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Abstract As a well-explored template that captures the
essential dynamical behaviors of legged locomotion on
sagittal plane, the spring-loaded inverted pendulum (SLIP)
model has been extensively employed in both biomecha-
nical study and robotics research. Aiming at fully
leveraging the merits of the SLIP model to generate the
adaptive trajectories of the center of mass (CoM) with
maneuverability, this study presents a novel two-layered
sagittal SLIP-anchored (SSA) task space control for a
monopode robot to deal with terrain irregularity. This work
begins with an analytical investigation of sagittal SLIP
dynamics by deriving an approximate solution with
satisfactory apex prediction accuracy, and a two-layered
SSA task space controller is subsequently developed for
the monopode robot. The higher layer employs an
analytical approximate representation of the sagittal SLIP
model to form a deadbeat controller, which generates an
adaptive reference trajectory for the CoM. The lower layer
enforces the monopode robot to reproduce a generated
CoMmovement by using a task space controller to transfer
the reference CoM commands into joint torques of the
multi-degree of freedom monopode robot. Consequently,
an adaptive hopping behavior is exhibited by the robot
when traversing irregular terrain. Simulation results have
demonstrated the effectiveness of the proposed method.

Keywords legged robots, spring-loaded inverted pendu-
lum, task space control, apex return map, deadbeat control,
irregular terrain negotiation

1 Introduction

Diverse in terms of morphology and gait patterns [1],

cursorial mammals with legs used to propel their bodies
and traverse complicated terrains display astonishing
performance that outclasses that of any man-made walking
device. Such dexterity and superiority when interacting
with the surrounding environment have widely attracted
the interest of both bio-mechanical and robotics research-
ers. Recently, numerous legged prototypes [2–5] have been
developed extensively with the aim of reproducing these
behaviors. However, a huge gap still exists in that artificial
apparatuses have yet to attain comparable performance as
those of animals.
Hopping, as the most ordinary movement observed in

kangaroo and galago, is the fundamental gait pattern from
which other complex gaits, such as bipedal running,
quadrupedal trotting, bounding, and galloping, can be
further evolved [6]. The spring-loaded inverted pendulum
(SLIP) is regarded a versatile template in capturing the
essential characteristics of hopping with satisfactory
trajectory prediction accuracy of the center of mass
(CoM); SLIP is also regarded effective in fitting biology
data since it was first established in Ref. [7]. The sagittal
SLIP dynamics, particular in stance phase, is intrinsically
nonlinear. The exact analytical closed-form solution of
sagittal SLIP dynamics is unavailable due to the non-
integrable coupled terms contained in the stance formula-
tion. Several studies in this field provide analytical
approximation as an alternative. An analytical approxima-
tion is proposed in Ref. [8]. Picard’s iteration with mean-
value theorem is employed to derive a closed-form
expression of sagittal SLIP dynamics in stance phase.
However, the accuracy of the derived approximation relies
on the iteration steps, and this reliance restricts the
practicability of the solution when online computational
cost is crucial for the motion planning and gait control of a
legged robot. Ghigliazza et al. [9] presented another
approximate solution for an ideal SLIP template based on
the negligible gravity assumption, and stable hopping gait
is also fulfilled with the fixed-leg reposition policy. Geyer
et al. [10] developed an approximation by assuming the
angular momentum of the SLIP model conserved in the
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stance phase and offered a straightforward solution in
simple form that works effectively with the symmetric
movement of CoM. Arslan et al. [11] further improved this
approximation by proposing a gravity correction scheme to
compensate the effect of gravity on angular momentum for
highly non-symmetric trajectories. Consequently, a two-
step iteration with high accuracy is provided for predicting
the apex state of the SLIP system. Shahbazi et al. [12]
extended the approach from a single-leg configuration to a
bipedal case. An analytical approximate representation for
double-stance walking is derived and then used to
construct an apex return map (ARM) without relying on
numerical integration. Our previous work [13] presented a
perturbation-based analytical approximation for the sagit-
tal SLIP dynamics in stance phase and is valid for both the
symmetric and asymmetric trajectories of CoM, and it can
preserve mathematical tractability and high apex predic-
tion accuracy.
The merits of simple formulation in mathematics and

self-stability in stride-to-stride movement renders the SLIP
model easy to implement for the locomotion control for
legged robots. A SLIP template-based controller operating
with an impact collision compensation scheme is presented
in Ref. [14]. The spring–mass dynamics is numerically
solved to generate the reference CoM trajectory for a
segmented robotic leg. The SLIP model with leg actuation
is reported in Ref. [15]. Active SLIP dynamics is
analytically resolved to reduce online computational cost,
and a corresponding two-part control strategy is developed
to add/remove system energy from a series of strides of a
single-leg robot. Reliable adaptive hopping performance is
achieved in the presence of terrain perturbations. The
swing-leg retraction policy was first proposed in Ref. [16]
and further adapted in Ref. [17] to improve the hopping
stability and robustness of the SLIP model. In Ref. [18], a
comparison of energetic efficiency between the Raibert-
style controller with embedded SLIP dynamics and the
optimal trajectory-based controller for a three-link mono-
pode model is conducted using cost of transport as a
criterion. A nonlinear predictive control scheme is
constructed in Ref. [19] to steer the SLIP trajectory over
rough terrain footholds. Garofalo and Albu-Schäffer [20]
developed a controller based on the dual-SLIP model to
stabilize a five-link fully actuated bipedal walking robot, in
which the reference CoM trajectory is generated by
numerically computing the SLIP dynamics. Aside from
the sagittal SLIP model used to control legged robots, the
3D-SLIP model can be applied to generate the reference
CoM trajectory for humanoids [21], in which high-speed
stabilized running as fast as 6.5 m/s is achieved.
Subsequently, turning gait control with 3D-SLIP model
is realized in Ref. [22] by modifying the control framework
of straightforward running, which is established in
Ref. [23].
Aiming at fully leveraging the aforementioned benefits

