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                    Abstract
This paper presents a theoretical framework for predicting the post-liquefaction deformation of saturated sand under undrained cyclic loading with emphasis on the mechanical laws, physical mechanism, constitutive model and numerical algorithm as well as practical applicability. The revealing mechanism behind the complex behavior in the post-liquefaction regime can be appreciated by decomposing the volumetric strain into three components with distinctive physical background. The interplay among these three components governs the post-liquefaction shear deformation and characterizes three physical states alternating in the liquefaction process. This assumption sheds some light on the intricate transition from small pre-liquefaction deformation to large post-liquefaction deformation and provides a rational explanation to the triggering of unstable flow slide and the post-liquefaction reconsolidation. Based on this assumption, a constitutive model is developed within the framework of bounding surface plasticity. This model is capable of reproducing small to large deformation in the pre- to post-liquefaction regime. The model performance is confirmed by simulating laboratory tests. The constitutive model is implemented in a finite element code together with a robust numerical algorithm to circumvent numerical instability in the vicinity of vanishing effective stress. This numerical model is validated by fully coupled numerical analyses of two well-instrumented dynamic centrifuge model tests. Finally, numerical simulation of liquefaction-related site response is performed for the Daikai subway station damaged during the 1995 Hyogoken-Nambu earthquake in Japan.



                    
    


                    
                        
                            
                                
                                    
                                        
                                    
                                    
                                        This is a preview of subscription content, log in via an institution
                                    
                                    
                                        
                                     to check access.
                                

                            

                        

                        
                            
                                
                                    Access this article

                                    
                                        
                                            
                                                
                                                    Log in via an institution
                                                    
                                                        
                                                    
                                                
                                            

                                        
                                    
                                    
                                        
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                    

                                    
                                        Institutional subscriptions
                                            
                                                
                                            
                                        

                                    

                                

                            
                        

                        
                            Fig. 1[image: ]


Fig. 2[image: ]


Fig. 3[image: ]


Fig. 4[image: ]


Fig. 5[image: ]


Fig. 6[image: ]


Fig. 7[image: ]


Fig. 8[image: ]


Fig. 9[image: ]


Fig. 10[image: ]


Fig. 11[image: ]


Fig. 12[image: ]


Fig. 13[image: ]


Fig. 14[image: ]


Fig. 15[image: ]


Fig. 16[image: ]


Fig. 17[image: ]


Fig. 18[image: ]


Fig. 19[image: ]


Fig. 20[image: ]


Fig. 21[image: ]


Fig. 22[image: ]


Fig. 23[image: ]


Fig. 24[image: ]


Fig. 25[image: ]


Fig. 26[image: ]


Fig. 27[image: ]


Fig. 28[image: ]


Fig. 29[image: ]


Fig. 30[image: ]


Fig. 31[image: ]


Fig. 32[image: ]


Fig. 33[image: ]


Fig. 34[image: ]


Fig. 35[image: ]


Fig. 36[image: ]


Fig. 37[image: ]


Fig. 38[image: ]


Fig. 39[image: ]


Fig. 40[image: ]


Fig. 41[image: ]


Fig. 42[image: ]


Fig. 43[image: ]


Fig. 44[image: ]


Fig. 45[image: ]


Fig. 46[image: ]


Fig. 47[image: ]


Fig. 48[image: ]


Fig. 49[image: ]


Fig. 50[image: ]


Fig. 51[image: ]


Fig. 52[image: ]


Fig. 53[image: ]


Fig. 54[image: ]


Fig. 55[image: ]


Fig. 56[image: ]


Fig. 57[image: ]


Fig. 58[image: ]


Fig. 59[image: ]


Fig. 60[image: ]


Fig. 61[image: ]


Fig. 62[image: ]


Fig. 63[image: ]


Fig. 64[image: ]


Fig. 65[image: ]


Fig. 66[image: ]


Fig. 67[image: ]



                        

                    

