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Stable isotopic composition in Antarctic snow and ice is commonly regarded as one of invaluable palaeoclimate proxies and plays 
a critically important role in reconstructing past climate change. In this paper we summarized the spatial distribution and the con-
trolling factors of D, 18O, d-excess and 17O-excess in Antarctic snow and ice, and discussed their reliability and applicability as 
palaeoclimate proxies. Recent progress in the stable isotopic records from Antarctic deep ice cores was reviewed, and perspectives 
on bridging the current understanding gaps were suggested.  
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Antarctic Ice Sheet is a highly important part of the Earth 
system. Thanks to its extraordinary environment of very 
low temperature, extremely low snow accumulation rate and 
thick ice layer, a wealth of high resolution and long chro-
nology paleoclimatic information is stored, and hence Ant-
arctic Ice Sheet is honored as archives of the Earth’s climate. 
Because the reliability of future climate prediction is, to a 
great degree, dependent on our knowledge of the past cli-
matic evolution, Antarctic ice core records play an im-
portant role in the current global change studies. 

As one of most valuable and applicable climate proxies, 
stable isotopic composition (D, 18O) recorded in Antarc-
tic ice cores is widely utilized to reconstruct the past climate 
change. Particularly, D or 18O in the Vostok and the EPICA 
Dome C ice cores have documented temperatures over the 
past 400 ka and 800 ka BP (before present), respectively 
[1–4], which well reflects the glacial-interglacial change. A 
drilling has successfully reached the bedrock at the Dome F 

site providing an ice core which covers more than 700 ka 
[5]. The robust couplings of dust-climate and CO2-climate 
over the glacial-interglacial timescales are also revealed by 
a comparison between D (18O) and the corresponding 
dust and CO2 records from the same ice cores, taking ac-
count of the ice core ice-age and gas-age difference [6–8]. 
These results contribute significantly to our understanding 
of the Earth’s climatic and environmental evolution during 
the past hundreds of thousands years. A combination of D 
and 18O (i.e. deuterium-excess or d-excess=D−818O [9]) 
provides a second-order stable isotopic information, which 
reflects the kinetic fractionation during evaporation. It largely 
depends on the sea surface temperature (SST), relative hu-
midity and wind speed at the moisture source region [10,11]. 
Therefore, d-excess in Antarctic snow and ice is generally 
used to infer moisture source history, and to calibrate the 
climatic interpretation of D and 18O records. Recent de-
velopment in the stable isotopic analysis technology makes 
it possible to measure 17O and 18O with a high precision 
[12,13]. Similar to d-excess, another second order parameter 
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17O-excess, expressed as 106×(ln(17O/1000+1)0.528ln 
(18O/1000+1)) [14], is developed as a new tracer of the hy-      
drological cycle. 17O-excess in atmospheric water vapor is 
strongly controlled by the relative humility [15], but insen-
sitive to temperature and 18O of the oceanic surface water 
where moisture evaporates [16]. It therefore provides poten-
tial for Antarctic ice cores to retrieve singular meteorologi-
cal information over the moisture origin region. However, 
monitoring and modeling of the stable isotopic fractionation 
exhibit modulation of the stable isotopic signals caused by 
many processes (e.g., atmospheric circulation, firn process, 
ice flow), which challenge the quantification of the past 
climatic change by means of the stable isotopic composition 
in Antarctic snow and ice. 

This paper firstly summarized the spatial distribution of 
the stable isotopic composition in Antarctic surface snow 
and the factors controlling this distribution based on the 
stable isotopic observation and simulation. In particular, we 
discussed the extent that the stable isotopic proxies can be 
used as a surrogate for climatic variables. Additionally, re-
sults of the climate change reconstruction by the stable iso-
topes in Antarctic deep ice cores were reviewed. In the last 
paragraph, perspectives on future development were offered. 

1  Spatial distribution of D and 18O  
in Antarctic surface snow and the factors  
controlling their variability 

1.1  Spatial distribution of D and 

18O 

An accurate assessment of spatial distribution of D and 
18O in Antarctic surface snow is required for the interpreta-
tion of Antarctic ice core stable isotopic records. However, 
sufficient in situ observations are prerequisite for the as-
sessment. Lorius and Merlivat [17] documented the rela-
tionship between both D and 18O and parameters such as 
the mean annual temperature and the surface elevation for 
sites in the sector between Dumont d’Urville and Vostok. 
Morgan [18] collected 18O measurements at 189 sites and 
constructed the first database of stable isotopic composition 
in Antarctic surface snow. In 1997, Giovinetto and Zwally 
[19] updated this database by extending spatial coverage of 
18O measurements. In the following year, this database was 
updated again by Zwally et al. [20]. Most recently, Masson- 
Delmotte et al. [21] compiled the most complete database of 
Antarctic surface snow stable isotopic composition using 
the available measurements of snowfall, surface snow, snow 
pit and shallow firn cores. This database constitutes the sta-
ble isotopic observations at 1279 sites since the 1960s, in-
cluding 938 D observations, 1125 18O observations, and 
794 observations for both D and 18O resulting in the 
calculation of d-excess. Although there are still data gaps in 
the Antarctic coastal regions and the East Antarctic plateau, 
the spatial distribution is essentially presented, including 

depletion of the heavy stable isotopes from mid-latitudes to 
high latitudes, decline of D and 18O from the coast to-
ward Antarctic inland, and decreasing D and 18O with 
increasing elevation. 

