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We study optomechanically induced amplification and perfect transparency in a double-cavity op-
tomechanical system. We find that if two control lasers with appropriate amplitudes and detunings
are applied to drive the system, optomechanically induced amplification of a probe laser can occur.
In addition, perfect optomechanically induced transparency, which is robust to mechanical dissipa-
tion, can be realized by the same type of driving. These results indicate important progress toward
signal amplification, light storage, fast light, and slow light in quantum information processes.

Keywords optomechanics, optomechanically induced amplification, optomechanically induced
transparency

PACS numbers 42.65.Yj, 03.65.Ta, 42.50.Wk

1 Introduction

Cavity optomechanics, which explores the interaction be-
tween light fields and mechanical motion, has attracted
much attention in the past few years for its potential ap-
plication in the ultrasensitive detection of tiny masses,
forces, and displacements [1–5]. One standard optome-
chanical setup, and the simplest, is a Fabry–Perot cavity
in which one end mirror is a micro- or nanomechani-
cal vibrating object [6–8]. Various other optomechanical
experimental systems have been designed and investi-
gated, such as silica toroidal optical microresonators [9–
11], photonic crystal cavities [12, 13], micromechanical
membranes [14, 15], typical optomechanical cavities con-
fining cold atoms [16–18], and superconducting circuits
[19, 20].

Typically, when an optomechanical cavity is driven
by a red-detuned laser, a mechanical oscillator can be
cooled to its quantum ground state [21–23]. Moreover, in
this red-detuned regime, some well-known phenomena in
atomic ensembles can find their analog in optomechan-
ical systems. Specifically, under strong driving, normal
mode splitting [24–26] (called Autler–Townes effects in
atomic physics) can be observed. In contrast, for rela-

tively weak driving (much less than the cavity dissipa-
tion rate), an electromagnetically induced transparency-
like phenomenon called optomechanically induced trans-
parency has been theoretically predicted [8, 27] and ex-
perimentally verified [26, 28–30]. This phenomenon can
be used to slow and even stop light signals [31, 32] in
long-lived mechanical vibrations. On the other hand,
when a driving laser is applied to the mechanical blue
sideband, the mechanical element of an optomechanical
system can be heated, leading to phonon lasing [33–35]
and probe amplification [29, 30, 36–38].

In our previous work [39], we investigated coherent
perfect transmission and absorption in a double-cavity
optomechanical system in which the mechanical res-
onator (MR) is totally reflective [23, 40–44], driven by
two pump fields applied to the mechanical red sideband.
In this paper, we study optomechanically induced ampli-
fication and perfect transparency in the same system un-
der a different type of driving. We find that if the double-
cavity optomechanical system is driven by a red sideband
laser from one side and a blue sideband laser from the
other side and the amplitudes of the lasers are manip-
ulated appropriately, optomechanically induced amplifi-
cation can occur for a nearly resonant weak signal field
(probe field). In addition, by adjusting the control fields,
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an interesting perfect optomechanically induced trans-
parency (with a transmission coefficient rigorously equal
to 1) can be realized under the same type of driving.
When this perfect transmission occurs, a quantum co-
herence process due to the double driving can totally
suppress the decoherence due to the dissipation of the
MR. This double-driving device could be used to realize
optical signal amplifiers, switches, memory, and so on.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the double-cavity optomechanical
model, obtain the equations of motion for the MR and
the two cavity modes, solve these equations, and obtain
the output fields. In Section 3, we show how to real-
ize perfect optomechanically induced transparency, al-
though with a large mechanical decay rate γm. In Sec-
tion 4, we show how to realize optomechanically induced
amplification for a weak signal field (probe field) while
keeping the system below the phonon lasing threshold.
The conclusions are presented in Section 5.

