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Quantum measurement is a fundamental problem in quantum control theory and experiments. It can obtain unknown information of
quantum systems, and can also change state of the systems inevitably. Both the outcome and back action could be used to control
quantum systems. This paper presents recent research progress about optimal control of state transformation in finite-dimensional
quantum systems by back action of non-selective quantum measurement, and optimal control of signal and background of CARS
(coherent anti-Stokes Raman spectroscopy) by phase shaping technique. In measurement sequence control of finite-dimensional
quantum systems, the necessary condition for critical points of the underlying state transformation objective is found to be a highly
symmetric form as a chain of equalities, and analytical and numerical solutions in several cases are explored. In the CARS control,
it is found that the maximal resonant signal and minimal background at a specific frequency can be achieved by shaping the probe
pulse only while keeping pump and Stokes pulses in transform limited forms (TLFs). An arctan-type phase function is obtained for
the probe pulse to simultaneously enhance the resonant signal and suppress the background. For broadband background elimination,
we find that the optimal phase shaping scheme of probe pulse is quasi-time-delay while keeping the pump and Stokes pulses in TLFs.
These conclusions could help design control strategies of quantum devices.
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Quantum measurement is a fundamental problem in quan-
tum theories and has been well discussed since the born of
quantum mechanics. Dirac and von Neumann proposed for
the first time that the quantum system should collapse from
the initial mixed state to one eigenstate upon measurement
[1, 2]. Then in the 1950s, physicists explored beyond this
collapse theory from different perspectives, such as the hid-
den variable theory by Bohm [3, 4] and the many-worlds in-
terpretation by Everett [5]. After 1970s, theorists tried to de-
velop quantum measurement theory under the framework of
the evolution of Schrödinger equation, for example, Zeh ar-
gued that the probability interpretation is compatible with an
objective interpretation of the wave function [6] and Zurek
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proposed the decoherence interpretation which emphasizes
the entanglement between the equipment and environment
[7]. Different from the measurement in classical physics,
quantum measurement are not independent of the observed
system. Instead, the measurement itself will have back-action
effect, which may be employed to control the quantum sys-
tem. Quantum measurement can be divided into selective and
non-selective measurements [8]. The former has been widely
studied for purified quantum states. Quantum Zeno and anti-
Zeno effects [9] are two extreme examples induced by non-
selective measurement, which can be employed for quantum
control in ideal experimental conditions. However, how to
achieve the target state in real situations by measurement-
induced control is still an open question. Significant research
efforts have been put forth to make progress in this field. We
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have previously studied the optimal projective measurements
[10, 11] in a simple two-level quantum system, and shown

that quantum measurements can cooperate with lasers to con-
trol the system more effectively [12].

In quantum world, information acquisition is often
achieved by indirect measurement, such as the spectra in-
duced by the interaction of the system and lasers. Since the
discovery of Raman scattering, Raman spectra have been an
important mapping tool of molecular vibrations. Combined
with microscopy techniques, Raman spectra can also be em-
ployed to carry out a three-dimensional visual study of bi-
ological samples. However, normal Raman signals are too
weak and easily merged into background fluorescence. These
disadvantages disappear in CARS. As a four-wave nonlinear
process, CARS [13] has been widely used in the past few
decades for studying chemical systems in solutions, reactions
in gas phases, and vibrational dynamics in gas and condensed
phases. CARS microscopy is a recently implemented tech-
nique for imaging of biological species, which is pioneered
by Duncan et al. using two dye lasers and developed [14]
by Xie et al. with a more advanced system with high sensi-
tivity [15, 16]. As a combination of ultrafast nonlinear spec-
troscopy and microscopy, CARS microscopy is a high chem-
ically selective and sensitive microscopy technique that uses
CARS signal of the unlabeled sample, and it provides higher
spatial resolution than two-photon fluorescence microscopy.
In CARS microscopy, mostly only one vibrational mode (e.g.
CH stretch motion) is probed using picosecond pulses, which
can produce sharp signal and low background [15, 17, 18].
However, people usually have to detect multiple modes in
experiments to distinguish large molecules such as protein.
In this case, it is necessary to bring in broadband femtosec-
ond pulses. However, there emerges a dilemma that when
the broadband femtosecond pulses are employed, the non-
resonant background may submerge the resonant signal and
the fine vibrational structure of CARS [19, 20]. Theoretical
and experimental studies have demonstrated that the disad-
vantage can be effectively avoided by coherence control. The
background suppression without loss of the resonant signal
via shaping pulses has been explored widely [20, 21], which
benefits from the development of phase shaping techniques
for femtosecond pulses. For example, Silberberg et al. com-
bined the phase and polarization control to yield background-
free single-pulse multiplex CARS spectra with a high spectral
resolution [22].