of the sagittal SLIP model, this study presents a SLIP-
anchored task space control for a monopode robot to deal
with terrain perturbations. The main contributions of this
study can be summarized as follows:
1) An analytical approximation-based deadbeat con-

troller for the sagittal SLIP model is developed to regulate
apex height and velocity. In stance phase, a leg adjustment
policy with piecewise-constant stiffness is proposed to
match the energy variation between the current apex and
the desired apex. In flight phase, a falling time-dominant
touchdown (TD) policy for the swing leg is proposed to
adapt to terrain irregularities without priori ground truth
knowledge.
2) A sagittal SLIP-anchored double-layered task space

formulation for a monopode robot is presented. The high
layer employs the SLIP model to generate an adaptive
reference CoM trajectory for the monopode robot. The
bottom layer employs the task space controller to enforce
the robot to behave with SLIP dynamics when dealing with
terrain perturbations.
3) The simulation results demonstrate the effectiveness

of the proposed controller in steering the monopode robot.
The robot not only can achieve stable hopping with desired
apex height and velocity, but it also has the capability of
traversing irregular terrains.
The remainder of this paper is structured as follows.

Section 2 briefly reviews the general control framework by
elaborating the control objective and the sagittal SLIP-
anchored double-layered control architecture. The sagittal
SLIP model with the corresponding analytical representa-
tion is presented in Section 3, followed by the task space
controller design in Section 4. The simulation results are
given in Section 5. Section 6 presents the discussions on
the superiority of the proposed SLIP-anchored task space
controller relative to the traditional SLIP controller. This
paper ends with conclusions and perspectives of future
work in Section 7.

2 General control framework

2.1 Control objective

Self-stability and ease of maneuverability are the main
merits of the sagittal SLIP model when applied to the
motion planning and gait control of legged robots. The
operation of the former property may be valid in a wide
range of model parameter combinations, as reported in
Refs. [10,23]. The latter property simplifies the control of
the SLIP model by tuning the swing-leg TD angle during
flight and the leg stiffness during stance, respectively. The
main purpose of this work is to endow the fully actuated
monopode robot with the aforementioned merits of the
sagittal SLIP model. In this regard, the control objective is
to reproduce the sagittal SLIP model behavior on the
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monopode robot as the target dynamics, in which the
expected resulted is adaptive and robustness hopping
performance in the presence of terrain perturbations.

2.2 Sagittal SLIP-anchored double-layered control
architecture

The sagittal SLIP-anchored task space control architecture
is illustrated in Fig. 1. The high layer consists of a sagittal
SLIP model that employs a deadbeat controller to generate
the reference CoM trajectory for the monopode robot. The
derived analytical approximation can be regarded a
representation of SLIP dynamics, and it provides apex
prediction to resolve the shooting problem of the deadbeat
controller, which will be detailed in Section 3.3. The TD
angle, together with the leg stiffness, is regarded the
tunable parameter of the SLIP model, in which adaptive
movements can be produced in the presence of terrain
perturbations. Scheduled by the finite state machine (FSM)
that switches the flight/stance phase according to the
contact detection triggered by monopode-ground interac-
tion, the bottom layer transfers the target CoM trajectory
into individual joint commands via the task space
controller, thus enforcing the whole body of the actuated
robot to bounce in accordance with the SLIP dynamics
generated by the high layer.

3 Sagittal SLIP model and analytical
representations

3.1 Sagittal SLIP model and the analytical approximate
solution

The sagittal SLIP model with coordinates and relevant
parameters (Fig. 2(a)) is represented by point mass ms that
connects a massless telescopic leg to the hip at rest length
r0. The entire gait cycle, defined as a complete mapping
from the current apex to the next apex (Fig. 2(b)), entails a
flight phase (when the leg swings in aerial mode) and a
stance phase (when the leg touches the ground). Two
switching events will be defined as TD triggered from
flight to stance and lift-off (LO) from stance to flight. The
stance leg undergoes compression and decompression with
tunable stiffness ks. The swing leg is assumed to be freely
pre-positioned in its orientation at TD with the angle of
attack (AoT) αTD. The toe is assumed to be a fixed pivot,
and no slipping is expected to occur during stance.
Given the CoM position vector of the SLIP model in a

polar coordinate and expressed as qs ¼ ð – rsin�, rcos�ÞT,
the dynamics for the stance phase is given by

€qs ¼ –
Fspr

ms
þ gs, (1)

where the leg force Fspr resulting from the linear spring

satisfies Fspr ¼ ksðqs – qs0Þ 2 R2, where qs0 is the leg
length vector at TD given by qs0 ¼ ð – rTDsin�TD,
rTDcos�TDÞT, and gs denotes the gravitational force vector
given by gs ¼ ð0, – gÞT. A system in flight phase is solely
governed by gravity and exhibits a ballistic trajectory, and
its dynamics is formulated as

€qf ¼ gs, (2)

where qf denotes the CoM position vector with the
Cartesian coordinate form qf ¼ ðx, yÞT.
Incidentally, the exact solution of the sagittal SLIP

dynamics in stance phase is unknown due to the coupled
non-integrable terms in Eq. (1) [10]. Alternatively, we
employ in this study an analytical approximation, in which
the proven high apex prediction accuracy has been derived
in our previous work [13], instead of using the nonlinear
Eq. (1) to formulate the entire SLIP dynamics in stance
phase. The two switching event mappings for TD and LO
can be further defined as

ΔS↕ ↓F ¼ ðy, rÞjy – r0sinαTD ¼ 0, _r < 0f g, for TD,

ΔF↕ ↓S ¼ fðr, _rÞjr – r0 ¼ 0, _r > 0g, for LO:

(
(3)

3.2 Apex return map

ARM, as a reduced-order discrete version of the Poincaré
Fig. 1 Schematic of the sagittal SLIP-anchored task space
control architecture. SLIP: Spring-loaded inverted pendulum.
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map used to analyze the periodic behaviors of hybrid
systems, is utilized in the present study to characterize the
stride-to-stride hopping behavior of the SLIP system. We
take the so-called Poincaré section at the apex state, which
is defined by the following vector at the ith step:

Si ¼ yaðiÞ, _xaðiÞð ÞT, (4)

where yaðiÞ and _xaðiÞ denote apex height and velocity,
respectively. As shown in Fig. 3, the ARM generally
consists of three sub-maps, namely, the map Pfd of the
downward flight from the current apex to TD, the map Pst

of the stance from TD to LO, and the map Pfu of the
upward flight from LO to the succeeding apex.