Early attempts to represent the spatial stable isotopic dis-
tribution in Antarctic surface snow involved a continuous 
trend surface generated by spatial interpolation technologies. 
Giovinetto and Zwally [19] and Zwally et al. [20] estab-
lished a multiple linear regression model by investigating 
the relationship between Antarctic surface snow 18O data 
vs. geographical and meteorological parameters including 
latitude, elevation, distance from coast and air temperature. 
A 100-km resolution 18O map was generated using this 
linear regression model and digital elevation model (DEM). 
However, the accuracy of the maps was challenged by the 
colinearity of predictor variables. Based on the recent com-
pilation of the stable isotopic composition in Antarctic sur-
face snow by Masson Delmotte et al. [21], Wang et al. [22] 
modified the Bowen and Wilkinson (BW) model [23] and 
explored a quantitative relationship between 18O in Ant-
arctic surface snow vs. latitude and altitude. This quantita-
tive model integrating with the other factors affecting 18O 
(e.g., moisture origin, moisture transportation paths) was 
employed to produce a 1-km resolution gridded map of 18O. 
It is convinced by cross validation that generalized additive 
model (GAM) is a useful tool to assess the spatial distribu-
tion of 18O and D in Antarctic surface snow [24]. A 1-km 
resolution gridded dataset of 18O and D were produced 
using high resolution DEM as an input for this model (Fig-
ure 1). The resulting stable isotopic distribution indicates 
the effects of latitudinal, altitudinal, and continentality on 
the stable isotopes in precipitation. It is highly useful for the 
comparison/validation with simulation of atmospheric gen-
eral circulation models (AGCMs) and mixed cloud isotopic 
model (MCIM).  

1.2  Factors controlling spatial distribution of D and 


18O 

According to Rayleigh distillation model, Dansgaard [9] 
summarized the factors controlling stable isotopes in mete-
oric precipitation, including temperature effect, latitude ef-
fect, elevation effect, continental effect, moisture origin and 
so on. Previous studies have shown that air temperature is 
the key controlling factor in the mid and high latitudes, es-
pecially in the polar region [9,25,26]. Masson-Delmotte et 
al. [21] confirms that the spatial distribution of stable iso-
topes in Antarctica is highly associated with condensation 
temperature, which itself is controlled by geographical pa-
rameters (latitude, distance from the coast and elevation). 
Among these parameters, elevation is the first driver of the 
spatial distribution of stable isotopes in Antarctica [24].  

Although temperature is the key factor controlling the 
spatial distribution of stable isotopes in Antarctic snow,  
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Figure 1  Spatial distribution of 18O and D in Antarctic surface snow. Data come from [24]. 

several other factors such as moisture origin and transport 
paths [27,28], precipitation seasonality/intermittency [29,30], 
and post depositional processes [31–33], might result in 
large uncertainty when reconstructing paleotemperature from 
ice cores. Precipitation falling in a target region over Ant-
arctica usually receives moisture from several different 
oceanic source regions. Changes of vapor source conditions 
and air mass transport may produce stable isotopic variabil-
ity, and changes of seasonality of Antarctic snowstorm in-
tensity can precipitate a large fraction of air mass moisture, 
and result in 2H- and 18O-depleted precipitation. Modeling 
attempts also highlight the importance of precipitation sea-
sonality/intermittency on stable isotopic variation [34,35]. 
Stable isotopic signals can be smoothed by diffusion in firn 
and ice during the densification process after snow deposi-
tion. In addition, spatial difference in stable isotopic com-
position may result from sublimation effects over Antarctic 
inland and wind-driven ablation on the flanks of the Antarctic 
Ice Sheet.  

1.3  Modeling the spatial distribution of 

18O and D 

A Rayleigh distillation model (RM) [11,36] has the ad-
vantage of representation of key microphysical processes 
and the fractionation along the water cycle path. Thus, this 
type of model simulates quite satisfyingly the dependence 
of stable isotopes in precipitation on atmospheric parame-
ters, moisture origin diagnostic and air mass trajectories. 
These simulation results provide a theoretical basis for in-
terpretation of the ice core stable isotopic records. However, 
the modeling air parcel trajectories are strongly simplified. 
AGCMs and MICM has the advantage of estimating spatial 
and temporal variation of stable isotopes. Jouzel et al. [37] 
provides the first estimate of an annual average distribution  

