are processed and analyzed by MS as doublets (Jorge
et al. 2009). Sensitive statistical methods have been
developed to analyze 18O peptides with medium and high
resolution mass spectrometers (Jorge et al. 2007). Large
data sets have been generated by applying the 18O method
from plasma exposed to lipopolysaccharides (LPS) and
from burn patients (Qian et al. 2005, 2010).

ITRAQ is the most sensitive quantitative proteomics
method currently available (Table 4). A comparison of
ITRAQ with ICAT, 2-D DIGE, and ITRAQ revealed a
larger number of proteins identified by ITRAQ (Wu et al.
2006). This technology employs a 4- and 8-plex set of amine
reactive isobaric tags to label lysine side chains at the N-
terminus in a digestedmixture. The Q-TOFmass spectrometer
and the LTQ Orbitrap that can perform higher energy
collision-induced dissociation are necessary for ITRAQ
analysis. The Q-TOF quantitative proteomics requires the
MASCOT analysis program; Orbitrap uses Proteome Discov-
erer for analyses (Casado-Vela et al. 2010). Recent studies
applied iTRAQ to determine the role of T regulatory (Treg)
cells in the proteome of HIV-infected MDM (Huang et al.
2010). ITRAQ using the LTQ Orbitrap has also been
recently applied to studies of plasma from the simian
immunodeficiency (SIV) monkey model of HIV encephalitis
in search of biomarkers for HAND (Pendyala et al. 2010).

Protein PTMs (hydroxylations, methylations, nitrosyla-
tions, thiolations, γ-carbonylations, glycosylations, and
phosphorylations) can alter a protein’s function, structure,
location, and life span. In the past, irreversible protein
modifications were assessed using 2D gel electrophoresis,
and spots of interest were identified using immunological
procedures, specifically, with antibodies against PTMs,T
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such as nitrotyrosine (Dalle-Donne et al. 2006). Now PTMs
can be analyzed using proteomic approaches, mostly MS/
MS, but other techniques are also used (Table 4). Cysteine
oxidation and thiolation can be directly and easily detected
by MS approaches (Dalle-Donne et al. 2006). Numerous
protein activities depend on phosphorylation or dephos-
phorylation, that can occur in serine, threonine, tyrosine,
and histidine residues. Using databases, investigators can
predict possible phosphosites, but not all phosphosites are
physically available to be phosphorylated or they simply
are not used. Some useful databases for prediction of
phosphosites are PHOSIDA, a PTM database that can
predict phosphorylations, acetylations, and N-glycosylations,
and Phospho.ELM, a database designed exclusively for
phosphosite prediction in eukaryotes. Ibarrola et al. (2003)

used SILAC to quantitate the extent of phosphosites as
well as to identify and quantitate novel phosphorylation
sites. Other techniques such as immobilized metal
affinity chromatography, which uses Ga3+ to enrich
phosphopeptides from cell lysates and phosphoprotein
isotope-coded solid-phase tag, which labels and enriches
phosphopeptides from complex mixtures, have also been
used for the proteomic analysis of phosphopeptides (Kota
et al. 2009). More recently MS/MS/MS or MS3 method-
ologies have been applied to phophopeptide PTMs (Ulintz
et al. 2009).

Another important feature of proteins is glycosylation.
Proteins can be N- and/or O-glycosylated. N-gycosylation
attaches to the nitrogen of asparagines or arginines; O-
glycosylation attaches to the oxygen of serine, threonine,

Table 4 Future proteomic methods for quantitative determinations of proteins and protein modifications

Technique Uses Advantages Disadvantages References

Stable isotope
labeling of cells
in culture (SILAC)

Cellular signaling and
protein-protein
interactions

Inexpensive. Can be
used in dividing
and non-dividing cells

Requires cells in culture Spellman et al.
2008; Ibarrola
et al. 2003

LC-based quantitative
proteomics

Stable Isotope
labeling post-
culture with
oxygen (18O)

LC-based quantitative
proteomics

Can be applied after protein
digestion. Can be done in
low and high resolution
mass spectrometers