Aiming at regulating the apex vector during hopping,
two variables are selected in this study as the control inputs
for the SLIP model. The AoT αTD of the swing leg with a
pre-positioning policy in flight phase is chosen as one of
the control inputs. Leg stiffness ks in stance phase with a
piecewise constant property is chosen as another control
input (Fig. 4). This stance phase is further divided into a

compression sub-phase (with constant stiffness kc) and a
decompression sub-phase (with constant stiffness kd). The
instant stiffness variation at the instant stiffness variation at
the bottom (BM) is commonly used in Refs. [13,22]. Let

the control input vector be uðnÞ ¼
�
αTDðnÞ, kcðnÞ, kdðnÞ

�T
.

ARM can thus be written as

Snþ1 ¼ PðSn,unÞ ¼ ðPfd ∘Pst ∘PfuÞðSn,unÞ: (5)

The above ARM formulation can be obtained by
numerical integration only (i.e., fourth-order Runge–
Kutta approach), considering that the stance map Pst

cannot be analytically solved. We therefore build an
approximate apex return map (A2RM) that employs the
previous analytical approximation presented in Ref. [13] to
calculate Pst and fully avoid the numerical process.

~Snþ1 ¼ ~PðSn,unÞ ¼ Pfd ∘ ~P st ∘Pfu

� �ðSn,unÞ, (6)

where the superscript “~” denotes the maps or the
variable derived by using the analytical approximation in
Ref. [13].

3.3 Deadbeat controller

Given the current apex vector S0 and the target apex vector
Sd, the deadbeat control applied to achieve the target apex
height and velocity is formulated as an optimization
problem as follows:

min
αTD, kc, kd

kSd – ~PðS0,uÞk,
with S0 ¼ ya0, _xa0ð ÞT,

Sd ¼ yd, _xdð ÞT,
u ¼ ðαTD, kc, kdÞT:

(7)

Fig. 2 Illustration of the sagittal SLIP model. (a) Coordinates and variable definitions; (b) entire gait cycle, including flight and stance
sub-phase.

Fig. 3 Composition of ARM, including the three sub-maps of
Pfd, Pst, and Pfu.
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The relationship between leg stiffness during compres-
sion and leg stiffness during decompression can be further
determined by using the system energy matching of the
current apex S0 and the target apex Sd.

kd ¼ kc þ
2ΔE

r0 –~rBMð Þ2 , (8)

where ~rBM is the approximate prediction of the leg length
at BM, and ΔE is the energy variation between S0 and Sd to
obtain

ΔE ¼ 1

2
ms _x2d – _x20

� �þ msgðyd – y0Þ: (9)

In this manner, the leg stiffness collection {kc, kd} of the
SLIP model can be transformed into AoT αTD variables if
the current apex vector S0 and the target apex vector Sd are
given. Consequently, the AoT αTD of the swing leg can be
determined by solving a 1D shooting problem as follows:

αTD ¼ argmin
π
4<αTD<

π
2

kSd – ~P
�
S0, ðαTD, kc, kdÞT

�k: (10)

As shown below, an algorithm that determines the TD
angle αTD together with the leg stiffness kc, kd is applied to
solve the optimization problem Eq. (7):

The leg stiffness of the SLIP model during the
compression sub-phase of the first gait cycle requires a
customized initial value ks to maintain the operation of the
solving procedure. Furthermore, leg stiffness shall be
updated by using Eq. (8) to match the energy variation, as
illustrated in Fig. 4(b). Once the stiffness kd in the
decompression sub-phase is updated, the SLIP model will
retain this value as the leg stiffness kc in the forthcoming
compression sub-phase. Thus far, the deadbeat controller
with control input (αTD, kc, kd) has been completely
constructed for hopping on a flat terrain, in which the target
apex state is approached in one stride. However, the
devised deadbeat controller is twofold; it has a swing-leg
pre-positioned controller with a preset AoT αTD and a
stance-leg controller with a piecewise-constant leg stiff-
ness adjustment. The twofold scheme suggests that AoT

Fig. 4 Schematic of the variable stiffness policy with piecewise constant profile for the compression and decompression phases.
(a) Division of the stance phase, with the instant stiffness variation at the bottom defined as the maximum leg compression; (b) variable
stiffness spring with piecewise-constant leg stiffness.

Algorithm: Determination of the touchdown angle and the leg stiffness in
solving problem Eq. (7)

Input:

The initial apex state S0

The target apex state Sd

The initial leg stiffness ks

Output:

The touchdown angle αTD

The leg stiffness kc and kd

1. Initialize the current leg stiffness kc←ks

2. Compute the energy variation ΔE by using Eq. (9)

3. for αTD = π/4 to π/2 do

4. Compute the approximation of the leg length at BM ~rBM

5. kd←kc þ 2ΔE= r –~rBMð Þ2

6. Compute sub-maps Pfd, ~P st, Pfu

7. Compute the A2RM ~P←Pfd∘~P st∘Pfu

8. Compute the predicted apex state ~Snþ1←~P
�
S0,ðαTD,kc,kdÞT

�
9. αTD ¼ argminkSd – ~P

�
S0,ðαTD,kc,kdÞT

�k
10. end for

11. redo Steps 3 and 4

12. return αTD, kc, and kd

13 Update the leg stiffness for the coming compression sub-phase with ks←kd

14. end algorithm
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αTD is the sole tunable control input for the swing leg
during flight, while the leg stiffness collection {kc, kd} is
the remaining control input for the stance leg during
stance.