                    
                        
                    


                    
                        
                            
                                
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        A New Sand Constitutive Model for Pre- and Post-liquefaction Stages
                                        
                                    

                                    
                                        Chapter
                                        
                                         © 2021
                                    

                                

                                
                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Constitutive Modeling of Undrained Cyclic Shearing of Sands Under Non-zero Mean Shear Stress
                                        
                                    

                                    
                                        Chapter
                                        
                                         © 2022
                                    

                                

                                
                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        A Study on Liquefaction Characteristics of Sandy Soil in Large Strain Levels to Improve the Accuracy of Large Deformation Analysis
                                        
                                    

                                    
                                        Chapter
                                        
                                         © 2022
                                    

                                

                                
                            
                        

                    
                

            
        
            
        
    
                            
                        
                    

                    

                    

                    Abbreviations
	
                              e, D
                              r
                           :
	
                    Void ratio and relative density

                  
	
                    p
                    a
                  :
	
                    Atmospheric pressure

                  
	
                    τ
                  :
	
                    Simple shear stress

                  
	
                              p
                              e, r
                              u
                           :
	
                    Excess pore water pressure and excess pore water pressure ratio

                  
	
                    \({\sigma_{\text{c}}^{\prime } } \hbox{,} \)
                    \({\sigma_{\text{m}}^{\prime } } \)
                  :
	
                    Initial effective consolidation stress and mean effective stress

                  
	
                              p, q
                           :
	
                    Mean effective stress and deviatoric stress invariant

                  
	
                              η, η
                              m
                           :
	
                    Shear stress ratio (η = q/p) and its maximum value in loading history

                  
	γ:
	
                    Total shear strain

                  
	γd
                           :
	
                    Solid-like shear strain that occurs in non-zero effective confining stress state

                  
	γo
                           :
	
                    Fluid-like shear strain that occurs in zero effective confining stress state

                  
	γmax
                           :
	
                    Preceding maximum cyclic shear strain

                  
	
                    \( \dot{\gamma }_{\text{eff}} \)
                  :
	
                    Effective shear strain rate

                  
	γmono
                           :
	
                    Monotonic shear strain length

                  
	γd,r
                           :
	
                    Reference shear strain length

                  
	γr
                           :
	
                    Residual shear strain

                  
	εv
                           :
	
                    Total volumetric strain

                  
	
                    \( \varepsilon_{\text{v,recon}} \)
                  :
	
                    Reconsolidation volumetric strain

                  
	εvc
                           :
	
                    Volumetric strain component due to the change in p
                              

                  
	εvc,o
                           :
	
                    Threshold volumetric strain to delimit whether the effective confining stress reaches zero, determined as εvc value at zero effective confining stress state

                  
	
                    p
                    min
                  :
	
                    Threshold pressure for numerical calculation to delimit whether the effective confining stress reaches zero

                  
	εvd
                           :
	
                    Volumetric strain due to dilatancy

                  
	εvd,ir
                           :
	
                    Irreversible dilatancy component

                  
	
                    \( \varepsilon_{\text{vd,re}} \)
                  :
	
                    Reversible dilatancy component

                  
	
                              \( {\varvec{\upsigma} } \)(σ
                      ij
                    ), s(s
                              
                      ij
                    ):
	
                    Effective stress tensor and its deviatoric part

                  
	
                              \( {\varvec{\upvarepsilon }}\)(ε
                      ij
                    ), e(e
                              
                      ij
                    ):
	
                    Strain tensor and its deviatoric part

                  
	
                              r(r
                              
                      ij
                    ):
	
                    Deviatoric shear stress ratio tensor

                  
	
                              I(
                      ij
                    ):
	
                    Identity tensor of rank 2 (Kronecker delta)

                  
	
                    n
                  :
	
                    Loading direction in stress ratio space

                  
	
                    m
                  :
	
                    Flowing direction of plastic deviatoric strain increment

                  
	