Sophisticated statistical
analysis

Jorge et al. 2009

Stable isotope
labeling with
isotope coded
affinity tags (ICAT)

LC-based quantitative
proteomics

Can be applied after protein
digestion. Can be done in
low and high resolution
mass spectrometers

Missed identification
of proteins with few
or no cysteine residues,
loss of information for
post-translational
modifications, and
complicated interpretation
of spectra due to the
biotin group

Wu et al. 2006

Isobaric tags for
relative and
absolute
quantitation
(ITRAQ): 4plex
and 8plex

LC-based quantitative
proteomics

Can be applied after protein
digestion. Can be done in
low and high-resolution
mass spectrometers. Most
sensitive

Requires a Nano LC ESI
MS MS QStar XL MS MS
or LTQ-Orbitrap for analysis.

Song et al. 2008

Post-translational
modifications
(PTMs)

(a) Protein purification
based in its affinity
for metal ions

(a) More efficient for multiple
phosphorylated proteins

(a) Non-specific binding
of acid peptides to the matrix

Kota et al. 2009

(a) Immovilized
metal affinity
chromatography

(b) Phosphoprotein
isotope coded solid
phase Tag

(b) Abundance of phospho-
proteins from digested
complex mixtures using
heavy or light stable
isotopes

(b) Reliable quantitation
of O-phosphorylations

(b) Cannot be applied to
phosphotyrosine residues,
bias toward pSer and
pThr residues

Protein microarray Protein abundance,
interactions, affinities
or activity

Accurate, rapid, low
volume required

Database needed, depends
on protein quality
within the chip

Speer et al. 2005;
Charboneau et al.
2002; Bertone
and Snyder 2005

(a) Analytical

(b) Functional

(c) Reverse phase
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and tyrosine. Glycans can undergo changes from being
very homogenous and simple to highly complex and
heterogeneous structures. Because glycosylations are
immunogenic, making a glycosylation profile is potential-
ly useful for HIV vaccine development. Glycosylation of
HIV proteins influences tropism, neutralization, viral
infectivity, and viral processing (Graham et al. 2008). Go
et al. (2009) used a combination of MALDI-MS and
LC/ESI-FTICR MS, in addition to reverse-phase HPLC, to
separate glycopeptides and to determine the glycosylation
profile of two clade C recombinant HIV envelopes.
Graham et al. (2008) assessed the glycosylation in all
HIVand SIV proteins using 2D DIGE and either ESI-MS/MS
or LTQ-ion trap-MS/MS.

There are three different types of protein microarrays:
analytical, functional, and reverse phase. Analytical micro-
arrays are mostly used to detect affinity and expression
(Table 4). Usually antibodies are attached to a microscope
slide to detect the protein or probe (Bertone and Snyder
2005). Functional microarrays, which contain full-length
functional proteins or domains, are used to study activity or
interactions: protein–protein, protein–RNA, protein–phos-
pholipid, or protein–ligand (Bertone and Snyder 2005). The
reverse phase microarray uses denaturated protein lysates
fixed to the slide and then probed, whereas conventional
microarrays immobilize the antibodies or probes. The
reverse-phase technique has been used to detect either
quantitative protein changes in healthy and diseased tissue
(Charboneau et al. 2002) or PTMs (Speer et al. 2005).

Proteomics of monocytes, macrophages in HIV
replication

HIV-1 infection alters the proteome and secretome of
macrophages (Tables 2 and 3). How HIV-1 affects the
intracellular and secreted proteins is incompletely under-
stood. Several studies have shown that shortly after the
viral protein gp120 interacts with the CD4 and the seven
transmembrane G protein-coupled receptors, CCR5- or
CXCR4-specific signaling pathways such as the intracellular
calcium mobilization, PI-3K activation, phosphorylation of
mitogen-activated protein kinases (MAPKs), ERK1/2, JNK/
SAPK, and p38 are engaged (Lee et al. 2005; Cicala et al.
2002). This HIV-1 activation of MAPKs leads to up- and
downregulation of several genes and consequently influences
the transcriptional and post-transcriptional events related
to the formation of important cellular and viral proteins
(Wahl et al. 2006). Consequently, the gp120-mediated
activation of these protein kinases leads to the formation
of pro-inflammatory cytokines and chemokines such as
TNF-α and MCP-1, respectively, which can influence
HIV-1 replication and cell functions (Del Corno et al.