3.4 Extension to an irregular terrain case

Traversing irregular terrains is an essential requirement for
legged robots interacting with complex environments. In
this section, we extend the developed deadbeat controller
in Section 3.3 from one capable of flat surface hopping to
one suitable for irregular terrain cases to achieve constant
absolute altitude in the presence of terrain perturbations, as
shown in Fig. 5.

We first introduce a perturbation indicator Δg to
characterize terrain irregularities, in which Δg > 0 repre-
sents a convex profile and vice versa. Thus, the control
problem of the SLIP model with terrain perturbation Δg
can be transferred into the following shooting problem:

min
αTD, kc, kd

kyd – ~Pyðy0,uÞk   with    u ¼ ðαTD, kc, kdÞT, (11)

where ~Py is the corresponding A2RM based on the initial
apex height y0 and the control input u. A constant absolute
altitude requirement implies that ΔE ¼ 0, considering that
the system energy of the sagittal SLIP model is
conservative. According to Eq. (8), we have

kd ¼ kc: (12)

Then, the deadbeat controller is reduced to a 1D
shooting problem as follows:

αTD ¼ argmin
π
4<αTD<

π
2

yd –Δg – ~Py

�
y0 –Δg, ðαTD, kcÞT

���� ���, (13)

which can be regarded an extension of Eq. (10) with the
perturbation indicator Δg. On the purpose of devising a
robust controller without prior knowledge of ground truth,

we introduce a time-scale variable tfall measured from the
apex state, as reported in Ref. [23] to record the time of
falling. In this manner, the pre-positioning policy for the
swing leg with AoT αTD during downward flight can be
transformed into a time-dependent policy by using

yd –Δg ¼ r0sinαTD þ 1

2
gt2fall: (14)

Substituting Eq. (14) into Eq. (13) yields the falling-time
relevant swing-leg policy as follows:

αTDðtfallÞ ¼ argmin
π
4<αTD<

π
2

r0sinαTD þ 1

2
gt2fall

����
– ~Py r0sinαTD þ 1

2
gt2fall, ðαTD, kcÞT

� �����: (15)

Thus far, we have completed the deadbeat controller
design for the hopping of the sagittal SLIP model in
irregular terrains. The resulting trajectory will be utilized
as the reference CoM trajectory for the monopode robot
and then reproduced by the task space controller, as
presented in the following section.

4 Task space controller design

4.1 Dynamics of the monopode robot

The rigid body model of the monopode robot in this study
(Fig. 6) has a two-segmented leg mounted at the hip of the
robot’s upper body, with rotatory actuation located at the
hip and the knee. The CoM of the upper body is assumed to
coincide at the hip, and the toe of the foot is considered a
massless point, as shown in Fig. 6(a). By considering the
upper body position, the CoM coordinates of the two
segments can be further given by

x1 ¼ xb – l2sinq2 – ðl1 – lC1Þsinðq2 – q1Þ,
y1 ¼ yb – l2cosq2 – ðl1 – lC1Þcosðq2 – q1Þ,

(
(16)

x2 ¼ xb – ðl2 – lC2Þsinq2,
y2 ¼ yb – ðl2 – lC2Þcosq2,

(
(17)

where (x1, y1) and (x2, y2) are the CoM coordinates of the
thigh and the shank, respectively, (xb, yb) is the hip joint
position on the upper body, l1 and lC1 are the segment
length and the CoM bias length of the thigh, respectively, l2
and lC2 are the segment length and the CoM bias length of
the shank, respectively, q1 is the joint angle of the shank
(anticlockwise measured) actuated by the torque u1, while
q2 is the joint angle of the thigh (clockwise measured)
actuated by the torque u2. The CoM of the monopode robot
are thus given by

Fig. 5 Hopping with constant absolute altitude when traversing
irregular terrains in the SLIP model. Colored curves represent
CoM trajectories of different terrain irregularities. y0 and yd
represents the initial and target hopping height, respectively.
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xCoM ¼ mbxb þ m1x1 þ m2x2
mb þ m1 þ m2

,

yCoM ¼ mbyb þ m1y1 þ m2y2
mb þ m1 þ m2

,

8><
>: (18)

where mb, m1, and m2 are the mass variables of the upper
body, shank, and thigh, respectively. Let q = [q1, q2]

T and
qCoM = [xCoM, yCoM]

T be the joint and the CoM vectors of
the robot, respectively. Then, Jacobian JCoM can be defined
as _qCoM ¼ JCoM _q. The variables in stance/flight phase can
be distinguished by using the subscripts “S” and “F” to
represent stance and flight in the derivations.
In the stance phase, the dynamics of the robot can be

written as

MS€qS þ CS _qS þ GS ¼ ST
SτS þ JT

SFGnd, (19)

where MS, CS, GS, and SS denote the inertia matrix,
Coriolis/centripetal vector, gravity vector, and input
selection matrix for the actuated joints, respectively. ST

SτS
¼ ½u1,u2�T represents the actuated joint torques. FGnd

is the collection of the ground reaction forces exerted
on the toe. JS is the Jacobian associated with FGnd. qS ¼
½xb, yb,q1S, q2S�T represents the generalized coordinate.
Foot–ground contact is modeled as an inelastic impact,
in which state transition at the time instant of impact
satisfies

_qþS ¼ ðI –M – 1
S JT

SΛSJSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NS

_q –
S , (20)

where ΛS ¼ ðJSM
– 1
S JT

SÞ – 1, and the superscripts “+” and
“ – ” denote an instance immediately before and after the
impact, respectively.
In flight phase, the dynamics of the robot is given by

MF€qF þ CF _qF þ GF ¼ ST
FτF, (21)

where MF, CF, GF, and SF denote the inertia matrix,
Coriolis/centripetal vector, gravity vector, and input
selection matrix for the actuated joints, respectively.
ST
FτF ¼ ½u1, u2, 0, 0�T represents the actuated joint torques.

qF ¼ ½q1F, q2F, xb, yb�T represents the generalized coordi-
nate. The vector (xb, yb)

T is added to determine the body
position in flight as the toe leaves the ground.