                    α
                  :
	
                    Projection center

                  
	
                    \( \hat{f}(\hat{\varvec{\upsigma} }) \hbox{,} \, \bar{f}(\bar{\varvec{\upsigma} }) \)
                  :
	
                    Failure surface and maximum prestress memory surface serving as bounding surfaces

                  
	
                    L
                  :
	
                    Plastic loading intensity

                  
	
                              G, K, H
                           :
	
                    Elastic shear modulus, elastic bulk modulus and plastic modulus

                  
	
                              D, D
                              ir, D
                              re
                           :
	
                    Total, irreversible and reversible dilatancy rates

                  
	
                              D
                              re,gen, D
                              re,rel
                           :
	
                    Reversible dilatancy rates in dilative and contractive phases

                  
	
                              M
                              f,c, M
                              f,o
                           :
	
                    Failure stress ratios in triaxial compression stress state and torsional shear stress state

                  
	
                              G
                              o, n, h, κ:
	
                    Modulus parameters

                  
	
                              M
                              d,c, d
                              re,1, d
                              re,2
                           :
	
                    Reversible dilatancy parameters

                  
	
                    \( d_{\text{ir}} ,\alpha ,\gamma_{\text{d,r}} \)
                  :
	
                    Irreversible dilatancy parameters

                  
	θσ
                           :
	
                    Lode angle

                  
	
                    \( \rho ,\bar{\rho } \)
                  :
	
                    Mapping distances in stress ratio space
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Appendix: Local stress integration algorithm
Appendix: Local stress integration algorithm

                  	
                      1.
                      
                        Obtain the strains and stress quantities as well as volumetric strain due to change in mean effective stress at the beginning of the step \( \left( {\varepsilon_{\text{vc}} } \right)_{\text{n}} \) and other history variables. Moreover, get strain increment by geometric update from a global converged state.
$$ \Updelta {\varvec{\upvarepsilon }}_{n + 1} = {\varvec{\upvarepsilon }}_{n + 1} - {\varvec{\upvarepsilon }}_{n} $$

                    (64)
                


                                    
                      
                    
	
                      2.
                      
                        Elastic predictor: Assume that all the strain increments are elastic, the trial stress state can be predicted as
$$ \left( {\varepsilon_{\text{vc}} } \right)_{n + 1}^{\text{tr}} = \left( {\varepsilon_{\text{vc}} } \right)_{n} + \left( {\Updelta \varepsilon_{\text{v}} } \right)_{n + 1} $$


                                       $$ p_{n + 1}^{\text{tr}} = f\left( {\left( {\varepsilon_{\text{vc}} } \right)_{n + 1}^{\text{tr}} } \right) $$


                                       $$ {\mathbf{s}}_{n + 1}^{\text{tr}} = {\mathbf{s}}_{n} + 2G_{n + 1} \Updelta {\mathbf{e}}_{n + 1} $$


                                    
                      
                    
	
                      3.
                      
                        Check for plastic yielding: is \( \Updelta f^{\text{tr}} = \Updelta {\mathbf{s}}_{n + 1}^{\text{tr}} :{\mathbf{n}}_{L} - \Updelta p_{n + 1}^{\text{tr}} {\mathbf{r}}_{n + 1}^{\text{tr}} :{\mathbf{n}}_{L} > 0? \)
                                    

                        NO: Update strains and stress quantities and EXIT

                        YES: Perform plastic correction (Step 4).

                      
                    
	
                      4.
                      
                        Plastic corrector for yielding states: by Newton–Raphson iterative procedure. Initialization of iterative variables:
$$ {\text{k}} = 0,\Updelta {\varvec{\upvarepsilon }}_{n + 1}^{p(0)} = 0,\Updelta {\varvec{\upvarepsilon }}_{n + 1}^{e(0)} = \Updelta {\varvec{\upvarepsilon }}_{n + 1} ,\Updelta L^{(0)} = 0,\Updelta \lambda^{(0)} = 0,\Updelta f^{(0)} = \Updelta f^{\text{tr}} $$

wherein the variable in the superscript embraced by brackets indicates iterative number.