This work presents recent study on optimal state control
of finite-dimensional quantum systems by back action from
proper quantum measrement, and optimal control of signal
and background of CARS by phase shaping. Control strate-
gies are explored analytically or numerically. The paper
is organized as follows: Section 1 takes finite-dimensional
quantum systems as example to present the corresponding
measurement-induced control strategies. Section 2 shows op-
timal phase shaping schemes for CARS in different cases.
Section 3 gives the concluding remarks and some open ques-

tions to answer in the future.

1 Measurement-induced control

In this section, we first review some prior works about
measurement-assistant control and introduce quantum sys-
tem control which employs measurement only. Then, some
analytical results about two-level systems are presented. For
a general finite-dimensional quantum system, the necessary
condition for a measurement sequence to be a critical point
is obtained, and some analytical and numerical solutions in
several cases are explored based on this condition.

1.1 Measurement in quantum control

Most studies of quantum control focus on coherent manip-
ulation of quantum systems, since coherent manipulation,
even reversible manipulation, is more powerful than incoher-
ent process. Due to great difficulty of coherent control of
quantum systems in laboratory experiments, other incoherent
controls, such as laser noise, decoherence from the environ-
ment, and quantum observations, have drawn attention. In
contrast to the natural expectation that incoherent forces will
introduce deleterious effects toward achieving desired con-
trol [23], recent studies [24, 25] have shown that controlled
quantum dynamics can survive intense field noise and deco-
herence, and even cooperate with them under special circum-
stances [26]. For example, a suitably optimized environment,
as a incoherent control force, was suggested as a supplement
to coherent control to provide a general tool for selective ma-
nipulation of both the Hamiltonian and dissipative aspects
of the system dynamics [27, 28]. Optimal coherent control
fields were shown to be capable of cooperating or fighting
with quantum measurements, and the performance may be
optimized to achieve more effective control of the quantum
dynamics.

Quantum measurement, which serves as an incoherent
driving force, could also be used to manipulate the quantum
dynamics. It is well-known that both the outcome and back-
action of quantum measurements can be employed to control
quantum processes. In the standard closed-loop optimal con-
trol experiments [29], the recorded outcome, which comes
from a non-selectively measurement of a system at the end
of a trial control, is processed by a learning algorithm to fur-
ther optimize the laser pulse. Quantum measurements were
also applied to map an unknown mixed state to some target
pure state [30] by exploiting the resultant back action based
on which coherent control can be selectively performed [31],
and shown to be necessary in some laser control [32], dephas-
ing decoherence control [33] and incoherent control prob-
lems [34]. The effect of non optimized measurements upon
control by lasers was investigated in [35, 36]. Quantum mea-
surements also make a quantum system more controllable by
breaking dynamical symmetries, e.g. the quantum Zeno and
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anti-Zeno effects. In the absence of an active coherent con-
trol, instantaneous projective measurements were shown to
be capable of driving population transfer in a two-level sys-
tem, and a scheme for maximal population transfer was found
under an arbitrary finite number of measurements [10, 11].
Numerical simulations have been carried out to investigate
the ability of measurements in quantum control [12].

Although both the outcome and back-action from mea-
surements could be used to control quantum processes, we
just consider the latter one, i.e. only non-selective measure-
ment process is involved. In the subsections below, we will
review some control schemes using measurements only and
present some optimal control strategies.

1.2 Some analytical results in measurement-induced
quantum control

We consider the quantum state control of a two-level sys-
tem by projective measurements only and generalize some of
results to general M-dimensional quantum systems. For an
ideal measurement M applies to a system characterized by a
density matrix ρ, a non-selective measurement process is rep-
resented as M(ρ) =

∑
k PkρPk in which {Pk} are the projective

operators which satisfy PiP j = Piδi j and
∑

i Pi = 1. The ob-
jective in this circumstance is to drive the quantum system
from an initial state ρ0 = |0〉 〈0| to a final state ρ f = |1〉 〈1|.
We define the target function J as

Tr[ρ f .
(
MN · · · · · M2 · M1(ρ0)

)
], (1)

where operation Mi implies i-th measurement. Note that
we do not consider the free evolution of the system in eq.
(1), since it is easy to include it via a picture transforma-
tion [10, 11].