of water isotopes over Antarctica through AGCMs. Hereafter, 
with the enhancement of the capability to explicitly simulate 
the water isotopes, a number of studies have attempted to 
use AGCMs and MICM to evaluate the spatial and temporal 
variability in Antarctic precipitation isotopes to better inter-
pret the stable isotopic records in Antarctic ice cores 
[37–44]. AGCMs [37–43] and MICM [44] well reproduce 
the spatial distribution of stable isotopes in Antarctic pre-
cipitation, especially in West Antarctica and in the coastal 
areas. Stable isotopic minima are located over the East Ant-
arctic Plateau where the lowest temperature is observed. 
However, the modeling 18O values over the East Antarctic 
Plateau were overestimated by even 10‰ in relative to real 
observations [38,39,43]. Although development in the ver-
tical and horizontal resolution of AGCMs largely improved 
their accuracy in recent years, its simulation ability remains 
limited for the Antarctic inland (Figure 2(a) and (b)) [42], 
likely due to poor representation of atmospheric boundary 
layer, temperature inversion, cloud microphysics, and large 
scale advection of water vapor [36,45]. Warm biases of 
AGCMs could result in the insufficient estimate of the sta-
ble isotopic depletion.  

2  Relationship between the stable isotopic  
composition () and temperature (T)  
(-T relationship) 

The basis of paleotemperature reconstruction is the strong 
relationship between the stable isotopic composition in 
Antarctic surface snow and temperature on varied temporal 
scales. Picciotto et al. [46] quantified a temporal relation-
ship between 18O in snowfall and the corresponding cloud 
temperature from measurements at the Roi Baudouin Station  
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Figure 2  (a) Spatial distribution of D simulated by ECHAM5 [41] and observations [22]; (b) a comparison of D observations and simulation by 
ECHAM5. 

at the coastal Antarctic Ice Sheet. On seasonal scale,  cor-
relates linearly with T at Dome F [47], Vostok [48], Dron-
ning Maud Land [49] and west Antarctic ice divide [50]. 
However, the -T temporal slopes vary significantly from 
one site to another. On longer temporal scales, -T relation-
ships can be hardly explored from the short instrumental 
stable isotope and temperature measurements over Antarc-
tica. Also, no good independent proxy can capture the 
long-term Antarctic -T relationship. Jouzel et al. [51] indi-
cated that AGCMs is regarded as a good alternative to de-
tect the long-term -T temporal relationships.  

Lorius and Merlivat [17] firstly explored the 18O-T and 
D-T spatial relationships using surface snow 18O, D, and 
annual mean temperature measurements along a traverse 
from the Dumont d’Urville Station to Dome C. Qin et al. [52] 
reported changes in regional -T spatial gradients by ana-
lyzing the -T relationships over the different geographic 
sections along the International Trans-Antarctic Scientific 

Expedition (Table 1). Zhang et al. [53] observed different 
spatial slopes over the East and West Lambert Glacier (Ta-
ble 1). Regional difference in the spatial slopes is also ob-
served over Dronning Maund Land [54], nearby Dome C 
[4], and along the traverse from the Zhongshan Station to 
Dome A [55]. Based on the most complete compile of the 
stable isotopic composition in Antarctic surface snow, Masson- 
Delmotte et al. [21] explored -T relationships at continental 
and regional scales. For the whole continent, the spatial 
slopes are 0.80±0.01‰/°C (n=745) for 18O-T, and 6.34± 
0.09‰/°C for D-T. However, the regional slopes vary by 
20% or more [21], which can be simulated by MICM [44] 
and GCMs [56].  

Stable isotopes in precipitation represent not only local 
conditions where precipitation occurs, but also a combina-
tion of source conditions, rainout, and post-deposition pro-
cesses. Thus, local -T temporal relationship is usually 
slowly weakened than the -T spatial relationship [29,41,57]. 

Table 1  Regional -T gradients in Antarctica 

Area 18O-T slope (‰/°C) D-T slope (‰/°C) Reference 

Dumont d’Urville Station-Dome C 0.76 6.00 [17] 

Patrot Hills-Vostok 0.77 5.84 [52] 

Komsomolskaya-Mirnyy 0.90 7.00 [52] 

Amundsenisen 0.77±0.14  [54] 

Dome C 0.75±0.15 6.04 [4] 

Transect between Zhongshan Station and Dome A 0.84  [55] 

Western Lambert Glaicer Basin 0.84  [53] 

Eastern Lambert Glacier Basin 0.58  [53] 

Western Vostok region 0.89±0.11 7.00 [52] 

Eastern Vostok region 0.89±0.039 5.84 [52] 

Antarctic Ice Sheet 0.80±0.01 6.34±0.09 [21] 

 