                        Iterative procedure on k
                                       
$$ \delta \lambda^{(k)} = \frac{{\Updelta f^{(k)} }}{{H + 3G - KD\left( {{\mathbf{r}}:{\mathbf{n}}_{L} } \right)}} $$


                                       $$ \Updelta \lambda^{(k + 1)} = \Updelta \lambda^{(k)} + \delta \lambda^{(k)} ,\Updelta L^{(k + 1)} = \Updelta L^{(k)} + H\delta \lambda^{(k)} $$


                                       $$ \left( {\Updelta \varepsilon_{\text{v}}^{\text{p}} } \right)_{n + 1}^{(k + 1)} = \Updelta \lambda^{(k + 1)} D,\left( {\Updelta {\mathbf{e}}^{\text{p}} } \right)_{n + 1}^{(k + 1)} = \Updelta \lambda^{(k + 1)} {\mathbf{n}}_{L} , $$


                                       $$ \left( {\Updelta \varepsilon_{\text{v}}^{\text{e}} } \right)_{n + 1}^{(k + 1)} = \left( {\Updelta \varepsilon_{\text{v}} } \right)_{n + 1} - \left( {\Updelta \varepsilon_{\text{v}}^{\text{p}} } \right)_{n + 1}^{(k + 1)} , $$


                                       $$ \left( {\Updelta {\mathbf{e}}^{\text{e}} } \right)_{n + 1}^{(k + 1)} = \Updelta {\mathbf{e}}_{n + 1} - \left( {\Updelta {\mathbf{e}}^{\text{p}} } \right)_{n + 1}^{(k + 1)} , $$


                                       $$ \left( {\varepsilon_{\text{vc}} } \right)_{n + 1}^{(k + 1)} = \left( {\varepsilon_{\text{vc}} } \right)_{n} + \left( {\Updelta \varepsilon_{\text{v}}^{\text{e}} } \right)_{n + 1}^{(k + 1)} $$


                                       $$ p_{n + 1}^{(k + 1)} = f\left( {\left( {\varepsilon_{\text{vc}} } \right)_{n + 1}^{(k + 1)} } \right), $$


                                       $$ {\mathbf{s}}_{n + 1} = {\mathbf{s}}_{n} + 2G_{n + 1}^{(k + 1)} \left( {\Updelta {\mathbf{e}}^{\text{e}} } \right)_{n + 1}^{(k + 1)} $$

where H is plastic modulus, G and K are elastic moduli, D is the total shear-dilatancy rate, ∆L is the increment of loading index.

                      
                    
	
                      5.
                      
                        Convergence check: Calculate the residual value of yielding function
$$ \Updelta f^{(k + 1)} = \Updelta {\mathbf{s}}_{n + 1}^{(k + 1)} :{\mathbf{n}}_{L} - \Updelta p_{n + 1}^{(k + 1)} {\mathbf{r}}_{n + 1}^{(k + 1)} :{\mathbf{n}}_{L} - \Updelta L^{(k + 1)} $$

Is \( \left| {\Updelta f^{(k + 1)} } \right| \le TOL1 \) and \( \left| {p_{n + 1}^{(k + 1)} - p_{n + 1}^{(k)} } \right| \le TOL2? \)
                                    

                        NO: \( k \leftarrow k + 1, \) continue iteration

                        YES: Update strains, stress and internal variables, then EXIT
$$ {\mathbf{s}}_{n + 1} = {\mathbf{s}}_{n + 1}^{(k + 1)} ,\quad p_{n + 1} = p_{n + 1}^{(k + 1)} ,\left( {\varepsilon_{vc} } \right)_{n + 1} = \left( {\varepsilon_{vc} } \right)_{n + 1}^{(k + 1)} . $$
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