2001; Lee et al. 2003). In monocytes, one of the functional
consequences of viral exposure is the facilitation of
protein transformation from the cytosol to the plasma
membrane (Kadiu et al. 2009). The dysregulation of
macrophage function is mediated by HIV envelope
gp120 protein with cellular co-receptor activation that
results in the inflammatory responses observed in HAD
pathogenesis (Gendelman et al. 2006). Some reports have
shown the involvement of CXCR4 in the gp120 macro-
phage/microglia activation with the induction of pro-
inflammatory cellular pathways that may contribute to
AIDS dementia (Bezzi et al. 2001).

Microarray studies or MDM transcriptome have provided
larger data sets for pathway analysis than proteomics (Brown
et al. 2008; Giri et al. 2009; Tsang et al. 2009; Ancuta et
al. 2009; Van den Bergh et al. 2010). A macrophage pro-
inflammatory M1 phenotype after HIV infection was
demonstrated with increased mRNAs for calcium upregula-
tion, cell cycle, apoptosis, MAPK, and cytokines/chemokines
(Brown et al. 2008). Since many of the over-expressed
mRNAs may not represent the final protein product owing to
delays in translation, the authors were able to validate ∼18%
of these proteins including calcium related and pro-apoptotic
proteins (caspase 7). They concluded that HIV primes
macrophages to a pro-inflammatory M1 phenotype that is
independent of toll-like receptor activation (Brown et al.
2008). However, subsequent studies on the HIV-infected
MDM transcriptome had the opposite result, an anti-
inflammatory phenotype (Giri et al. 2009; Tsang et al.
2009). Agreement with some aspects of these studies related
to the mechanisms of evasion of innate immunity by HIV
interaction with MDM has been confirmed by proteomics
studies, with the activation of oxidative stress associated
proteins, inflammation, and signaling cascades (Ciborowski
et al. 2007; Luciano-Montalvo and Meléndez 2009;
Toro-Nieves et al. 2009). Moreover, some inflammatory
proteins identified from a large data set generated by
quantitative proteomics from plasma exposed to LPS and
from burn patients (Qian et al. 2005, 2010) are also present
in monocytes from HIV-infected women (Velazquez et al.
2009; Kraft-Terry et al. 2010).

Proteomics of patient cells has spearhead research
toward the diagnosis and treatment of HIV-related disease
(Luo et al. 2003; Wojna et al. 2004; Kraft-Terry et al.
2010). These studies include the discovery of proteins as
candidates for biomarkers for HIV associated cognitive
dysfunction at different stages (Velazquez et al. 2009) as
well as other HIV-associated cellular changes and pathologies
(Rasheed et al. 2009). The validation of the protein
candidates as biomarkers in different populations and the
discovery of novel biomarkers and possible targets for
therapies by more sensitive and quantitative proteomics
approach remains to be studied.
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Proteomics of placental macrophages and MDM:
a model of HIV persistence