4.2 Finite state machine

Similar to the switching events defined in Eq. (3), the
switching conditions between stance and flight of the
monopode robot are given as follows:
(i) From flight to stance switching condition:

SF↕ ↓S ¼ ðyCoM, reqÞ yCoM – reqsinαTD ¼ 0, _req < 0
�� 


,
�

(22)

where req is the virtual equivalent leg length that connects
CoM and the toe (see Appendix for details).
(ii) From stance to flight switching condition:

SA
S↕ ↓F ¼ req, _req

� �
reqðtAÞ
�� – r0 ¼ 0, _reqðtAÞ > 0

� 

, (23)

SB
S↕ ↓F ¼ fFGnd FGndðtBÞj ¼ 0g, (24)

where ɑLO is the LO angle measured from the positive X-
axis to the virtual equivalent leg req. tA and tB are the
corresponding time instants that fulfill Eqs. (19) and (20),
respectively. Two switching conditions can be adopted to
determine the stance-to-flight transition, and the formula-
tions are by SA

S↕ ↓F and SB
S↕ ↓F. The former condition is

enabled when the virtual equivalent leg of the correspond-
ing SLIP model approaches rest length r0. The latter
condition is enabled when the toe of the monopode robot
loses ground contact. The schematic diagram of the FSM

Fig. 6 Rigid model of the monopode robot. (a) Leg configuration and relevant parameters; (b) entire hopping gait cycle with sub-phase
division. AoT αTD and virtual equivalent leg req are the corresponding parameters used in the SLIP model.
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for the monopode robot is illustrated in Fig. 7. The actual
switching time of the stance-to-flight transition depends on
the value of min(tA, tB).

4.3 Task space controller

Considering that the adaptive reference CoM trajectory can
be generated by the sagittal SLIP model based on the
devised deadbeat controller, the remaining task of this
study is to enforce the monopode robot to reproduce the
target SLIP dynamics by using the task space controller, as
presented in Ref. [24].
First, we rewrite the target dynamics generated by the

sagittal SLIP model to produce the reference CoM
trajectory as follows:

€qrefCoM ¼ –
ks
ms

ðqrefCoM – qs0Þ þ gs, (25)

where qrefCoM is the generated reference CoM trajectory of
the sagittal SLIP model, and ks, ms, gs, and qs0 are defined
uniformly as those in Eq. (1). The deadbeat controller with
the control pair (αTD, ks) can be operated synchronously
with the evolution of the SLIP model.
Then, the previously defined Jacobian JCoM is used to

map the joint velocities into CoM space. We rearrange the
stance dynamics of the monopode robot in Eq. (16) by
eliminating the ground reaction force FGnd to obtain the
task space formulation with

Λt€qCoM þ bt þ gt ¼ FCoM, (26)

where Λt, bt, gt, and FCoM are given by

Λt ¼ ðJCoMM
– 1
S J – 1

CoMÞ – 1,
bt ¼ J – 1

CoMCS _qS þ J T
CoMJ

T
SΛS

_J S _qS –Λt
_J CoM _qS,

gt ¼ J T
CoMGS,

FCoM ¼ J T
CoMðSSNSÞTτS,

8>>>>>><
>>>>>>:

(27)

where J CoM ¼ M – 1
S JT

CoMΛt is a generalized inverse of the
task Jacobian JCoM. By using Eq. (25) as the reference
CoM acceleration, a proportion-differentiation (PD)-type
command can be expressed as

€qCmd
CoM ¼ €qrefCoMþKD _qrefCoM – _qCoM

� �þKPðqrefCoM – qCoMÞ, (28)

where KD and KP are the diagonal PD gain matrices.
Therefore, the control law for the torque-actuated mono-
pode robot in stance phase is

τS ¼ JCoMSSNS

� �T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
JT
F

Λt€q
Cmd
CoM þ bt þ gt

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FCoM

, (29)

where SSNS is the Moore–Penrose inverse of SSNS.

SSNS ¼ M – 1
S ðSSNSÞT

�
SSNSM

– 1
S ðSSNSÞT

� – 1
: (30)

As for the swing phase, the swing leg should be pre-
positioned relative to the CoM of the monopode robot; in
this manner, the forthcoming TD event can be prepared
with the desired AoT αTD, and sufficient ground clearance
can also be provided to prevent the toe from stumbling
during the retraction stride. In contrast to the stance phase
that employs task space in Eq. (26) and the control law Eq.
(29) to reproduce the spring–mass behavior of the sagittal
SLIP dynamics, the control task for the swing phase is
relatively simple and has the capability to maintain the
orientation of the swing leg (see Section 3.4) with the time-
dependent angle αTD (tfall). We choose the desired
acceleration command €qCmd

iF for individual joints of the
swing leg as follows:

€qCmd
iF ¼ €qrefiF þ kD, i _qrefiF – _qiF

� �þ kP, iðqrefiF – qiFÞ,

i ¼ 1, 2, (31)

where qrefiF is the reference position of the ith joint (i = 1 for
knee and i = 2 for hip), while qiF is the actual position of
the corresponding joint, and kD,i and kP,i are the PD gains of
the ith joint, respectively. Here, qrefiF can be acquired by
directly resolving the inverse kinematics of q ¼ Γ – 1ðreqÞ,
as presented in the Appendix. Ultimately, the task space
controller of the monopode robot is established to enforce
the robot to behave according to the target sagittal SLIP
dynamics, with prescribed apex height and velocity.