 Hou S G, et al.   Chin Sci Bull   April (2013) Vol.58 No.10 1099 

Furthermore, significant regional anomalies in stable iso-
topes usually occur, resulting from atmospheric circulation 
variability. Though -T spatial relationship is used as a sur-
rogate of -T temporal relationship to quantify the past tem-
perature from ice cores [58], this method is questioned for 
the interpretation of glacial-interglacial stable isotopic vari-
ations over Greenland likely due to the glacial-interglacial 
change in the seasonality of precipitation [59]. Due to lim-
ited topographical and geographical changes between gla-
cial and interglacial climates, Antarctica is less affected by 
such changes in seasonality; this gives arguments for the 
validity of temperature reconstruction on glacial-interglacial 
scale from the Antarctic interior ice cores, such as Vostok, 
Dome F and EPICA Dome C, with their uncertainties up to 
20%–30% [60], which to great extents result from the re-
gional changes in -T spatial slopes [21]. Additionally, 
changes in oceanic moisture origin conditions [27,28,60], 
precipitation seasonality/intermittency [35,38,39,61], Ice 
Sheet elevation [62,63], and atmospheric circulation may 
influence -T relationship, especially during the abrupt cli-
mate change. Jouzel et al. [60] pointed out the necessity of 
making corrections for the impact of ocean stable isotopic 
change when interpreting the ice core stable isotopic records. 
Lee et al. [64] quantified the influence of changes in the 
moisture source conditions on -T correlation during the 
Last Glacial Maximum through AGCM. The -T temporal 
slope at East Antarctica is about 50% of the -T spatial 
slope because of the modulation of seawater stable isotopic 
content in the Southern Ocean. By making use of ERA40 
(1980–2002) reanalysis data, Masson-Delmotte et al. [65] 
calculated the difference between temperature and precipi-
tation-weighted temperature to investigate the effect of pre-
cipitation seasonality/intermittency on -T correlation. In 
the East Antarctic interior, biases of stable isotopic ther-
mometer result largely from precipitation seasonality. But in 
the other Antarctic regions, especially the coastal regions, 
the synoptic variation in precipitation contributes more to 
biases than precipitation seasonality. The importance of 
precipitation intermittency is also highlighted by modeling 
attempts [35,38,39,61]. Sime et al. [56] simulated the stabil-
ity of -T correlation in response to increase in greenhouse 
gas concentrations, and showed a slowly weaker -T tem-
poral slope than -T spatial slope at Dome F and EDML, 
and a significantly weak temporal slope equivalent to 40% 
of the spatial slope nearby Dome C and Vostok, resulting 
from changes in precipitation intermittency under warmer 
climates. Schmidt et al. [66] used a coupled ocean-atmos-      
phere model equipped with stable isotopic fractionation to 
detect the -T temporal relationship during mid-Holocene, 
in response to changes in orbital forcing and greenhouse gas 
concentrations. The -T temporal slope over eastern Antarc-
tica is 0.2–0.5‰/°C lower than the present-day -T spatial 
slope. Therefore, Sime et al. [67] concluded that interglacial 
temperature was badly underestimated by means of modern 

-T spatial slope as a surrogate for temporal slope. 

3  d-excess and 17O-excess in Antarctic snow 
and ice 

3.1  Spatial distribution of d-excess and its controlling 
factors 

d-excess in precipitation reflects the stable isotopic kinetic 
fractionation when water phase changes. Jouzel and Merlivat 
[11] firstly theoretically revealed the dependence of d-excess 
on SST controlling the saturated vapor pressure, relative 
humidity controlling the vapor diffusion rate and wind 
speed affecting the turbulent transport processes in the oce-
anic source regions. Armengaud et al. [68] further con-
firmed the control of kinetic evaporation conditions in the 
moisture source region on d-excess. Furthermore, there are 
robust correlations between d-excess in atmospheric vapor 
and SST and relative humidity in the mid-high altitude 
Southern Oceans [69]. As a result, d-excess is considered as 
a good tracer for moisture origin. 