The HIV-1 persistence in the monocyte–macrophage
lineage has been explained by two theories: the lack of
proviral gene expression (latency) and continuous viral
expression without cytopathic effects (ongoing replication;
Le Douce et al. 2010). Several traits of monocyte–
macrophage lineage make it an important source of viral
persistence: the HIV-1 infection is generally non-lytic for
these cells; they can harbor viruses longer than CD4+ T
cells; and cells from monocyte–macrophage are more
resistant to cytopathic effects. For example, microglial cells
in the brain can produce viruses during their total lifespan
(Williams et al. 2001). However, not all of the mononuclear
phagocyte populations equally support viral growth. The
placental macrophages (PM) are a target for HIV-1
infection inside the placenta, but these cells are also barriers
to primary infection by HIV-1. They can be productively
infected by laboratory strains and clinical isolates (Fear et
al. 1998; Kesson et al. 1993, 1994; McGann et al. 1994;
Meléndez-Guerrero et al. 1994; Meléndez et al. 2001;
Plaud-Valentin et al. 1999), but they are less susceptible to
HIV-1 than are MDM. Although PM express lower levels
of HIV-1 receptor CD4 and co-receptors CCR5 and
CXCR4 than do MDM, the receptor expression is not the
sole determinants of HIV replication in these macrophages
(Luciano-Montalvo et al. 2008; Torres et al. 2001;
Melendez et al. 2001). In contrast to the consistent levels
of replication exhibited by MDM, HIV replication in PM
reaches a peak of viral replication around 3–7 days after
infection and then decreases (Kesson et al. 1994). Further-
more, levels of replication in PM measured by production of
HIV-1 viral capsid protein (p24) are ten times lower than in
MDM (Plaud-Valentin et al. 1999), a finding that cannot be
explained solely by co-receptor expression. The HIV-1
persistence in MDM and the low permissiveness exhibited
by PM make them good candidates for the study of cellular
factors involved in restriction of viral replication.

Proteomics platforms including SELDI-TOF, 1D SDS
PAGE, and LC/MS/MS have been used as initial steps to
identify protein candidates associated with HIV-1 restriction
in PM and persistence in MDM. Twenty-seven protein peaks
differentially expressed between uninfected and infected PM
and MDM cell lysates were identified by SELDI-TOF, and 12
were correlated with proteins identified by LC/MS/MS
(Table 5; Luciano-Montalvo et al. 2008). Proteins indentified
included: profilin, protein S-100 A9 (calgranulin B), SH3
glutamic acid rich-like protein 1, SOD, and cystatin B
(Table 5). Profilin and protein S-100 A9 (calgranulin B) have
been reported to be associated with HIV-1 infection in both
macrophages and T cells (Chertova et al. 2006; Kadiu et al.
2007; Ryckman et al. 2002). Differences between PM and

MDM cystatin B levels detected byWestern blots and LC/MS/
MS, correlated well and showed the most significant difference
with SELDI-TOF protein peaks in uninfected and HIV-1-
infected PM, as compared with MDM (Luciano-Montalvo et
al. 2008). Cystatin B is a cysteine protease inhibitor identified
as an important protein related to HIV-1 replication in
macrophages. A low level of cystatin B has been associated
with restriction of HIV in PM (Luciano-Montalvo et al. 2008)
and most recently in microglia (Rodriguez-Franco et al.
2010), whereas a high level of cystatin B in MDM is
associated with HIV persistence (Luciano-Montalvo et al.
2008). Cystatin B was found upregulated at 12 days post
infection in MDM and PM (Luciano-Montalvo et al. 2008).
Cystatin B was found over-expressed in the secretome of
HIV-1-infected MDM (Ciborowski et al. 2007; Garcia et al.
2009), suggesting that this protein is linked to virus infection.
This link was further demonstrated by showing decreased
HIV replication in MDM treated with siRNA against cystatin
B (Luciano-Montalvo et al. 2008). The signaling mechanisms
for cystatin B in HIV replication are related to its interaction
with signal transducer and activator of transcription-1
(STAT-1) as confirmed by co-immunoprecipitation assays
(Luciano-Montalvo and Meléndez 2009). It is known that
STAT-1 activates HIV-1 replication, but the high levels of
tyrosine phosphorylation (PY) have been associated with
HIV-1 inhibitory activity (Chang et al. 2002). Recent studies
at our laboratories show a greater expression of STAT-1 PY
in PM than in MDM (Luciano-Montalvo and Meléndez
2009). However, there are conflicting reports regarding
STAT-1 phosphorylation and HIV infection. It has been
reported that HIV infection in MDM induces an increase in
STAT-1PY that starts after 6 days of infection (Magnani et al.
2003). However, recent data of our laboratory using
monoclonal antibodies to increase specificity showed very
low levels of STAT-1PY in MDM until 12 days after
infection and higher levels in HIV-infected PM than in
HIV-infected MDM (Luciano-Montalvo and Meléndez
2009). The low levels of cystatin B associated with high
levels of STAT-1PY in placental macrophages suggest a
mechanism for restriction of HIV replication with an
activation of a tyrosine kinase that promotes STAT-1PY.
Since STAT-1PY701 induces interferon regulatory factor,
this results in decreased replication of HIV-1 by
interfering with its long terminal repeat-driven replication
(Luciano-Montalvo and Meléndez 2009). Modulation of
IFN response was also observed in microarray studies of 2-
and 7-day infected MDM with a shift from elevated to
decreased IFN α/β responses in HIV-infected MDMs (Brown
et al. 2008). Recent immunoprecipitation studies in HIV-
infected macrophages followed by LC/MS/MS studies and
luciferase assays has revealed possible mechanisms of
cystatin B interacting proteins in the inhibition of IFN
responses (Rivera et al. 2010). Indeed, other IFN response
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inhibitors have also been reported in studies from SIV-
infected macaques (Akhtar et al. 2010). However, upregula-
tion of an interferon-stimulated gene 15, an ubiquitin-like
protein involved in interferon-mediated antiviral immunity
was recently found in Treg-MDM co-cultures with novel
proteomic approaches (ITRAQ) indicating a modulation of
IFN responses in MDM by T-regs (Huang et al. 2010).
Taken together, these proteomics studies have deepened our
current understanding of pathways in HIV-infected MDM,
and thus could provide better targets for elimination of HIV
reservoirs in the future.