5 Simulation results

5.1 Simulation setups

Simulations are conducted to evaluate the performance of
the proposed SLIP-anchored task space control method in
dealing with various terrains. The model parameters of the
monopode robot and the SLIP model are shown in Tables 1
and 2, respectively. The virtual equivalent leg length is
chosen as 0.8 m to sufficiently provide a large workspace
for the two-segmented leg of the robot. This adequate
ground clearance can help determine the hopping of the
robot in the upward swing sub-phase. The virtual
simulation model of the robot is created in MATLAB/

Fig. 7 FSM for monopode robot hopping.
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SimMechanics environment, and the variable-step Runge–
Kutta integration ode45 is used to compute the hopping
dynamics of the robot. The absolute tolerance is set to less
than 10–8 to guarantee computational accuracy. The FSM
of the control framework is encoded in MATLAB/State-
flow to schedule the stance/flight command and steer the
hopping behavior. Several scenarios with diverse control
goals, including stable periodic hopping on flat surface,
target apex tracking, and traversing irregular terrains, are
considered to verify the capability of the robot to achieve
stable and robust hopping behaviors in complicated
environments.

5.2 Main results

5.2.1 Periodic hopping on flat surface

The first scenario is simulated to validate the performance
of the monopode robot in achieving periodic hopping on a
flat surface. The simulation results are shown in Figs. 8 and
9. The desired apex height is set to ya = 1 m, and the robot
starts its hopping in the initial condition of S0 = [1.2 m,
1.5 m/s]. Snapshots of the monopode robot indicate that
the robot takes approximately two strides to approach the
desired apex height, thus exhibiting a periodic hopping gait
pattern.
Figure 9(a) plots joint angles q1 and q2 versus simulation

time. The swing-leg pre-positioning in upward flight and in
the stance phase are shown in different colors in this figure.
The PD gains of the swing-leg controller Eq. (31) are given
by kD = 20 and kP = 100 for both actuated joints. The swing
leg has clearly attained the pre-positioned state with the
desired AoT at the apex at each stride and maintained this
orientation during the downward flight. This phenomenon
implies that the robot with the devised swing-leg control,
as proposed in Section 4.3, has sufficient time to prepare its
leg for the forthcoming TD. Figure 9(b) shows the
convergence process of the apex height and the AoT
within five strides after the robot is initially released. The
CoM of the robot approaches ya = 0.98 m (equivalently
relative error of 2% with respect to the desired apex height
ya = 1 m) after the first stride. This relative error in apex
height is considerably reduced as the stride number
increases. The AoT of the virtual equivalent leg is
generally maintained at 83.33°, and the robot manifests
stable limit cycle behavior when the SLIP model is used
for hopping at the fixed point of the ARM. These scenarios

Table 1 Model parameters of the monopode robot in the simulation

Parameter Symbol Value Unit

Upper body mass mb 12 kg

Shank mass m1 3.5 kg

Thigh mass m2 3.5 kg

Shank inertia J1 0.08 kg$m2

Thigh inertia J2 0.08 kg$m2

Shank length l1 0.5 m

Thigh length l2 0.5 m

Shank CoM length lC1 0.25 m

Thigh CoM length lC2 0.25 m

Table 2 Model parameters of the sagittal SLIP model in the simulation

Parameter Symbol Value Unit

Total mass ms 19 kg

Leg length r0 0.8 m

Leg stiffness ks 3200 N/m

Fig. 8 Snapshots of the CoM trajectory of the monopode robot to represent periodic hopping on a flat surface.
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demonstrate the effectiveness of the proposed deadbeat
controller, which operates in conjunction with the task
space controller, to regulate the apex state of CoM.

5.2.2 Target apex tracking on flat surface

The second scenario is simulated to validate the tracking
performance of the monopode robot with diverse target
apex states. The simulation results are shown in Figs. 10
and 11. The target apex vector Sd for each stride are
sequentially set to [1.0 m, 1.5 m/s], [1.0 m, 1.5 m/s],
[1.3 m, 1.5 m/s], [1.3 m, 1.8 m/s], and [1.3 m, 2.0 m/s]. The
tracking performance for the apex height can be directly
observed from the snapshots of the CoM trajectory in
Fig. 10. The stride length of the robot indirectly reveals the
tracking result of apex velocity. The robot is initially
released at S0 = [1.1 m, 1.5 m/s] and has exhibited stable
hopping with the prescribed apex requirements.
Figure 11(a) shows the resulting joint angles q1 and q2 in

five strides during simulation. The PD gains of the swing-
leg controller Eq. (31) are identical to that in the previous
simulation. The swing leg adjusts its orientation according
to the AoT generated by the deadbeat controller, a
phenomenon similar to the leg movement in the periodic
hopping simulation in which the robot prepared for a
forthcoming TD event. Figure 11(b) plots apex height and
velocity versus gait cycles. The CoM of the robot can track
the target apex state with high accuracy (the maximum
tracking error for apex height and velocity are 3.75% and
4.82%, respectively). Theoretically, the tracking error is
twofold in that it entails the prediction error in the deadbeat
controller (the derived analytical approximation is used to
compute the ARM) and the convergence error in the
closed-loop controller (see Eqs. (28) and (31)). The first
error is sufficiently small, and its occurrence is valid for a
wide range of model parameter combinations, as presented
in Ref. [13]. The latter error can be restricted by properly
increasing the PD gains of both stance and swing controls.

Fig. 9 Simulation results of selected variables for the monopode robot on constant apex height tracking. (a) Evolution of joint angles q1
and q2; (b) apex height ya and AoT αTD from stride to stride.

Fig. 10 Snapshots of the CoM trajectory of the monopode robot executing target apex tracking on a flat surface.
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Apex height and velocity in this scenario can be
independently regulated by tuning synchronously the
AoT and the virtual leg stiffness. This technique implies
that the system energy level of the robot can be shifted
from stride to stride owing to potential variations of the
target apex vector.