Spatial distribution of d-excess in Antarctic snow and ice 
exhibits a distinct difference between Antarctic coastal re-
gions below 2000 m and Antarctic interior above 2000 m. 
d-excess values change little for the coastal regions, while 
increase evidently for Antarctic interior, with the highest 
values over the East Antarctic plateau [21,70,71]. Statistic 
analysis shows that d-excess correlates positively with alti-
tude and distance from Antarctic coasts, and negatively with 
temperature for the whole Antarctic Ice Sheet, especially for 
Antarctic interior above 2000 m [21]. Results of RM [70] 
and AGCM [21] demonstrated that difference in moisture 
sources accounts for the discrepancy of d-excess spatial 
distribution between the Antarctic coastal and inland re-
gions. Antarctic coastal regions receive moisture mostly 
from offshore waters, whereas in Antarctic interior, mois-
ture originates mostly from open sea, which is supported by 
a Lagrangian moisture source diagnostic [72] and air mass 
trajectory tracking model [73]. Additionally, d-excess is 
sensitive to changes in stable isotopic equilibrium fractiona-
tion temperature. Gradual decrease in condensation temper-
ature during the moisture transport from the Southern Oce-
anic regions towards Antarctica results in the increase of 
d-excess in vapor and reaches the highest value in Antarctic 
interior. Atmospheric vapor during polar snow formation is 
generally supersaturated due to rather low temperature, 
leading to kinetic fractionation for ice crystals. The kinetic 
fractionation is more vigorous as temperature decreases, 
resulting in increase of d-excess. Besides, depth hoar within 
snowpack growing from vapor sublimation may cause in-
crease of d-excess [74], while material loss during firnifica-
tion in regions with low accumulation rate may lead to dec-
rement of d-excess [32,33]. d-excess in Antarctic snow and 
ice is also influenced by the stable isotopic diffusion after 
snow deposition, generally accompanying with the stable 
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isotopic kinetic fractionation. Therefore, it is clear that 
d-excess in Antarctic snow and ice depends largely on the 
conditions of moisture source (SST, relative humidity, sta-
ble isotopic composition of ocean water and wind speed), 
but importance of condensation temperature at precipitation 
site [75], the supersaturation of vapor [11] and post-deposi-     
tional processes [32,33] cannot be ignored. Moreover, the 
degree of influence from these parameters varies from one 
site to another [21,76]. As a result, it is not easy to obtain 
quantitative information of meteorological conditions over 
moisture source by d-excess. Consequently, it is required to 
take into account the disturbance of non-moisture source 
conditions when retrieving moisture source information by 
means of d-excess in Antarctic snow and ice. The ap-
proaches for the calibration of interpretation of d-excess 
include modeling methods (e.g. the kinetic fractionation 
model under the supersaturation conditions during snow 
formation [11] and the stable isotopic diffusion model [77]), 
empirical formula [78] and 17O-excess. 

3.2  17O-excess record 

Triple stable isotopic composition of oxygen in atmospheric 
vapor collected over the Southern Oceans show that 17O- 
excess in vapor is mainly controlled by the relative humidi-
ty over moisture source [79]. In comparison with d-excess, 
17O-excess is independent of SST and water 18O in oceanic 
regions [15] and depends hardly on the condensation tem-
perature during vapor transport [16]. 17O-excess is therefore 
not only a tracer for the relative humidity over oceanic 
source regions, but also can be used to make corrections for 
the influence of non-moisture source conditions on d-excess 
in precipitation. At the NEEM (North Greenland Eemian 
Ice Drilling) of Greenland, simultaneous measurements of 
17O and 18O in atmospheric vapor vs. precipitation vali-
dated firstly the theoretical coefficient of meteoric water 
line for 17O and 18O, and showed that seasonal variation 
of 17O-excess is in phase with relative humility over oceanic 
source regions [80]. 17O-excess is therefore regarded as a 
potential tool for reconstructing relative humidity over 
moisture source. Measurements of 17O-excess in surface 
snow along a transect from Terra Nova Bay to Dome C and 
Vostok [16] did not reveal an apparent trend along this 
transect. 17O-excess of the Vostok ice core increases by 
20‰ from the Last Glacial Maximum (LGM) to Early Hol-
ocene (EH), which could be explained by 20% decrease in 
the relative humidity at the oceanic source regions. Howev-
er, this is not supported by AGCM simulations [81]. During 
the same period, 7O-excess of the Dome C ice core shows a 
reverse trend in comparion to the Vostok ice core, and there 
is no significant change in 17O-excess of the Talos Dome ice 
core [82]. The moisture origin diagnostic model, RM and 
MCIM, show that the spatial discrepancy of 17O-excess is 
largely associated with relative humidity over moisture 
source [82]. Nevertheless, 17O-excess in Antarctic snow and 

ice could be also affected by mass-independent oxygen iso-
topic fractionation of tropospheric vapor [83] and kinetic 
isotopic fractionation during ice crystal formation under the 
supersaturation conditions [11,15]. In general, vapor in 
cloud in East Antarctic interior is in a supersatured envi-
ronment due to extreme low temperature and it could be 
condensed directly into ice crystal. The condensation pro-
cesses accompanying the stable isotopic kinetic fractiona-
tion have an evident impact on 17O-excess in snow and ice. 
RM results indicate the different responses of d-excess and 
17O-excess to the kinetic fractionation during ice crystal 
formation under the supersaturation conditions, with signif-
icant d-excess increase and 17O-excess decrease with increase 
of the vapor supersaturation degree as temperature decreases 
[15]. Therefore, combination of d-excess and 17O-excess is 
advantageous for understanding the stable isotopic kinetic 
fractionation processes during ice crystal formation under 
the supersatured environment. The above analyses suggest 
that the climatic information on moisture source regions 
could be inferred from the ice core 17O-excess records, 
which would provide a more direct indicator than d-excess 
for the climatic signature of the first vapor. However, 17O- 
excess in remote sites of East Antarctica may be highly sen-
sitive to local effects and getting additional information from 
this parameter is probably more reliable for coastal sites [82]. 