Proteomics platforms were also used to identify secreted
factors that might be associated with HIV-1 restriction in PM
and HIV persistence inMDM. The screening of the secretome
using SELDI-TOF followed by LC/MS/MS confirmed that
PM and MDM were secreting different proteins (Garcia et al.
2009). After sequencing and identification, several proteins
were validated for differential expression in PM and MDM
by Western blot analysis. This study reported that peroxir-
edoxin 5 is significantly more abundant in PM than in MDM
supernatants. This protein is important in the cellular
antioxidant mechanisms, and other members of its family
have shown antiviral activity. Furthermore, peroxiredoxin 5
has been found to negatively regulate TNF-α signaling, and
so it could also suppress NF-κB activity and HIV-1
replication in PM (Garcia et al. 2009). Cystatin B was also

found to be significantly more abundant in MDM than in
PM supernatants (Garcia et al. 2009). These data confirmed
the higher levels of cystatin B in MDM cell lysates reported
by Luciano-Montalvo et al. (2008). We suggested that high
expression of peroxiredoxin 5 could be one of the mechanisms
by which HIV-1 replicates inefficiently in placental macro-
phages, whereas low expression of cystatin B could impair
their capacity to replicate HIV-1, but the mechanisms remain
under investigation (Luciano-Montalvo et al. 2008; Luciano-
Montalvo and Meléndez 2009; Garcia et al. 2009). Interest-
ingly, peroxiredoxin 5 was one of the proteins identified as
downregulated in recent proteomics studies of monocytes
derived from women with HAND, a finding that suggests
chronically activated monocytes act as a Trojan horse that
carries HIV to the brain (Kraft-Terry et al. 2010).

Taken together, proteomics approaches have been used
to elucidate the proteome and secretome of tissue macro-
phages in order to determine how these new players interact
with proteins related to HIV-1 replication.

Proteomics of monocytes, macrophages, and microglia
in HIV dementia

After HIV-1 enters the CNS, either as a cell-free virus or in
infected macrophages, several signaling pathways are

Table 5 Intracellular and secreted proteins associated with HIV restriction in Placental Macrophages as compared with MDM

Protein name Total peptides detected
in sequencing

Peak intensity in SELDI-TOF
compared with MDM

Reference

MDM PM MDM HIV PM HIV PM PM HIV

From whole cells lysates:

Cytoskeletal 14-like protein ND 2 ND ND ↓ ↓ Luciano-Montalvo et al. 2008

SH3 glutamic acid rich like protein 3 2 ND ND ND ↓ Luciano-Montalvo et al. 2008

Protein S-100 A8 (calgranulin A) ND ND 2 ND ↓ ↓ Luciano-Montalvo et al. 2008

10 kDa heat shock protein 2 2 2 2 ↓ ↓ Luciano-Montalvo et al. 2008

Cystatin B 4 2 4 3 ↓ ↓ Luciano-Montalvo et al. 2008

Cytochrome C 2 2 2 2 ↓ ↓ Luciano-Montalvo et al. 2008

SH3 glutamic acid rich like protein 1 4 ND 4 ND ↑ ↑ Luciano-Montalvo et al. 2008

Myotrophin ND 2 2 ND ↑ ↑ Luciano-Montalvo et al. 2008

Protein S-100 A8 (calgranulin B) ND ND 2 2 ↑ ↑ Luciano-Montalvo et al. 2008

Galectin-1 ND ND 2 ND ↑ ↑ Luciano-Montalvo et al. 2008

Profilin 5 6 5 5 ↓ ↓ Luciano-Montalvo et al. 2008

Superoxide dismutase CuZn 2 ND ND 2 ↑ ↑ Luciano-Montalvo et al. 2008

From macrophage secretome:

Fatty acid-binding protein 3 2 1 NE NE ↑ NE Garcia et al. 2009

FKBP12 NE NE ↑ NE Garcia et al. 2009

Thioredoxin 2 2 NE NE ↑ NE Garcia et al. 2009

Peroxiredoxin 5 ND 3 NE NE ↑ NE Garcia et al. 2009

PM placental macrophages, ND not determined, NE not examined
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activated with the release of inflammatory products,
chemokines, and neurotoxins (cellular and viral) that attract
other cells to the site of infection, resulting in an increase of
intra neuronal calcium and subsequently producing neuronal
death (Gendelman et al. 1997; Li et al. 2005; Persidsky et al.
1997). This damage results in psychomotor slowing,
memory impairment, and brain atrophy (Anderson et al.
2002). In fact, apoptosis of neurons and astrocytes has been
detected in brain tissue autopsies from AIDS patients with
HAD (Adle-Biassette et al. 1995).

The communication between the nervous and the
peripheral immune systems is an important pathway for
activation of macrophages during HAD (Ballabh et al.
2004). The response of the CNS to systemic immune
challenge results in brain inflammation caused by infected
monocytes/macrophages trafficking into the brain from the
periphery, producing disruption of the BBB by oxidative
proteins (Gonzalez-Scarano and Martin-Garcia 2005).

Luo et al. (2003) identified several protein peak differ-
ences between uninfected and HIV-1-infected MDM linked
to the pathogenesis of HAD. We identified 177 protein
peaks in lysates of HIV-1-infected MDM from Hispanic
patients receiving highly active antiretroviral treatment,
among which 38 peaks were related to cognitive impair-
ment (Table 2). These data supported the hypothesis of the
emergence of a monocyte subset in patients at the onset of
dementia. Afterwards, our collaborators examined the
proteome of HIV-infected MDM (Carlson et al. 2004).
They used SELDI-TOF to detect 58 differentially expressed
proteins in MDM after in vitro infection with HIV-1 ADA,
a macrophage tropic R5 virus (Gendelman et al. 1988)
(Table 3). Microsequencing of these proteins by LC/MS/
MS permitted identification of important cellular proteins
such as ß-actin, annexin A5, vimentin, L-plastin, and
desmoyokin, in addition to viral proteins such as gp120
and vif (Table 3). The fact that many of these proteins are
related to changes in cellular structure and functions
supports the hypothesis of alterations in the cell after HIV
infection (Carlson et al. 2004). Sun et al. (2004) used the
same approach to compare profiles of secreted MDM
proteins from HIV-seropositive individuals with normal
cognition, HAD, and HIV-negative controls. This group
found a decrease in secretion of lysozyme in MDM
supernatants from individuals with HAD, thus demonstrat-
ing alterations in cell function as a consequence of HAD
(Table 2).