5.2.3 Traversing irregular terrains

The final scenario is created by enforcing the monopode
robot to hop on unknown irregular terrains. In this manner,
the robustness of the proposed controller in terms of
dealing with terrain perturbations can be validated. As
shown in Fig. 12, the terrain profile is randomly arranged
by setting the maximum step altitude to 0.17 m and the
minimum step altitude to – 0.2 m. An apex height
preservation of ya = 1.0 m is required uniformly in all
strides. Moreover, we have set up a scenario in which the
robot is unaware of the ground truth information; that is,

blind hopping without prior knowledge of the terrain is
implemented by the control strategy. The simulation results
are shown in Figs. 12 and 13. The robot is initially released
at S0 = [1.1 m, 1.5 m/s] and has maintained the apex height
of approximately 1.0 m (the maximum relative error is
3.87%) in all strides, as shown in Fig. 12. By using the
swing-leg pre-positioning strategy of the falling time-
dependent AoT, as proposed in Section 3.4, the robot can
achieve adaptive and robust hopping in irregular terrains.
This finding demonstrates the effectiveness of the
proposed controller in dealing with terrain perturbations.
The horizontal velocity and the vertical height of the

CoM are shown in Fig. 13. In all simulations, the desired
apex height and the velocity are fixed at 1.0 m and 1.2 m/s
regardless of the terrain perturbation. The generated curves
shown in the figures indicate that the robot can constantly
maintain its hopping height and forward speed at each
apex. Then, we plot the phase portraits of the joint angles
q1 and q2 to determine the dynamical behaviors during

Fig. 11 Simulation results of selected variables of the monopode robot on variable apex state tracking. (a) Evolution of joint angles q1
and q2; (b) apex height and velocity from stride to stride.

Fig. 12 Snapshots of the CoM trajectory of the monopode robot traversing an irregular terrain.
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hopping. The discontinuity of the joint velocities at TD can
be derived from Fig. 14; the discontinuity is due to the
impulse effect of the foot–ground impact, which satisfies
the transient switching condition Eq. (20). The SLIP model
in the higher layer is energetically conservative based on
the fixed apex state requirements, and it is invulnerable to
the impact of the foot. The same scenario can be observed
for the resulting reference CoM trajectory sent to the lower
layer. The energy loss at TD is asymptotically compen-
sated by the closed-loop controller Eq. (29) in the form of
tracking errors within the forthcoming stance phase.
Subsequently, the maximum altitude variation in the two
adjacent irregular terrains approaches 0.352 m (approxi-
mately 35% of the vertical hopping height). The swing-leg
controller Eq. (31) can provide sufficient ground clearance
at each step, and the robot can successfully traverse
complicated terrains without stumbling.

6 Discussions

The proposed sagittal SLIP-anchored task space controller
leverages the self-stability and ease of maneuverability

advantages of the classical SLIP model by creating a two-
fold deadbeat controller, which can be operated in flight
and stance phases. The advantages of applying the
proposed control method to steer the monopode robot in
varied terrains are determined by implementing perfor-
mance comparisons, including general feature synthesis
and comparative simulation analysis.

6.1 General feature synthesis

The SLIP model has been extensively exploited, mainly
because this model is the most common template used to
describe the dynamical behaviors of legged locomotion.
Traditionally, a fixed AoT policy in flight phase operating
in conjunction with constant leg stiffness can be
guaranteed, and the apex state during hopping can be
steered from stride to stride, as reported in Ref. [10]. An
issue with this scheme can be stated as follows: what is the
benefit of applying the proposed deadbeat controller in
contrast to the traditional SLIP control method? We
implement a general feature synthesis between these two
methods from the perspective of system representation,
control, steering performance, and practical implementa-
tion. The detailed results are shown in Table 3. The
fundamental distinction between the traditional controller
and the proposed method lies in system representation. The
former utilizes coupled nonlinear differential equations in
formulating the SLIP dynamics (particularly in the stance
phase) and inevitably downgrades mathematical tractabil-
ity; in our proposed method, mathematical tractability is
preserved. Therefore, the swing-leg pre-positioning policy
with the stance-leg stiffness adjustment can be employed
and transformed into a 1D shooting problem in the
deadbeat controller. The merit of using this analytical
approximation-based deadbeat controller endows the
sagittal SLIP-anchored task space controller the ability of
independently steering apex height and horizontal velocity.
Subsequently, the reference CoM trajectory in the presence
of terrain perturbations can be generated for the monopode
robot.

6.2 Comparative simulation results

The superiority of the proposed deadbeat controller over
the traditional SLIP controller has been established in
Section 6.1. Comparative simulations are subsequently
implemented to determine the performance discrepancies
of the monopode robot equipped with the traditional and
proposed deadbeat SLIP controllers as the high layer.
Considering that the traditional controller cannot indepen-
dently steer apex height and velocity, we select the apex
height of CoM as the control target to execute the
comparative simulation. Both cases adopt the whole-
body task space controller for the 2-degree of freedom
monopode robot. The traditional and the proposed SLIP
controllers are adopted to generate the reference CoM

Fig. 13 Simulated horizontal velocity and vertical height of CoM
of the monopode robot.

Fig. 14 Phase portrait of joint angles q1 and q2 of the robot
traversing an irregular terrain. Arrows represent the evolution of
the selected variables over time.
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trajectories, which are then transformed into torque
commands by the task space controller to manipulate the
robot. The parameters of the monopode robot with the
SLIP model are identical, as shown in Tables 1 and 2.
The comparative simulation results are shown in Fig. 15.