4  Temperature reconstruction from stable  
isotopes in Antarctic deep ice cores 

Temperature reconstruction is an essential part of past glob-
al change research [84]. Stable isotopes archived in Antarc-
tic deep ice cores have drawn especial attention. During the 
past decades, several ice cores have been drilled in Antarc-
tica (Figure 3 and Table 2). The depths of ice cores at  

 

Figure 3  Locations of the deep ice cores in Antarctica. 
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Table 2  Basic information of the deep ice cores in Antarctica 

Sites Latitude Longitude Altitude (m) 
Distance from  

coast (m) 
Accumulation rate 

(mm a1) 
Air temperature  

(°C) 
Ice core depth 

(m) 
Reference 

Vostok 78°28′S 106°48′E 3490 1260 23 55.5 3623 [1] 

Taylor Dome 77°48′S 158°43′E 2365 120 50 to 70 43 554 [85] 

Byrd 80°01′S 119°31′W 1530 620 100 to 120 28 2164 [86] 

Law Dome 66°46′S 112°48′E 1370 90 700 22 1195.6 [87] 

Dome F 77°19′S 39°40′E 3810 1000 23 57 3035.2 [2] 

Talos Dome 72°47′S 159°04′E 2315 250 80 40.1 1620 [88] 

EPICA Dome C 75°6′S 123°21′E 3233 912 25 54.5 3259.7 [4] 

EDML 75°00′S 00°04′E 2822 577 64 44.6 2774 [89] 

Siple Dome 81°40′S 148°49′W 621 439 124 24.5 1003 [90] 

 

Vostok, EPICA Dome C and Dome F are over 3000 m, with 
their bottom ice ages over hundreds of thousands of years. 
These ice cores are uniquely advantageous for the determi-
nation of climatic evolution on the millennial to orbital 
timescales. Ice cores recovered from the Antarctic coastal 
regions with relatively higher snow accumulation could 
provide high resolution records, which can be used to deci-
pher details of climate change on the decadal to millennial 
timescales. 

4.1  Temperature change at orbital timescale 

Four complete glacial-interglacial temperature cycles were 
identified by the stable isotopic records (18O and D) of the 
Vostok ice core [1]. This record is extended back to the past 
800 ka by the EPICA Dome C ice core, with eight glacial- 
interglacial cycles [3,4]. Both ice cores decipher the 100 ka, 
40 ka and 19–23 ka cycles driven by the earth orbital pa-
rameters, and the 100 ka periodicity is dominant. Neverthe-
less, the fluctuation magnitude and the duration of the peri-
odicities show a little decrease during the period 800–430 
ka BP compared with those during the period 0–430 ka BP. 
Within each glacial-interglacial cycle, the duration of the 
glacial condition accounts generally for more than 80% of 
the glacial-interglacial cycle, whereas the interglacial condi-
tion for less than 20%. The duration for the interglacial is 
about 10–30 ka. The stable isotopic records of the ice cores 
at EPICA Dome C [3], Dome F [2] and Vostok [1] show a 
synchronous climate change during the past 400 ka over the 
East Antarctica (Figure 4). Records of Loess [91] and ma-
rine [92] sediments also show a similar glacial-interglacial 
cycle, suggesting a synchronization of global climate change 
on orbital timescale, reflecting the periodic variations of the 
earth’s orbital parameters. According to Milankovitch the-
ory, the main driving factor for the glacial-interglacial cycle 
of climate is the amount of summer solar radiation received 
by the Earth at high northern latitude [93]. The signal of the 
summer solar radiation is conveyed through variations of 
greenhouse gas concentration and thermohaline circulation 
intensity. Nevertheless, the synchronous increase of CO2 

concentration and air temperature over the MIS (Marine 
Isotope Stage) 5e recorded in the Vostok ice core could not 
be explained by the Milankovitch theory. Furthermore, 
Laepple et al. [94] argued that the temperature retrieved 
from the stable isotopic records of the Vostok, Dome C and 
Dome F ice cores tends to reflect changes of the winter 
temperature in the southern hemisphere because of season-
ality of the Antarctic snow accumulation, and that the glacial- 
interglacial cycle of local changes in the solar radiation play 
a decisive role, regardless the summer solar radiation at 
high latitude in northern hemisphere. 

The most prominent feature of the glacial-interglacial cy-
cle is the shift of the dominant cycles from 40 ka to 100 ka 
occurring around 900 ka. This climatic shift event is called 
the Mid-Pleistocene climate transition (MPT), which has been 
found in the benthic stable oxygen isotopic records [95] and 
verified by the loess-paleosoil stable isotopic profiles [96]. 
The MPT seems to be reflected in the stable isotopic record 
of the EPICA Dome C ice core [4]. Although many as-
sumptions concerning to the greenhouse effect were used to 
explain MPT, its intrinsic mechanism has not been clarified 
so far. Because of ice cores as a unique medium that can be 
used to retrieve directly the ancient atmospheric composi-
tion, together with its precise dating, high temporal resolu-
tion and good continuity, ice cores with an age more than 
one million years are extremely crucial for verifying MPT. 
Consequently, seeking such kind of old ice cores from Ant-
arctica is of vital importance, which is also one of the pri-
mary goals of the International partnership Ice Core Sci-
ences (IPICS). Dome A, the highest point of the Antarctic 
ice sheet, is characterized by the lowest annual average tem-
perature (58°C) [97], low accumulation rates (<25 mm/a 
water equivalent) [98,99], neglectable ice flow velocity and 
exceeding 3000 m ice thickness [100], meets the necessary 
conditions for retrieving such very old ice cores [101].  