For two-level quantum systems, analytical solutions for
population transfer by optimized instantaneous projective
measurements is obtained [10, 11]. In these cases, we can
associate each measurement with two projectors, and find
the optimal transfer population between the initial and fi-
nal mixed states, ρi and ρ f . Assume that these two density
matrices can be represented as ρi, f =

1
2

(
I + ai, f · σ

)
where

σ = (σ1, σ2, σ3) is the vector of Pauli matrices. For some
fixed measurement time, in the optimal yield is

Jmax
N =

1
2
+

1
2
|ai|

∣∣∣a f

∣∣∣
(

cos
Δϕ

N + 1

)N+1

, (2)

where Δϕ is the angle between vectors ai and a f . For pure
orthogonal initial and final states, |ai| and

∣∣∣a f

∣∣∣ are both equal
to 1 and Δϕ equal to π. Consequently, eq. (2) will reduce to

Jmax
N =

1
2

[

1 +
(

cos
π

N + 1

)N+1
]

. (3)

Thus, with the help of Pauli matrices, all two-level measure-
ment control cases for arbitrary initial and final states have
been solved.

It is much complicated for a general M-dimensional sys-
tem because the choice of the projectors in each measure-
ment is not unique. Suppose {I1, · · · , In} are diagonal matri-
ces whose diagonal elements are either 1 or 0. For n projec-
tors {Pi} in each measurement, there exists a unitary matrix U
which can diagonalize all the projectors simultaneously, i.e.
Pi = UIiU†. The summation of all Ii is the identity operator
in the M-dimensional space:

n∑

i=1

Ii = U†
⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

Pi

⎞
⎟⎟⎟⎟⎟⎠U = I. (4)

Consequently, quantum measurements could be classified by
the set of diagonal matrices {I1, · · · , In}, and a measurement
M(k) in a class can be characterized by a unitary matrix Uk,
and the target function converts to

J[U1, ...,Um] = Tr
[
θM(Um)...M(U1)ρ0

]
. (5)

This is an optimized problem with unitary constraints. Treat
these unitary matrices as variables and follow the most com-
mon approach by considering the first-order term in the Tay-
lor expansion, we obtain a chain of equalities for m-times
measurements:

[ρ0,M(U1)...M(Um)θ]

= ...

= [M(Uk)...M(U1)ρ0,M(Uk+1)...M(Um)θ]

= ...

= [M(Um)...M(U1)ρ0, θ], (6)

which is the necessary condition for optimal measurements
to yield a maximal outcome [37].

We present three analytical cases with single measurement
below [37]. The first case is a direct generalization of two-
level systems. Consider the transformation between two pure
states |α〉 and |β〉 induced by single measurement represented
by M 1-rank projectors. Single measurement means only one
equation in eq. (6) is involved:

[M(U)ρ, θ] = [ρ,M(U)θ], (7)

in which ρ = |α〉 〈α| θ = |β〉 〈β|. In this situation, the maximal
state transition probability between two pure states |α〉 and
|β〉 is

Jmax =
1 + |〈α|β〉|2

2
. (8)

It is interesting to note that, the maximum of M-dimensional
system is just the same as that of a simple two-level system
spanned by the initial state |α〉 and the final state |β〉, which
has been extensively studied [10, 11].

Comparing with the first one, the second case involves
only two projectors. One projector is rank 1, i.e. P = |v〉〈v|
and the other is the complement Q = I − P. This measure-
ment procedure produces only two exclusive results, success
or failure, e.g. the test of an unknown state whether it has
a certain component characterized by a pure state. Suppose
that the desired pure desired state is |1〉 and the initial mixed
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state is ρ, then after the measurement, the initial state ρ be-
comes ρ′ = PρP+ (I−P)ρ(I−P) and our goal is to maximize
Tr(ρ′ |1〉 〈1|). Further calculation shows that J have the maxi-
mum as

Jmax =
ρ11 +Max{λi}

2
, (9)

where {λi} are the eigenvalues of ρ.
The third one corresponds to the transformation between

two orthogonal mixed states ρ and θ, i.e. tr(ρθ) = 0. Un-
der the same two-projector measurements assumption as the
second case, we will find

Jmax =
1
2
ρmaxθmax (10)

when the vector |v〉 in the projector P = |v〉〈v| is |v〉 =
1√
2
(|ρmax〉 + |θmax〉). Here |ρmax〉 and |θmax〉 are the eigenvec-

tors of ρ and θ corresponding to the largest eigenvalues, ρmax

and θmax, respectively.
These three cases are all based on single measurement.