2 Model and equations

We consider a double-cavity hybrid system with one per-
fectly reflective MR inserted between two fixed partially
transmissive mirrors [23, 40–44] (see Fig. 1). It is worth
emphasizing that the double-cavity model here is very
different from that studied in Refs. [14] and [45], in which
the MR is partially transmissive. The MR has an eigen-
frequency ωm and a decay rate γm and thus has a me-
chanical quality factor Q of ωm/γm. Two identical optical
cavities of length L and frequency ω0 are obtained when
the MR is at its equilibrium position in the absence of
external excitation. We describe the two optical modes
by annihilation (creation) operators c1 (c†1) and c2 (c†2),
and the only mechanical mode is denoted by b (b†). These
annihilation and creation operators are restricted by the
commutation relation [ci, c

†
i ] = 1 (i = 1, 2), [c1, c2] = 0,

and [b, b†] = 1. Two coupling fields with amplitudes
εc =

√
2κ℘c/(�ωc) and εd =

√
2κ℘d/(�ωd) are used

to drive the double-cavity system from either the left or
right fixed mirror, and one probe field is injected into the
left optical cavity with an amplitude εp =

√
2κ℘p/(�ωp).

Here, ℘c, ℘d, and ℘p are the respective field powers, κ is
the common decay rate of both cavity modes, and ωc, ωd,
and ωp are the respective field frequencies. Then the to-
tal Hamiltonian in the rotating-wave frame of frequency
ωc + ωd can be written as

H = �Δcc
†
1c1 + �Δdc

†
2c2 + �g0(c

†
2c2 − c†1c1)(b† + b)

+�ωmb†b + i�εc(c
†
1 − c1) + i�εd(c

†
2 − c2)

+i�(c†1εpe−iδt − c1ε
∗
pe

iδt), (1)

Fig. 1 A double-cavity optomechanical system with a mechan-
ical resonator (MR) inserted between two fixed mirrors. The two
cavities have identical cavity lengths L and mode frequencies ω0

in the absence of radiation pressure. Coupling field and driving
field with frequencies ωc, ωd and amplitudes εc, εd, respectively,
act upon opposite sides of the double-cavity system. The probe
field with frequency ωp and amplitude εp is injected into the left
optical cavity.

where Δc = ω0 − ωc (Δd = ω0 − ωd) is the detuning be-
tween the cavity modes and coupling field (driving field),
δ = ωp − ωc is the detuning between the probe field and

the coupling field, and g0 = ω0
L

√
�

2mωm
is the hybrid

coupling constant between the mechanical and optical
modes.

The dynamics of the system is described by the quan-
tum Langevin equations for the relevant annihilation op-
erators of the mechanical and optical modes,

ḃ = −iωmb − ig0(c
†
2c2 − c†1c1) − γm

2
b +

√
γmbin,

ċ1 = −[κ+iΔc − ig0(b† + b)]c1 + εc + εpe−iδt +
√

2κcin
1 ,

ċ2 = −[κ + iΔd + ig0(b† + b)]c2 + εd +
√

2κcin
2 , (2)

where bin is the thermal noise on the MR with zero mean
value, and cin

1 (cin
2 ) is the input quantum vacuum noise

from the left (right) cavity with zero mean value. Be-
cause we consider the mean response of the system, we
do not include these noise terms in the following discus-
sions. In the absence of the probe field, Eq. (2) can be
solved with the factorization assumption 〈bci〉 = 〈b〉〈ci〉
to generate the steady-state mean values

〈b〉 = bs =
−ig0(|c2s|2 − |c1s|2)

γm

2 + iωm
,

〈c1〉 = c1s =
εc

κ + iΔ1
,

〈c2〉 = c2s =
εd

κ + iΔ2
, (3)

where Δ1,2 = Δc,d ∓ g0(bs + b∗s) denotes the effective
detuning between the cavity modes and the coupling
and driving fields when the membrane oscillator devi-
ates from its equilibrium position. Note in particular that
g0|bs| is typically very small compared to ωm and even
becomes exactly zero for |c1s| = |c2s| (|εc| = |εd|).

In the presence of a probe field, however, we can write
each operator as the sum of its mean value and its small
fluctuation (b = bs + δb, c1 = c1s + δc1, c2 = c2s + δc2) to
solve Eq. (2) when the coupling field and driving field are
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sufficiently strong. Then, keeping only the linear terms of
the fluctuation operators and moving into an interaction
scenario by introducing δb → δbe−iωmt, δc1 → δc1e−iΔ1t,
and δc2 → δc2e−iΔ2t, we obtain the linearized quantum
Langevin equations

δḃ = −ig0(c∗2sδc2e−i(Δ2−ωm)t − c∗1sδc1e−i(Δ1−ωm)t)

−ig0(c2sδc
†
2e

i(Δ2+ωm)t− c1sδc
†
1e

i(Δ1+ωm)t)− γm

2
δb,

δċ1 = −κδc1 + ig0c1s(δbe−i(ωm−Δ1)t + δb†ei(ωm+Δ1)t)

+εpe−i(δ−Δ1)t,

δċ2 = −κδc2 − ig0c2s(δbe−i(ωm−Δ2)t + δb†ei(ωm+Δ2)t).