4.2  Temperature change at millennial to sub-millennial 
timescales 

Because millennial to sub-millennial climate change and  
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Figure 4  Records of the stable isotopic profiles of Dome F [2], Dome C [3] and Vostok [1] ice cores and their corresponding reconstructed temperature 
time series. 

abrupt climate change events are particularly important to 
the prediction of future climate, they attract great concerns 
even beyond the earth science community, especially for the 
climate change during the last glacial-interglacial cycle. 

A comparison of climate between the last interglacial and 
the Holocene was made by Massion-Delmotte et al. [65] 
from six deep Antarctic ice core 18O records. They identi-
fied a similar pattern of the stable isotopic records of these 
ice cores during the last interglacial and the Holocene, sug-
gesting a consistent Antarctic temperature change on mil-
lennial scale. However, there are regional magnitude dif-
ferences of the stable isotopic variation, probably due to 
difference in moisture sources, altitude evolutionary history 
of the local ice sheet, seasonal changes in precipitation or 
intermittent precipitation. During the last deglaciation, the 
synthetic 18O record [87] from the Antarctic coastal Law 
Dome [87], Talos Dome[88], Simple Dome [90], EDML 
[89] and Byrd [86] ice cores is rather accordant with the 
18O record of the EPICA Dome C ice core (Figure 5(a)), 
further confirming the uniformity of Antarctic temperature 
change on millennial scale. However, regional difference in 
the warming rate from the last glacial to Holocene is signif-
icant [88]. It’s interesting to point out that the stable isotop-
ic record of the Taylor ice core from the Coast of Ross Sea 
[85] during the last deglaciation corresponds reversely to 
that of the ice cores mentioned above, but Stenni et al. [88] 
indicated the dating lethality of the Taylor core [88]. 

Phase relationship of the bipolar climate events is essen-
tial for understanding the climate system coupling of the 
northern and southern hemispheres and its interaction 
mechanism. A series of abrupt climate change events lasting 
several centuries to several thousand years were identified 
by the Greenland ice cores, from which standing out the 
Dansgaard/Oeschger (DO) [102,103] and the Younger Dry-
as (YD) [104] events. On the contrary, Antarctic climate is 
relatively moderate, with a certain climate warming events 
of 1–3°C, called the Antarctic Isotope Maxima events (AIM) 
[2,3,105]. Although the YD event was not observed in the 
Antarctic ice core reocrds, the Antarctic Cold Reversal 
(ACR) was identified before the occurrence of the YD event 
[106,107]. In order to ascertain the phase relationship of 
these events over the bipolar regions, the age scale of the 
Greenland and the Antarctic ice cores were synchronized by 
their corresponding CH4 records, demonstrating a biploar 
seesaw between the millennial ACR events observed in 
Antarctica and the DO events in Greenland during the MIS 
2–4 periods [86]. During MIS 3, all the AIM events corre-
spond one-to-one to the DO stadials of Greenland [89] 
(Figure 5(b)). The coldest ACR event occurred during 14.4– 
12.9 ka BP, corresponding to the Bølling warm event in 
Greenland, and an Antarctic warming is in response to the 
timing of Allerød cold event in Greenland [87] (Figure 5(c)). 
The bipolar seesaw of climate change was suggested to be 
related to the ocean’s Meridional Overturning Circulation  
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Figure 5  (a) Comparisons of the 18O records of the GRIP, Law Dome, Siple Dome, EDML and Talos Dome ice cores since LGM. The dataset are from 
reference [87]. (b) A one-to-one coupling of the Antarctic warming events (AIM) vs. the Greenland DO events [89]. (c) A comparison between the Antarctic 
δ18O composite from the Law Dome, Siple Dome, EDML and Talos Dome ice cores and the North Greenland (NGRIP) 18O record [87]. 

(MOC) [108,109].  