For many times measurement with arbitrary initial and final
states, we need to find a way to analytically solve eq. (7) with
two arbitrary mixed states. This is intractable even for special
diagonal mixed states and numerical approach is required to
explore the properties of these cases.

1.3 Numerical simulation aspects

Since eq. (6) is not easy to solve for general initial and final
states, we resort to numerical simulations. For a general M-
dimensional system, when we consider the population trans-
fer between two orthogonal pure states induced by measure-
ments like two-level cases, numerical calculation implies that
the optimal control scheme reduces to that of two-level cases
dramatically. In other words, a series of measurements ma-
nipulate the states in the subspace spanned by the initial and
final states only and other M − 2 levels are negligible. This
observation greatly simplifies the control process for multi-
level cases.

Another numerical result is about the continuous measure-
ments. In [11], two-level systems with continuous measure-
ments are investigated, and a linear trial solution is proposed
to optimize the final population. Although it has not been
proved, this linear solution is strongly supposed to be the op-
timal one numerically.

2 Phase shaping in CARS

In this section, theoretical analysis of different phase shaping
schemes in quantum control of CARS is presented with the
aim of enhancing signal and suppressing background simul-
taneously. Phase shaping strategies at a specific frequency as
well as for broadband are provided.

2.1 Some notations

As shown in Figure 1, CARS is a four-wave nonlinear pro-
cess. Three laser pulses are used: the pump pulse Ep(ωp),
the Stokes pulse Es(ωs), and the probe pulse Epr(ωpr). The
CARS signal is a coherent superposition of resonant nonlin-
ear third order polarization P(3)

r (ωas) and non-resonant non-
linear third order polarization P(3)

nr (ωas):

ICARS(ωas) = |P(3)
r (ωas) + P(3)

nr (ωas)|2, (11)

with

P (ωas) = C
� +∞

−∞
dωpdωsdωpr

A(ωp,ωs,ωpr ,ωas)

ΩR−(ωp−ωs)−iΓ
, (12)

P(3)
nr (ωas) = χnr

� +∞

−∞
dωpdωsdωprA(ωp, ωs, ωpr, ωas).

(13)

Here A(ωp, ωs, ωpr, ωas) is equal to Ep(ωp)E∗s(ωs)Epr(ωpr)
×δ(ωas−ωp+ωs−ωpr), ΩR is the Raman frequency between

ωp ωs ωpr ωas
ωp

ωs ωpr ωas ωp

ωsωpr

ωas

ΩR
V = 1

V = 0

V = n

V = 0 V = 0
(a)  Resonant
      contribution

(b)  Nonresonant
      contribution

(c)  Twp-photon enhancement
      nonresonant contribution

Electronically
excited state

Figure 1 Energy level diagram of the CARS process. (a) Resonant signal generation: pump and Stokes pulses generate coherence between two vibrational
levels, when they have a frequency difference which coincides with the Raman resonance ΩR. Henceforth the following probe pulse induces the anti-Stokes
signal. (b) Non-resonant background contribution 1: one part of the non-resonant background is produced via the intermediate virtual state that does not reflect
the resonant molecular energy level. (c) Non resonant background contribution 2: the other part of the non-resonant contribution origins from the two-photon
enhancement process.
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energy levels 1 and 2, 2Γ is the level width, C is a constant
which depends on the material property, and χnr is the non-
resonant third-order susceptibility.

In our paper,Ωp, Ωs and Ωpr are defined as the carrier fre-
quency of pump, Stokes and probe pulse, respectively. If all
the pulses are transform limited pulses, then the peaks of res-
onant and non-resonant signal in the spectrum both locate at
the frequencyΩas = Ωp −Ωs + Ωpr.