(4)

If the coupling field drives the mechanical red side-
band while the driving field drives the blue sideband
(Δ1 ≈ ωm, Δ2 ≈ −ωm), the hybrid system is oper-
ating in the resolved sideband regime (ωm � κ), the
membrane oscillator has a high mechanical quality factor
(ωm � γm), and the mechanical frequency ωm is much
larger than g0|c1s| and g0|c2s|, Eq. (4) will be simplified
to

δḃ = −ig0(c2sδc
†
2 − c∗1sδc1) − γm

2
δb,

δċ1 = −κδc1 + ig0c1sδb + εpe−ixt,

δċ2 = −κδc2 − ig0c2sδb
†, (5)

where x = δ −ωm. We can examine the expectation val-
ues of small fluctuations using the following three cou-
pled dynamic equations:

〈δḃ〉 = −ig0(c2s〈δc†2〉 − c∗1s〈δc1〉) − γm

2
〈δb〉,

〈δċ1〉 = −κ〈δc1〉 + ig0c1s〈δb〉 + εpe−ixt,

〈δċ2〉 = −κ〈δc2〉 − ig0c2s〈δb†〉. (6)

We assume that the steady-state solutions of the above
equations have the form 〈δs〉 = δs+e−ixt+δs−eixt, where
s = b, c1, c2. Then it is straightforward to obtain

δb+ =
iGεp

(κ − ix)(γm

2 − ix) + G2(1 − n2)
,

δc1+ =
εp[−n2G2 + (κ − ix)(γm

2 − ix)]
(κ − ix)2(γm

2 − ix) + G2(1 − n2)(κ − ix)
,

δc2− =
−nG2εp

(κ + ix)2(γm

2 + ix) + G2(1 − n2)(κ + ix)
, (7)

where G = g0c1s is the effective optomechanical coupling
rate, and |c2s/c1s|2 = n2 is the photon number ratio of
two cavity modes. In deriving Eq. (7), we also assumed
that c1s,2s is real-valued without loss of generality.

On the basis of Eq. (7), we can further determine the

left-hand output field εoutL and the right-hand output
field εoutR using the following input-output relation [46]:

εoutL = 2κ〈δc1〉 − εpe−ixt,

εoutR = 2κ〈δc2〉, (8)

where the oscillating terms can be removed if we
set εoutL = εoutL+e−ixt + εoutL−eixt and εoutR =
εoutR+e−ixt + εoutR−eixt. Note that the output compo-
nents εoutL+ and εoutR− have the same frequency ωp as
the input probe fields εp, whereas the output compo-
nents εoutL− and εoutR+ are generated at frequencies
of 2ωc − ωp and 2ωd − ωp, respectively, in a nonlin-
ear wave-mixing process of optomechanical interaction.
Then, from Eq. (8) we can obtain

εoutL+ = 2κδc1+ − εp,

εoutR− = 2κδc2− (9)

with oscillation at a frequency ωp of special interest.
In this paper, we discuss the perfect optomechanically

induced amplification and transparency under realistic
parameters in an optomechanical experiment [25]. That
is, L = 25 mm, m = 145 ng, κ = 2π × 215 kHz,
ωm = 2π × 947 kHz, and γm = 2π × 141 Hz. In ad-
dition, the laser wavelength is λ = 2πc/ωc = 1064 nm,
and the mechanical quality factor is Q = ωm/γm = 6700.

3 Perfect optomechanically induced
transparency

Here we consider perfect optomechanically induced
transparency for the probe field. The quadrature of the
optical components with frequency ωp in the output field
can be defined as εT = 2κδc1+/εp [8]. Specifically, it can
be written as

εT =
2κ[−n2G2 + (κ − ix)(γm

2 − ix)]
(κ − ix)2(γm

2 − ix) + G2(1 − n2)(κ − ix)
, (10)

whose real and imaginary parts Re[εT ] and Im[εT ] rep-
resent the absorptive and dispersive behavior of the op-
tomechanical system, respectively. It is well known that
in a standard optomechanical system with a single op-
tical cavity, the optomechanically induced transparency
dip is not perfect, as the decay γm of the MR is not zero.
However, we can see from Eq. (10) that, in the double-
cavity optomechanical system studied here, if the ratio
n =

√
γmκ/(2G2), the optomechanically induced trans-

parency dip will be perfect, although a remarkable me-
chanical decay γm exists.