The SELDI-TOF approach was used initially to profile
the defining characteristics of disease progression (Luo et
al. 2003; Wojna et al. 2004). However, the spectra
developed with this approach were not comparable among
instruments at various institutions and did not allow us to
identify the proteins that were differentially expressed.
Therefore, identification of the proteome was the next

approach to be used, first by 1D gel electrophoresis and
sequencing by LC/MS/MS. Using this approach, studies
aimed at deciphering the effect of HIV variants from
patients with cognitive impairment on the macrophage
proteome, our group identified 20 proteins related to
apoptosis, chemotaxis, inflammation, and redox metabo-
lism (Toro-Nieves et al. 2009; Table 3). Some of the
identified proteins in HIV-infected MDM, including ferri-
tin, ubiquitin, and apoptosis-related proteins, have been
identified in macrophage-induced inflammation (Xue et al.
2008). These studies showed that the macrophage’s
proteome can change depending on the infecting viral
strain by stimulating an inflammatory and pro-apoptotic
phenotype. The mechanisms by which these viruses affect the
macrophage proteome are currently being investigated.

After HIV-1 infects macrophages, several signals are
activated causing morphological and functional changes to
the cell (Chertova et al. 2006; Ciborowski et al. 2007;
Kadiu et al. 2007; Lee et al. 2003). By using SELDI-TOF,
LC/MS/MS, and Western blots, culture fluids derived from
in vitro HIV-1-infected MDM identified 15 differentially
expressed proteins, including cytoskeletal proteins (Kadiu
et al. 2007; Table 3). Their findings demonstrated HIV-1
can drive the cell to a permissive state for viral replication
or can enhance phagocytosis and intracellular microbial
killing. This group subsequently demonstrated how HIV-1
transforms the monocyte plasma membrane proteome by
their use of cell surface labeling with fluorescent dyes
followed by 2D DIGE and LC/MS/MS analysis (Kadiu et
al. 2009). They found that 53% of HIV-1-induced proteins
were associated with the plasma membrane, cellular
activation, and oxidative stress, which are processes related
to HAD neuropathogenesis (Table 3). Using a similar
proteomics platform, Ricardo-Dukelow et al. (2007) estab-
lished how HIV-1-infected MDM induced upregulation of
161 human brain microvascular endothelial cell proteins
that are related to important cellular processes such as
metabolism, transport, structural changes, and regulation.
Their findings support the role of HIV-1-infected MDM in
BBB dysfunction, which contribute to HAD (Table 3).

Despite all the confirmed information about the interactions
between HIV-1 and macrophages, the exact pathways of
macrophage activation after HIV-1 infection remain incom-
pletely understood. Using proteomics, other studies have
shown that the macrophage secretome is affected by HIV-1
infection (Ciborowski et al. 2007) where cystatins B and
C, L-plastin, superoxide dismutase, and α-enolase were
identified preferentially from HIV-infected cells (Table 3).

Taken together, proteomics studies clearly demonstrate
the effects of HIV-1 on the macrophage activation,
structure, and function. These results are not distant from
microarray studies where an inflammatory M1 HIV
macrophage predominates following HIV infection with
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activation of apoptotic signaling that is modulated after
time in culture (Brown et al. 2008).

For studies of CD14+ monocytes from HIV infected
Hispanic women with HAND, our laboratory applied a
SELDI-TOF, 2D DIGE, and LC/MS/MS proteomics. Initial
SELDI-TOF studies, compared protein profiles from
CD14+ monocytes isolated from 35 individuals—eight
normal cognition (N), 11 asymptomatic (A) as defined by
substandard neuropsychological results and early symp-
toms of CI, three minor cognitive motor disorder
(MCMD), and 13 HAD. Interestingly, three peaks—
5,656, 5,976, and 6,705 m/z—were shown to be
significant (adjusted p value ≤0.1) in terms of the intensity
differences in all four group comparisons (Fig. 1). Addi-
tional protein peaks (n=41) were found differentially
expressed between individual groups (data not shown).
These results demonstrated that CD14+ monocytes from
the HAND group, starting at the early stage, expressed
predominantly decreased proteins than did those from
patients with normal cognition. Subsequently, to ascertain
that there were proteins differentially expressed in women
with HAND, we performed 2-DIGE analyses followed by
LC/MS/MS and flow cytometry validation of the proteins
found between the two extreme groups: normal cognition
and HAD (Kraft-Terry et al. 2010). Our findings showed

SOD, thioxiredoxin, and peroxiredoxin antioxidant pro-
teins as downregulated in monocytes from patients with
HAD (Kraft-Terry et al. 2010; Table 2).