The Gaussian amplitude profile in frequency domain is
used for pump, Stokes and probe pulses in all theoretical
treatments and simulations:

Ei (ω) = Ei

Δ
1/2
i

e−(ω−Ωi)2/Δ2
i eiΦ(ω), i = {P, S , Pr}, (14)

where Φ(ω) is the frequency-domain phase profile. For sim-
plicity, a concise frequency variable translation, ωpr = ωpr′ +

Ωpr, is made (so Φpr(ωpr) = Φpr(ωpr′ + Ωpr) is written as
Φpr′ (ωpr′ ) in the following), and we write P(3)

r (Ωas) as Pr. In
addition, Δp = Δpr = Δs = Δ is assumed in the following.

2.2 Signal peak enhancement and non-resonant back-
ground local suppression

In this subsection, control strategies to maximize the reso-
nant signal enhancement or eliminate the background at Ωas

are presented.
When only the probe pulse is shaped, the resonant signal

equals to C
√
π

2Δ

∫ ∞
−∞

dωpr′
√
ω2

pr′+Γ
2

exp
[

− 3ω2
pr′

2Δ2

]

exp
[
i
(
Φpr′ (ωpr′ )

+α(ωpr′ )
)]

, where α(ωpr′ ) = − arctan(ωpr′/Γ) + π/2 is con-
fined in the domain [0, π]. Then it is easily to see that
|Pr |2 reaches its maximal value when the probe pulse takes
the phase function Φpr′ (ωpr′ ) = arctan(ωpr′/Γ). |Pnr(Ωas)|2
can also reach its minimal value 0 with probe-only shap-
ing scheme, that is, when exp

[
iΦpr(ωpr′ )

]
is an asymmetri-

cal function (e.g. Φpr(ωpr′ ) is the π step phase function).
However, the π step phase function could only eliminate local
component of background around ωas = Ωas and form a dip
in the spectrum. Thus the optimal phase function obtained by
optimizing |Pnr(Ωas)|2 is locally optimal for the whole spec-
trum, which means that the background may still affect the
resonant signal away from the position of ωas = Ωas in the
spectrum. Hence, the broadband background suppression
method is necessary for CARS, which will be discussed in
subsection 2.4.

In experiments, there are several configurations of CARS:
three-pulse CARS, two-pulse CARS (the pump pulse acts as
probe pulse in the experiment) and single-pulse CARS [21]
(all three photons required are supplied by the same short
optical pulse). We will see in the following if three-pulse
CARS could achieve better performance than the probe-only
shaping scheme in the resonant signal enhancement since this
configuration has the most control freedoms.

From eq. (12),

P(3)
r (Ωas) =

1
Δ3/2

∫ ∞

−∞
C

ωpr′ − iΓ
e−

3ω2
pr′

2Δ2 +iΦpr′ (ωpr′ )

×
∫ ∞

−∞
e−

2(ωp′+ωpr′ /2)2

Δ2 eiΦp′ (ωp′ )−iΦs′ (ωp′+ωpr′ )dωpr′

�

∣∣∣∣∣∣

1
Δ3/2

∫ ∞

−∞

∣∣∣∣∣
C

ωpr′ −iΓe−
3ω2

pr′
2Δ2 +iΦpr′ (ωpr′ )

∣∣∣∣∣·
√
π

2
Δ · dωpr′

∣∣∣∣∣∣

� C

√
π

2Δ
e

3Γ2

4Δ BesselK

(

0,
3Γ2

4Δ2

)

.

The first equality holds when Φp′ and Φs′ is constant,
and the second when Φpr′(ωpr′ ) = arctan(ωpr′/Γ). Hence the
maximal resonant signal is only achieved when the pump and
Stoke pulse are unshaped transform limited pulses, and the
probe pulse takes phase functionΦpr′ (ωpr′ ) = arctan(ωpr′/Γ).
This fact means that any two-pulse or three-pulse shaping
scheme is not necessary for optimizing resonant signal, be-
cause the simple probe-only shaping scheme could get opti-
mal resonant signal. This conclusion still holds when Δp, Δpr

and Δs are different.

2.3 Simultaneous resonant signal peak enhancement
and non-resonant background local suppression

In last subsection, the optimization of resonant signal and
non-resonant background of the CARS process is treated sep-
arately, but in real experiments, the signal and background
are always being detected together. Thus it is necessary to
study the balance between the resonant signal enhancement
and non-resonant background suppression, which is a multi-
objective optimization problem. In this subsection, we will
consider how to enhance the resonant signal while suppress-
ing the background at a specific frequency by shaping the
probe pulse.