5  Summary and outlook 

In summary, temperature is the main controlling factor for 
the spatial distribution of the stable isotopes (D and 18O) 
in Antarctic surface snow and ice. However, the distribution 
can be influenced, to a certain degree, by precipitation sea-
sonality, moisture source, vapor transport, and post-deposi-      
tional processes, resulting in uncertainty to reconstruct past 
climate change by the stable isotopic records of the Antarc-
tic ice cores. To discern the disturbance of these factors, 
further monitoring and modeling efforts on the modern 
processes of the stable isotopes are very important, espe-
cially the observation of the stable isotopic composition in 
atmospheric vapor and its variation during transport towards 
Antarctica. Evaporation from the ocean surface is the first 
stage for the Antarctic precipitation, with the initial stable 
isotopic fractionation in vapor over the moisture source. 
Precipitation gradually falls during vapor transport towards 
Antarctica under a certain conditions of temperature, pres-
sure and humidity, together with regular stable isotopic 
fractionation. In-situ and real-time measurements of the 
stable isotopic composition in atmospheric vapor at the air- 

sea interface and during the vapor transport would help to 
understand the dynamic mechanism of the stable isotopic 
fractionation processes in vapor at the air-sea interface, 
changing conditions over water vapor source and the influ-
ence of vapor transport on the stable isotopes in snow and 
ice. Additionally, simultaneous observations of stable iso-
topes (D and 18O) in atmospheric vapor above the land- 
atmosphere interface (near ground) and in surface snow are 
helpful to understand the impact of post-depositional pro-
cesses on the stable isotopes. 

Progress in paleoclimatology depends largely on the 
quality and applicability of the paleoclimate proxies. Due to 
the complexity of the stable isotopic fractionation, the re-
sponse of the stable isotopes in Antarctic snow and ice to 
temperature differs spatially and temporally, resulting in 
uncertainties of the temperature reconstruction based on the 
Antarctic ice cores. Such uncertainties may be partly solved 
by understanding the mechanisms of spatial and temporal 
variabilities in -T relationship through in-situ observations 
and numerical simulations. Quantitative comparison of the 
-T relationship variabilities driven by variable forcings, 
such as changes in greenhouse gas concentration, orbital 
parameters, freshwater infiltration and changes in ice sheet 
elevation is beneficial. On the East Antarctic Plateau, in 
addition to the conventional snow precipitation, ice crystal 
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(diamond dust) or clear-sky precipitation is another im-
portant type of precipitation, which is related to the degree 
of vapor supersaturation under the very low temperature 
conditions. Though this type of precipitation may have an 
impact on -T relationship, this has not attracted much at-
tention. 

17O-excess and d-excess are two important tracers for 
identifying conditions over moisture source. In comparison 
with d-excess, 17O-excess is mainly controlled by the rela-
tive humidity over moisture source and has different re-
sponse manner to the stable isotopic kinetic fractionation 
under the supersaturation conditions. 17O-excess in snow 
and ice shows great potential for quantitative recovery of 
single meteorological information about vapor source. It 
provides the possibility to distinguish the influences of rela-
tive humidity as well as SST over moisture source, vapor 
transport processes and local temperature from the ice core 
stable isotopes when combining both 17O-excess and d-excess 
data. However, only limited 17O-excess measurements were 
performed up to now, including the surface snow samples 
collected along a transect from Terra Nova Bay to Dome C 
[16] and at NEEM [80], as well as the ice core samples 
from Vostok, EPICA Dome C and Talos Dome [81]. Thus, 
it is necessary to obtain more 17O-excess measurements 
from the other locations (especially the West Antarctica) to 
explore the spatial and temporal variations of 17O-excess. 
Moreover, much attention should be paid on the fractiona-
tion mechanism of 17O-excess during the ice crystal for-
mation under the supersaturation conditions, the influence 
of mass-independent stable isotope fractionation, and the 
effects of the post-depositional processes on 17O-excess.  

Eight glacial-interglacial cycles of temperature during 
the past 800 ka were revealed by the stable isotopic records 
of the EPICA Dome C ice core, and a bipolar seesaw of 
temperature variation on millennial timescale was identified. 
Thus climate change in Greenland during the past 800 ka 
could be reconstructed by means of the thermal bipolar see-
saw phenomenon [110]. However, the Milankovitch theory 
that drives the glacial-interglacial cycle of Antarctic tem-
perature was challenged [94]. As a result, it is necessary to 
improve the ability of paleoclimate simulations, or to con-
ceive new hypothese for further understanding the driving 
mechanism of the glacial-interglacial cycle of Antarctic 
temperature. It is very hopeful to discern MPT through the 
proposing oldest ice cores from Antarctica. Among the po-
tential sites in the East Antarctic plateau for a bottom ice 
age over one million years, Dome A possesses prerequisite 
conditions for such a purpose [101]. Moreover, the moisture 
source and seasonal variation of accumulation at Dome A 
seem to be different from what observed at Vostok, EPICA 
Dome C and Dome F [99]. Thus the proposing deep ice core 
stable isotopic record from Dome A integrating with the 
existing stable isotopic records of the other Antarctic deep 
ice cores would provide a good chance for further identify-
ing orbital climate change and its mechanisms.  

The stable isotopic records of Antarctic ice cores reveal a 
homogeneity of temperature variation on millennial time-
scale but with regional differences in the magnitude of vari-
ations. High resolution ice core records and simulations are 
urgently needed to decipher the spatial discrepancy and its 
driving mechanism. Additionally, ice cores from both Ant-
arctica and Greenland with sound chronology quality and 
enough high resolution are crucial for studying the phase 
relationship of bipolar climate change. 
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