To see this clearly, in Fig. 2, we plot Re[εT ] versus
the normalized frequency x/κ with γm = 2π × 14.1 kHz

Xiao-Bo Yan, et al., Front. Phys. 10, 104202 (2015) 104202-3
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Fig. 2 The real part of εT vs. the normalized frequency detun-
ing x/κ: n = 0 (red dashed line) and n = 0.7 (black solid line)
with γm = 2π × 14.1 kHz and ℘c = 1mW. In the inset: n = 0.7,
γm = 2π × 141 Hz and ℘c = 1 mW.

and ℘c = 1mW for different n. When n = 0 (i.e., the
usual optomechanically induced transparency case), the
optomechanically induced transparency dip will become
shallow with a large mechanical decay γm (red dashed
line). However, when an additional blue-sideband driv-
ing field satisfying the condition n =

√
γmκ/(2G2) ≈ 0.7

is applied, the transparency dip will become perfect,
exhibiting total transmission of the probe laser (black
solid line). Physically, this means that the energy dissi-
pated by the decay γm of the MR can be compensated
by applying a right-hand driving field with amplitude
εd = εc

√
γmκ/(2G2) and the mechanical blue sideband

frequency. When ωp ≈ ω0, n =
√

γmκ/(2G2) and the
beat frequency ωp − ωc = ωm(x = 0); thus, the MR is
driven by a force oscillating at its eigenfrequency ωm,
and the resonator starts to oscillate coherently. This mo-
tion will generate photons of frequency ωp that interfere
destructively with the probe beam, leading to an op-
tomechanically induced transparency dip.

In Fig. 3, we plot the dispersion curve Im[εT ] versus
the normalized frequency x/κ with γm = 2π × 14.1 kHz
and ℘c = 1mW for different n. Clearly, the curve with
n = 0.7 (black solid line) is much steeper than that with
n = 0 (red dashed line) near x = 0. This means that we
can easily control the dispersive behavior of the optome-
chanical system by applying a blue-detuned driving field

Fig. 3 The imaginary part of εT vs. the normalized frequency
detuning x/κ: n = 0 (red dashed line) and n = 0.7 (black solid
line) with γm = 2π × 14.1 kHz and ℘c = 1mW.

with amplitude εd = nεc, which can possibly be used to
control slow light in optomechanical systems.

4 Optomechanically induced amplification

In this section, we study optomechanically induced am-
plification in this double-cavity optomechanical system.
If the ratio n >

√
γmκ/(2G2), we find that Re[εT ] will

become negative near x = 0 (see the inset in Fig. 2). This
means that an optomechanically induced gain (amplifica-
tion) can be realized in this double-cavity system by ap-
plying a blue-detuned driving field to the right-side cav-
ity with amplitude εd = nεc. Note that when the system
operates under the condition x = 0 and n =

√
1 + γmκ

2G2 ,
Re[εT ] will be divergent. In addition, the system will
move into the parametric instability regime as n � 1
when the input power ℘c = 1mW, so we limit ourselves
to the case where n � 1.

In Fig. 4, we plot the mechanical oscillation |κδb+/εp|2
(normalized to the probe field εp) versus the normal-
ized frequency x/κ for different n. In the inset, we plot
|κδb+/εp|2 as a function of n for x = 0. The mechan-
ical oscillation peak value is clearly located at x = 0
and increases with increasing n [n = 0 (black dotted
line), n = 0.7 (green dot-dashed line), n = 0.8 (blue
dashed line), n = 0.9 (red solid line)]. Further, when
n increases to 1, the mechanical oscillation peak value
will increase to approximately 6.1× 105 (see the inset in
Fig. 4). This means that the optomechanical effect will
become stronger for larger n (less than or equal to 1)
when ωp − ωc = ωm(x = 0) and ωd − ω0 = ωm. The rea-
son for this is that the mechanical blue sideband (heat-
ing sideband) of the right-hand cavity generates many
phonons that will be absorbed by anti-Stokes processes
in the left-hand cavity for the mechanical red sideband
(cooling sideband). Thus, the optomechanical effect of
the double-cavity system is resonantly enhanced.