The weighted difference of resonant signal and non-
resonant background intensities is chosen as the objective
functional:

J = |Pr |2 − k |Pnr|2 , (15)

where k is the weight factor. By maximizing the intensity dif-
ference, we can achieve a large signal-background-ratio with
the precondition of a considerable resonant signal intensity.
This objective functional J is the balance of the minimization
of |Pnr |2 and maximization of |Pr |2.

The CMA-ES algorithm [38, 39], which is reliable for
global optimization especially for the phase shaping scheme,
is used here as the numerical optimization method. Using pa-
rameters C = 1 and χnr = 0.1, the corresponding numerical
optimal phases are shown in Figure 2. According to the vari-
ation condition δJ/δΦpr′(ωpr′ ) = 0, we can get the solution
for maximal value of J, and the optimal phase is a modified
arctan-type function:

Φpr′(ωpr′ ) = arctan

⎛
⎜⎜⎜⎜⎜⎝

ωpr′

Γ − k(χnr/C)2γ(ω2
pr′ + Γ

2)

⎞
⎟⎟⎟⎟⎟⎠ + θ, (16)

γ=

{∫ ∞
−∞ e−

3x2

2Δ2 cos
(
arctan

(
x

Γ−k(χnr/C)2γ(x2+Γ2)

))
dx

}

{∫ ∞
−∞e−

3x2

2Δ2 1√
x2+Γ2

sin
(
arctan

(
x

Γ−k(χnr/C)2γ(x2+Γ2)

)
+α(x)

)
dx

} ,

(17)
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Figure 2 (a) Numerical optimal phase function of the probe pulse for |Pr |2 − k |Pnr |2 with different weight k. All the phase functions in this figure could
suppress the background to a small quantity. (b) The Pareto surface for the optimization of signal enhancement and background suppression. With different
weight k, the value of |Pr |2 is bounded in [0.765, 0.828], while |Pnr |2 is always much smaller than |Pr |2.

where θ is a trivial phase angle. The parameter γ in (17) can
be solved iteratively [40].

When the weight factor k = 0, the optimization of J is re-
duced to the maximization of resonant signal, and its solution
arctan(ωpr′/Γ) is also consistent with the result in subsection
2.2. The practical choice of k depends on the ratio of χnr/C.
When χnr/C is large (large background), it is better to choose
a large value of k, which will give a solution close to the limit
point on the right side of the Pareto surface. When χnr/C is
small, a small k is appropriate. When χnr/C approaches zero,
k=0 is the best choice, in which case it is no need to consider
a very small background.

2.4 Phase shaping for broadband

We have studied the resonant signal enhancement and non-
resonant background suppression at a specific frequency.
However, sometimes in experiments, people need a large res-
onant signal and low non-resonant background in the whole
spectrum, so the broadband non-resonant background sup-
pression is necessary. An appropriate choice of the objective
functional is the integration in the spectrum:

J[Φpr,Φp,Φs] = Ir − Inr, (18)

Ir =

∫ +∞

−∞
|Pr(ωas)|2dωas, (19)

Inr =

∫ +∞

−∞
|Pnr(ωas)|2dωas. (20)

It is the difference of resonant signal intensity integration
and non-resonant background intensity integration. The op-
timization of this objective functional guarantees sufficiently
large resonant signal when suppressing the background. With
Δ = 50 cm−1 and Γ = 4.8 cm−1, the numerical optimiza-
tion result with respect to the phase functions of all the three
pulses is shown in Figure 3 and the corresponding CARS
spectrum is shown in Figure 4. From the simulation results,
the optimal phase shaping configuration consists of a shaped
probe pulse and unshaped pump and Stokes pulses, which
suppresses the background to a small value across a broad
frequency band in the spectrum, while the resonant signal re-
mains large. The picture for the optimal phase profile tells
that it is a quasi-linear, although it is not exact linear phase
shaping. In addition, the amplitude profile of the shaped
probe pulse in time domain also reveals a quasi-time-delay
shape. In other words, the time delay scheme, a well-known
method for the background suppression, is a quasi-optimal