Wang et al. (2008) established a proteomic modeling for
crosstalk between HIV-1-infected microglia and astrocytes.
Using 2D DIGE, Western blot, and LC/MS/MS they detected
changes in the microglial cytoskeleton and alterations in the
microglial–astrocyte communication. These observations
provided unique insights into glial crosstalk and how it is
related to HAD.

In the neuroAIDS field, proteomics approaches have also
been used for studying the CSF (Yuan and Desiderio 2005;
Laspiur et al. 2007; Rozek et al. 2007). Currently, some of
the proteins uncovered in HAND that are common to CSF
and HIV-infected MDM are subject to functional studies
including cystatins, cathepsins, and SOD (Kadiu et al. 2009;
Luciano-Montalvo and Meléndez 2009; Rodriguez-Franco et
al. 2010; Rivera et al. 2010). These proteomics studies have
helped to elucidate important mechanisms in HIV infection,
MDM activation, and disease.

Conclusion and future directions

This review provides an overview of the knowledge about
the function of HIV-infected monocytes/macrophages that
has been obtained by using various proteomics approaches.
It includes studies from the pre-proteomics and post-
proteomics eras with a detailed description of the proteomics
approaches used (Table 1). These methods have helped to
identify the differences in proteins that are resolved in a gel
electrophoresis approach and, if coupled to fluorescence
tagged markers as in 2D DIGE, have helped to quantify their
relative abundance in experimental and control samples.

Proteomic studies applied to the discovery of potential
biomarkers from ex vivo studies of macrophage proteins
derived from patients with HIV-associated neurocognitive
dysfunction have been cumbersome and provide few
protein candidates because of the limited number of
MDM available for gel-based studies. However, these
studies have yielded promising candidates and spearheaded
the discovery of new disease mechanisms (Table 2).

Proteomic studies applied to in vitro studies of HIV-
infected macrophages have been facilitated by an abundance
of macrophages from leukopheresis and elutriation provided
by Dr. Gendelman’s laboratory (Table 3). These studies have
revealed the presence of proteins related to inflammation,
oxidative stress, apoptosis, cytoskeleton, and signaling
pathways. Many of these proteins are being tested in
functional studies and could be potential avenues for
increasing our understanding of the biology of HIV to
eventually eradicate cellular reservoirs and add new
targets for therapies and vaccines.

Fig. 1 SELDI-TOF protein peaks with significant differences in
monocytes from HIV-seropositive women with HAND. CD14+
monocytes from 35 HIV-seropositive women (8 normal cognition
(NC), 11 asymptomatics (A), 3 minor cognitive and motor disorder
(MCMD), and 12 (HAD) were profiled by SELDI-TOF and analyzed
by ANOVA and GEE. Significant decrease in the intensity of three
protein peaks was found in CD14+ monocytes from HIV-seropositive
women in groups A, MCMD, and HAD as compared with the group
having normal cognition (adjusted p value ≤0.1). SELDI-TOF spectra
of were compared using ANOVA and generalized estimating equation
(GEE) statistics. The concept of false discovery rate was applied to
correct the multiple comparisons (Benjamini and Hochberg 1995;
Storey and Tibshirani 2003), and the most significant differences were
selected according to the 10% cut-off value
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Novel system biology and proteomics approaches for
quantitative proteomics have been reviewed (Table 4).
These methods will likely lead to more complex proteomes
of HIV-infected MDM to facilitate the discovery of
increased number of biomarkers for diagnosis and therapies
against HAND and other infectious and neuroinflammatory
diseases, which will further the understanding of the role of
macrophages in different diseases.
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