Fig. 4 The normalized mechanical oscillation |κδb+/εp|2 vs. the
normalized frequency detuning x/κ: n = 0 (black dotted line),
n = 0.7 (green dot-dashed line), n = 0.8 (blue dashed line), and
n = 0.9 (red solid line) with ℘cL = 1mW. In the inset, we plot
the normalized mechanical oscillation |κδb+/εp|2 vs. the ratio n.
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In Figs. 5 and 6, we plot the output power |εoutL+/εp|2
and |εoutR−/εp|2 normalized to the input probe field
εp, respectively, versus the normalized frequency x/κ

for different n. The output energies |εoutL+/εp|2 and
|εoutR−/εp|2 clearly reach their maximum values at x = 0
for a certain value of n. When x = 0, the output normal-
ized energies |εoutL+/εp|2 and |εoutR−/εp|2 will increase
with n, which is similar to the mechanical oscillation
|κδb+/εp|2. This is because when x = 0, the optome-
chanical effect will be strongest for a certain value of n,
as discussed above. The curves of the output normal-
ized energies |εoutL+/εp|2 and |εoutR−/εp|2 have almost
the same line shape, except that the output normal-
ized energy |εoutL+/εp|2 starts from 1 with increasing
n for x = 0, whereas the output normalized energy
|εoutR−/εp|2 starts from 0 (see the insets in Figs. 5 and
6). This shows that the double-cavity optomechanical
system will be reduced to the standard one-cavity op-
tomechanical model (|εoutR−/εp|2 = 0) when n = 0.
When n increases to 1, the output normalized energies
|εoutL+/εp|2 and |εoutR−/εp|2 will increase to approxi-
mately 1.6 × 105 (see the insets in Figs. 5 and 6). The
reason for this is that the presence of the blue-detuned
driving field with ωd − ω0 = ωm will coherently enhance

Fig. 5 The normalized left-hand output energy |εoutL+/εp|2 vs.
the normalized frequency detuning x/κ: n = 0 (black dotted line),
n = 0.7 (green dot-dashed line), n = 0.8 (blue dashed line), and
n = 0.9 (red solid line) with ℘cL = 1mW. In the inset, we plot
the normalized output energy |εoutL+/εp|2 vs. the ratio n.

Fig. 6 The normalized right-hand output energy |εoutR−/εp|2
vs the normalized frequency detuning x/κ; the parameters are the
same as in Fig. 4. In the inset, we plot the normalized output
energy |εoutR−/εp|2 + 1 vs. the ratio n.

the oscillation of the MR (see Fig. 4), leading to optome-
chanically induced amplification. Thus, we can realize
optomechanically induced amplification for a resonantly
injected probe in the double-cavity optomechanical sys-
tem by appropriately adjusting the ratio n of the two
strong field amplitudes εc,d.

5 Conclusions

In summary, we theoretically studied a double-cavity op-
tomechanical system driven by a red sideband laser from
one side and a blue sideband laser from the other side.
Our analytical and numerical results show that if the am-
plitude ratio of the two driving fields n is adjusted so that
n >

√
γmκ/(2G2), optomechanically induced amplifica-

tion of a resonantly incident probe (i.e., ωp−ωc−ωm = 0)
can be realized in this system. Typically, remarkable
amplification can be obtained when n ∼ 1. The rea-
son for this is as follows: The Stokes processes in the
blue-sideband-driven cavity can generate phonons in the
mechanical elements, and these phonons will be further
absorbed by anti-Stokes processes in the red-sideband-
driven cavity. As a result, the optomechanical effect of
the double-cavity system is resonantly enhanced. In ad-
dition, perfect optomechanically induced transparency
can be realized if we set n =

√
γmκ/(2G2). Unlike the

usual optomechanically induced transparency, this phe-
nomenon is robust to mechanical dissipation; namely,
the perfect transparency window can be preserved even
if the MR has a relatively large decay rate γm. Our re-
sults indicate important progress toward optical signal
amplification, light storage, fast light, and slow light in
quantum information processes.
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