−2 −1 0 1 2

0
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Figure 3 Optimal phase profile of the probe pulse (red solid lines) using numerical optimization in CMA-ES algorithm for the maximization of Ir − Inr.
(a) and (b) correspond to the frequency and time domains, respectively. The black dashed line in the right panel is the unshaped transform limited pulse.
Δ = 50 cm−1 and Γ = 4.8 cm−1.
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Figure 4 Spectrum of maximal Ir − Inr. Here, the background (blue dash
dotted line) is suppressed to be a small value across a broad frequency band,
while the resonant signal (red solid line) remains large.

phase shaping scheme for the broadband background elimi-
nation, if the objective functional is defined as in eq. (18).
For other types of objective functionals which place more
importance on the broadband background elimination, it still
holds that the time delay scheme is the quasi-optimal phase
shaping scheme. Although the time delay scheme could not
yield narrow-band spectrum, it has almost the best perfor-
mance on the broadband non-resonant background suppres-
sion, which is especially advantageous when the background
is very large. For practical considerations, appropriate com-
binations of the time delay scheme and other phase shaping
schemes could achieve optimal performance for the signal-
background control in CARS.

3 Conclusions and open questions

This paper reviews the theory of optimal quantum measure-
ments of finite-dimensional systems and CARS. Analyti-
cal and numerical results demonstrate effect of the corre-
sponding strategies. For the measurement-induced control
in finite-dimensional quantum systems, the necessary condi-
tions for optimal measurements are obtained. Some analyt-
ical and numerical results are presented for different cases.
In the CARS control, the optimal phase shaping scheme to
achieve maximal resonant signal or minimal background at
a specific frequency is simple, that is, only the probe pulse
needs to be shaped while keeping pump and Stokes pulses
in transform limited forms. As a balance of the resonant
signal enhancement and non-resonant background suppres-
sion, the optimization of the objective functional |Pr |2−k|Pnr |2
could generate a CARS signal with large resonant signal and
small background simultaneously, and an arctan-type optimal
phase function is found for the probe pulse. Phase shaping
schemes for broadband are investigated numerically, and it
is found that the well-known time-delay scheme is a quasi-
optimal phase shaping scheme for the broadband background
elimination. These control strategies could give us some hints

toward designing new type quantum microscopes and quan-
tum sensors.

Until now, the measurement-induced control is completely
solved only for two-level quantum systems and several sim-
ple multi-level quantum systems, and the phase shaping tech-
nique is employed to improve the signal-to-background ra-
tio in CARS when only one vibrational Raman mode is ex-
cited. However, real systems are much more complex. For
example, they may be general multi-level systems, and more
than one vibrational Raman modes are likely to be excited
simultaneously by the incident lasers. By expanding the for-
mulas to general multi-level systems and changing the cor-
responding control objectives, the selective excitation of Ra-
man modes and maximal population transfer to a target state
can be achieved. However, these complex cases often have
no analytical solutions, and need to be further studied in the
future.

Quantum measurement is an indirect control approach in
the manipulation of quantum dynamics, while phase shap-
ing of laser pulses is a direct control strategy. They can both
be utilized to achieve control objectives of quantum systems.
Phase shaping techniques are often employed in experiments
to control the dynamics of quantum systems, and this could
also be achieved by measurement-induced control in some
cases. For example, we could control the excitation of quan-
tum systems by pulse shaping, and then control the dynamics
by both pulse shaping and measurement-induced control.

There are still many open questions to explore. The task
of finding the state transfer probability between two general
mixed states seems to be formidable. Do we have analytical
solutions for some special mixed states? Can we solve this
problem in single measurement case or find some new type
of target functions to simplify the optimal procedure? In the
CARS control, we only study pulse-shaping in time domain.
As is known, the space resolution of CARS microscopy can
not exceed the diffraction limit of the incident laser, without
employing quantum effects. The quantum coherent control
strategies by pulse-shaping in space domain to improve the
space resolution of CARS microscopy have not been stud-
ied carefully up to now. Another point to be noticed is the
chemical selectivity in CARS microscopy. Experiments have
demonstrated that not only the CARS signals from different
vibrational modes in one molecule but also from different
molecules can interfere. By adjusting the pulse phases, the
signal from one special molecule can be effectively enhanced
while that from another type of molecules [41] is suppressed.
Thus how to improve the chemical selectivity and space reso-
lution of CARS microscopy simultaneously by pulse-shaping
technique in time and space domain needs to be explored sys-
tematically in the future.
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