The robot is initially released at the apex height of ya(0) =
0.78 m, and the target apex height is set to ya = 0.72 m for
both controllers. Additionally, the fixed AoT policy with
αTD = 64° is maintained throughout the simulation. The
resulting height of the CoM at the convergence duration of
the robot with the traditional SLIP controller is 26 gait
cycles (the relative error is less than 0.58%). This duration
is substantially reduced to only 1 gait cycle by using the
proposed deadbeat controller (the relative error is less than
0.44%), which implies that the proposed controller can
converge to the prescribed apex height more rapidly
compared with the traditional method.
The underlying mechanism of the traditional SLIP

controller with the fixed AoT policy is further determined
by focusing on ARM and by setting the AoT range from
50° to 86°. All the fixed points (stable or unstable) of ARM
are located on the diagonal line, with ya(i) = ya(i+ 1).
Conventionally, each ARM of a specified AoT policy has
one stable and one unstable fixed point at most within the

feasible motion range according to Ref. [10]. A partial
view of the convergence process after the robot is released
at ya = 0.78 m is generated. The ARM with αTD = 64°
clearly has two fixed points: yas = 0.72 (stable) and yaus =
0.795 (unstable). The basin of attraction (BoA) for yas =
0.72 is determined by [r0sinαTD, yaus] = [0.71, 0.795].
From this perspective, the fundamental mechanism of the
traditional fixed AoTcontroller is on how to utilize the self-
stability merit of BoA at a stable fixed point and achieve
stride-to-stride convergence. However, the initial apex
state must be carefully chosen to guarantee that ya(0) is
embodied by the BoA, especially since the BoA region is
narrow. This disadvantage implies that the hopping
behavior of the robot is sensitive to initial-state perturba-
tion. The convergence process of the traditional SLIP
controller is dependent on the initial state. Moreover, the
proposed deadbeat controller requires only one step to
attain the target apex state; by contrast, the traditional
controller conventionally requires multiple gait cycles.

7 Conclusions

This study proposes a sagittal SLIP-anchored task space

Table 3 General feature comparison between the traditional SLIP controller and the proposed controller

Comparison items Traditional SLIP controller [10] Proposed deadbeat controller

System representation Nonlinear differential equations Analytical approximations

Control input AoT AoT and leg stiffness

Control policy Fixed AoT Adjustable AoT and leg stiffness

Steering duration Only flight phase Both flight and stance phase

System energy Conservation Adding/removing energy

Steerable apex state Height or velocity height and velocity (independent)

Period of apex steering Asymptotically Only within a one-gait cycle

Terrain adaptability Flat ground Flat and uneven ground

Practical implementation Fourth-order Runge–Kutta solver Direct coding

Fig. 15 Comparative simulation results of the monopode robot equipped with the traditional and proposed controllers. Shaded areas
represent convergence duration for each case.
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control for a monopode robot traversing irregular terrains.
The advantages of the SLIP model in terms of self-stability
and ease of maneuverability are employed in this study.
Moreover, the classical sagittal SLIP model with a
deadbeat controller is developed to independently regulate
apex height and velocity. The proposed scheme is based on
the analytical approximate solution, which can be operated
as representation of the SLIP dynamics. The deadbeat
controller takes the AoT of the swing leg and the stiffness
of the stance leg as the control input. In the stance phase, a
variable leg stiffness policy with a piecewise-constant
stiffness profile is employed to adjust the energy level of
the SLIP model. In the flight phase, a falling time-
dominant TD policy for the swing leg in downward flight
is proposed to adapt to unknown terrain irregularities in
anticipation of forthcoming TD events. Subsequently, a
sagittal SLIP-anchored double-layered task space formula-
tion is established for the monopode robot. The higher
layer utilizes the SLIP model to generate the adaptive
reference CoM trajectory of the robot. Then, the lower
layer transfers the CoM trajectory into individual joint
commands by using the task space formulation to
reproduce the target SLIP dynamics on the monopode
robot. The effectiveness of the proposed control strategy is

verified by simulation. The robot can achieve stable
periodic hopping and target apex tracking and traverse
irregular terrains. The proposed control framework has the
potential to be extended to extremely complicated cases,
such as when biped and quadruped robots are involved.
The SLIP model needs to be elaborately constructed to
capture the essential dynamical behavior of legged
locomotion.

Appendix

A virtual equivalent leg can be used to bridge the SLIP
model and the monopode robot. Given the upper body
coordinate (xb, yb) and the joint angles q1 and q2 of the
robot, the coordinate (xtoe, ytoe) of the toe of the leg can be
written as

xtoe ¼ xb – l2sinq2 – l1sinðq2 – q1Þ,
ytoe ¼ yb – l2cosq2 – l1cosðq2 – q1Þ:

(
(A1)

The position vector of the virtual equivalent leg is
defined along the direction of the toe towards the CoM of
the robot with the following relation:

req ¼ ðxCoM – xtoe, yCoM – ytoeÞT

¼

�
ð1 – l1 þ l2Þl2 – l2lC2

�
sinq2 þ

�
ðl1 – 1Þl1 – l1lC1

�
sinðq1 – q2

�
�
ð1 – l1 – l2Þl2 þ l2lC2

�
cosq2 þ

�
ð1 – l1Þl1 þ l1lC1

�
cosðq1 – q2

�
0
B@

1
CA :¼ ΓðqÞ,

(A2)

Fig. 16 ARM of the SLIP model equipped with traditional fixed AoT policy. Shaded areas represent the unfeasible region in which
stumbling occurs with insufficient initial releasing height ya(i)< r0sinαTD. Stable and unstable fixed points are colored green and red,
respectively. The partial view shows the convergence process after initial release at AoT αTD = 64°.
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where req ¼ ΓðqÞ denotes the forward kinematics of the
robot, and the coefficients l1, l2, and l3 are given by

l1 ¼
m1

mb þ m1 þ m2
,

l2 ¼
m2

mb þ m1 þ m2
,

l3 ¼
mb

mb þ m1 þ m2
:

8>>>><
>>>>:

(A3)

The length of the virtual equivalent leg is determined by

req ¼ req
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxCoM – xtoeÞ2þðyCoM – ytoeÞ2
q

: (A4)

The leg angle representing the orientation with respect to
the positive X-axis is determined by

α ¼ π – atan2ðxCoM – xtoe, yCoM – ytoeÞ: (A5)

In particular, the leg angle at TD, which is defined as the
AoT αTD of the SLIP model, is utilized in the adaptive
swing-leg controller Eq. (15).
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